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Abstract: Biodiversity and ecosystem functions and their relationship with environmental response
constitute a major topic of ecological research. However, the changes in and impact mechanisms of
multi-dimensional biodiversity and ecosystem functions in continuously changing environmental
gradients and anthropogenic activities remain poorly understood. Here, we analyze the effects
of multi-gradient warming and grazing on relationships between the biodiversity of plant and
soil microbial with productivity/community stability through a field experiment simulating multi-
gradient warming and grazing in alpine grasslands on the Tibetan Plateau. We show the following
results: (i) Plant biodiversity, soil microbial diversity and community productivity in alpine grasslands
show fluctuating trends with temperature gradients, and a temperature increase below approximately
1 ◦C is beneficial to alpine grasslands; moderate grazing only increases the fungal diversity of the soil
surface layer. (ii) The warming shifted plant biomass underground in alpine grasslands to obtain more
water in response to the decrease in soil moisture caused by the temperature rise. Community stability
was not affected by warming or grazing. (iii) Community stability was not significantly correlated
with productivity, and environmental factors, rather than biodiversity, influenced community stability
and productivity.

Keywords: alpine meadows; biodiversity; microorganisms; phylogenetic diversity; productivity

1. Introduction

The most unique feature of the Earth is the existence of life, and the most extraordinary
feature of life is its diversity [1]. Biodiversity is fundamental to the survival and develop-
ment of humanity and reflects many ecological and evolutionary processes occurring at
different spatial and temporal scales [2], but the human-induced loss and fragmentation
of plant and animal habitats, overexploitation of resources, climate change, and biological
invasions have emerged in recent years as important factors in the unprecedented loss of
biodiversity and decline in ecosystem functions [3]. In this scenario, ensuring the provi-
sion and stability of ecosystem services related to biodiversity (e.g., food, fodder, carbon
sequestration and soil fertility) is an urgent socio-ecological issue in the wake of climate
change [4].

Extensive preliminary research has shown that biodiversity influences primary produc-
tivity and other ecosystem functions [5–10]. Tilman et al. [5] showed that species richness
had a significant positive effect on plant biomass, as did Hector et al. [6] who showed that
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the number and type of species (functional groups) present in grassland communities had a
relatively similar role in determining aboveground productivity. Furthermore, biodiversity
can also make ecosystems more stable [11]. In the 1950s, MacArthur et al. [12] proposed
that communities containing more species should be better protected from the effects of
species extinction, species invasion, or environmental disturbance. However, most previ-
ous studies on the relationship between biodiversity and ecosystem function focused on
“richness” (i.e., number of species), and few on “biodiversity” or “diversity” (a measure
of the combination of species number and relative abundance) [13]. Moreover, it is well
known that ecosystem biodiversity should include the diversity of organisms at multiple
trophic levels, and there are several interactions among these biodiversity indexes that
affect ecosystem function (productivity) [14,15]. For example, plant biodiversity affects
microbial diversity by influencing the state of substrates (soil organic matter) decomposed
by microorganisms [16,17], and microorganisms exert feedback on plant community com-
position by altering soil nutrients [18]. Finally, the interaction of plants and microorganisms
can collaboratively influence ecosystem function (vegetation productivity, soil carbon and
soil nitrogen stocks, etc.) [19–21]. In addition, the importance of biodiversity to ecosystems
has recently been questioned, as observational and experimental studies seem to have
yielded different results on the effects of biodiversity on ecosystem functioning [22,23].
Some experimental studies have shown that the availability of limited terrestrial resources
(e.g., soil nutrients and water) has a greater impact on ecosystem functioning (e.g., com-
munity productivity and productivity stability) than species diversity [24,25]. Thus, there
are many gaps in the research on the relationship between biodiversity and ecosystem
functioning. Ecosystems around the world are exposed to intense warming and human
activity (grazing of grasslands, deforestation, expansion of building sites, etc.), but the
magnitude of warming and the manner of anthropogenic disturbance vary from region
to region. In this scenario, it is particularly important to analyze the processes and mech-
anisms by which biodiversity affects ecosystem function (productivity and stability) in
fluctuating environments [26]. A full understanding of the factors that influence ecosystem
function and the importance of biodiversity can ensure the conservation and restoration of
diverse natural ecosystems [27].

Nearly half of the Qinghai-Tibet Plateau is covered by grasslands, one of the most
important areas for biodiversity research, and organisms in this region are sensitive to
environmental disturbances. In recent years, the Qinghai-Tibet Plateau has experienced
severe warming and anthropogenic disturbance, and due to the characteristics of seasonal
grazing on the Tibetan plateau, anthropogenic grazing disturbance has remained at a
relatively strong level in recent years, resulting in the grasslands of the Tibetan Plateau
undergoing significant changes. To reveal the relationship between biodiversity and
ecosystem function in the alpine grasslands of the Tibetan Plateau in this context, this study
analyzes the changes in biodiversity and ecosystem function (productivity and stability)
of grasslands through an interactive experiment with simulated gradient warming and
simulated grazing in an alpine grassland conducted for eight years in order to answer the
following two questions: (1) How do biodiversity and ecosystem function (productivity
and stability) change under the influence of warming and simulated grazing? (2) Is there a
correlation between biodiversity and ecosystem function and what factors influence both?

2. Results
2.1. Effect of Simulated Gradient Warming and Grazing on Environmental Factors

Soil organic matter (SOM) is a product of aboveground plants, but it is also a habitat
for soil microorganisms and can affect the ground state of the soil [28], which is why it was
used as an environmental factor in this study. We used different sizes of Open Top Cham-
ber (OTC) to achieve different temperature increases (Figure 1). The temperature at 5 cm
above the soil (T.AG5) differed significantly among treatments (Table S1 in Supplementary
Materials), but the temperature showed an anomalous trend of increase and subsequent
decrease with the experimental treatments, in contrast to the temperature at 10 cm above
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the soil (T.AG10); the soil temperature at 5 cm above the ground (T.BG5) showed a gradual
increase with the experiment; soil moisture content (SMC) then showed a corresponding
gradual decrease; and soil bulk density (SBD) showed an insignificant gradual increase
with the warming gradient. Grazing increased the aboveground temperature but reduced
soil temperature and soil moisture content. It is noteworthy that the change in soil or-
ganic matter content, which showed a U-shaped trend with temperature change when
the gradient warmed without grazing, showed a hump-shaped trend after grazing, and
grazing completely changed the way SOM responded to gradient warming. Of all the
environmental factors, only the temperature at 5 cm above the ground and soil moisture
content were significantly affected by gradient warming, and the other environmental
factors did not change significantly with gradient warming. Simulated grazing did not sig-
nificantly change all environmental factors, and the interaction between gradient warming
and simulated grazing had no significant effect on environmental factors (Table S1).
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Figure 1. Changes in environmental factors in experimental treatments. (a), temperature at 5 cm
aboveground; (b), temperature at 10 cm aboveground; (c), temperature at 5 cm underground;
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(d), moisture content of 10 cm soil; (e), soil bulk density of top 10 cm soil; (f), organic matter content
of top 10 cm soil. The horizontal axis indicates the experimental treatments that resulted in different
warming gradients. NG and G indicate treatments without simulated grazing and treatments with
grazing, respectively.

2.2. Effects of Simulated Gradient Warming and Grazing on Ecosystem Structure and Function

The Shannon diversity, Simpson diversity, and Pielou diversity indices of plant com-
munities were more consistently affected by the gradient warming and simulated grazing
(Figure 2); all showed a fluctuating trend of decreasing then increasing then decreasing with
temperature; the maximum warming had the least diversity, but only the Shannon diversity
index and Simpson diversity showed significant changes under different gradients, and
grazing also had a non-significant negative effect on plant diversity (Table S1).
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phylogenetic endemism index; (f), plant community phylogenetic species variability index. The
horizontal axis indicates the experimental treatments that resulted in different warming gradients.
NG and G indicate treatments without simulated grazing and treatments with grazing, respectively.

The phylogenetic diversity of plant communities contains the phylogenetic informa-
tion of plants, reflects the functional information of plant communities, and can be regarded
as an indicator of the functional diversity of plant communities. In this study, plant commu-
nity phylogenetic diversity also showed a non-linear trend of first decreasing, increasing
and then decreasing with increasing temperature (Figure 2); the CK treatment had the
greatest phylogenetic diversity, and the smallest phylogenetic diversity under the greatest
temperature increase, while grazing significantly reduced the phylogenetic diversity of
plant communities; and the interactive experiment of gradient warming and simulated
grazing also significantly affected phylogenetic diversity. Phylogenetic species variability
gradually increased with the temperature increase, and grazing had no significant effect on
phylogenetic species variability.

Gradient warming had a significant effect on bacterial diversity (Table S1), the Shannon
diversity of bacteria fluctuated with gradually increasing temperature, the phylogenetic
diversity of bacteria showed a hump-shaped trend with temperature (Figure 3), and simulated
grazing had no significant effect on bacterial diversity. The change in fungal diversity was
just the opposite: although fungal diversity showed different fluctuations with the increase in
gradient temperature, the increase in gradient temperature had no significant effect on fungi,
while simulated grazing significantly increased fungal diversity (Table S1).
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Figure 3. Effects of gradient warming and grazing on biodiversity of microbial community. (a), shannon
diversity index of bacterial community; (b), phylogenetic diversity index of bacterial community; (c),
shannon diversity index of fungal community; (d), phylogenetic diversity index of fungal community.
The horizontal axis indicates the experimental treatments that resulted in different warming gradients.
NG and G indicate treatments without simulated grazing and treatments with grazing, respectively.
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The aboveground biomass, belowground biomass, and total biomass all showed
hump-shaped trends under gradient warming (Figure 4), but the changes in aboveground
biomass did not reach significant levels (Table S1). Community stability (the degree
of variation in species richness between communities) varied relatively steadily across
the temperature gradient, and warming slightly increased community stability in alpine
grassland, while simulated grazing did not affect community stability. To further analyze
the experimental effects on biomass, we calculated the percentage of aboveground biomass
and the stratified distribution of belowground biomass; the results show that the percentage
of aboveground biomass accounted for approximately 40% of the total biomass, and the
percentage of aboveground biomass decreased after temperature increase (Figure 5), and
increased slightly with the increase in temperature. The simulated grazing did not change
the distribution of biomass above or below ground. Additionally, the stratification of
belowground biomass in the subsurface was not significantly affected by the gradient
warming and simulated grazing (Figure 5).
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Figure 4. Effects of gradient warming and grazing on ecosystem functioning. (a), aboveground
biomass of plants; (b), belowground biomass of plants; (c), total biomass of plants; (d), structural
stability of plant community. The horizontal axis indicates the experimental treatments that resulted
in different warming gradients. NG and G indicate treatments without simulated grazing and
treatments with grazing, respectively.
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Figure 5. Effect of gradient warming and grazing on biomass distribution. (a), changes in the
proportion of above-ground biomass and below-ground biomass allocated with the warming gradient
when not grazed; (b), changes in the proportion of above-ground biomass and below-ground biomass
allocated with the warming gradient when grazed; (c), changes in the proportion of below-ground
biomass stratified with the warming gradient when not grazed; (d), changes in the proportion of
below-ground biomass stratified with the warming gradient when grazed. The horizontal axis
indicates the experimental treatments that resulted in different warming gradients.

With the idea of network analysis, the co-occurrence network analysis of species in
the plant community showed that only a few species in the community were correlated
(Figure S3), and the correlation between species was mostly positive; there were a few
negative correlations in the CK + G, A + G, B + G, C + NG, C + G, G + NG and D +
G treatments. Additionally, the experimental treatment did not significantly affect the
correlation between species in the community (Table 1).

Table 1. Results of network co-occurrence analysis of plant communities under different treatments.

Treatment * Average
Degree

Average Weighted
Degree Modularity Statistical

Inference
Graph

Density Nodes Edges

CK + NG 0.577 0.577 0.507 226.254 0.011 52 15
CK + G 0.706 0.627 0.736 230.432 0.014 51 18
A + NG 0.375 0.375 0.519 190.919 0.008 48 9
A + G 0.851 0.766 0.847 215.927 0.019 47 20

B + NG 0.356 0.356 0.688 175.426 0.008 45 8
B + G 0.304 0.130 0.333 176.360 0.007 46 7

C + NG 0.600 0.440 0.975 218.481 0.012 50 15
C + G 0.809 0.723 0.268 213.521 0.018 47 19

D + NG 0.682 0.591 0.814 190.962 0.016 44 15
D + G 0.732 0.634 0.423 177.897 0.018 41 15

* CK, A, B, C and D, indicate control and the experimental treatments that resulted in different warming gradients;
NG and G, indicate no simulated grazing and with simulated grazing, respectively; + indicates superposition of
two treatments.
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2.3. The Relationship between Biodiversity and Ecosystem Function

Factors affecting ecosystem functioning include environmental factors, which may
include abiotic and biotic factors. In this study, the correlation between the environmen-
tal factors and biodiversity and ecosystem function showed that soil moisture content
significantly influenced biodiversity (Figure 6), while the environmental factors related
to ecosystem function were 10 cm aboveground temperature, soil temperature, soil bulk
density and soil organic matter content, but only soil organic matter was significantly
correlated with biomass, soil temperature and soil bulk density were only significantly
correlated with belowground biomass in the third layer, and the variation in community
stability was not correlated with the environmental factors.
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Figure 6. Correlation of environmental factors with biodiversity and ecosystem function. * indicates
the significance of correlation (p = 0.05); T.AG5, T.AG10, T.BG5, SMC, SBD and SOM indicate
temperature at 5 cm above ground, temperature at 10 cm above ground, temperature at 5 cm in soil,
soil moisture content, soil bulk density and soil organic matter, respectively; PD, PE and PSV indicate
phylogenetic diversity, phylogenetic endemism and phylogenetic species variability, respectively;
AGB and BGB denote aboveground biomass and belowground biomass; BGB1, BGB2 and BGB3
denote belowground biomass at 0–10 cm, 10–20 cm and 20–30 cm, respectively.

Then, we hypothesized that the mutual relationship between aboveground organisms
may be related to the function of the ecosystem, so we analyzed the correlation between the
co-occurrence network analysis results of the plant community and the ecosystem function
(Figure S4). The analysis results show that the network of aboveground plants only has a
strong correlation with biodiversity and no correlation with ecosystem function. The envi-
ronmental drivers of ecosystem structure and function were next identified using partial
Mantel tests (Figure 7): the species diversity of plant communities (Shannon, Simpson and
Pielou) was found to be significantly driven by 10 cm aboveground temperature and soil
moisture, and the phylogenetic diversity of plant communities was significantly influenced
by soil moisture, while microbial diversity was not significantly driven by environmental
factors and ecosystem function was only correlated with the organic matter content of
the soil.

By regressing the effects of biodiversity on ecosystem function in the experiment
(Figure 8), we observed that there was no significant regression between biodiversity
with community stability (degree of inter-community species variation), that there was
also no linear regression between total ecosystem biomass and biodiversity, that plant
communities with high stability also have widely varying total biomass, and that high
community stability does not necessarily result in high productivity. Moreover, there was
no significant linear relationship between biodiversity and ecosystem function under the
different treatments (dots with different colors in Figure 8).
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Figure 7. Environmental drivers of ecosystem structure and function. Pairwise comparisons of
environmental factors are shown, with a color gradient denoting Spearman’s correlation coefficients.
Ecosystem structure (biodiversity) and ecosystem function (biomass, biomass distribution and com-
munity stability) were related to each environmental factor by partial Mantel tests. Edge width
corresponds to the Mantel’s r statistic for the corresponding distance correlations, and edge color
denotes the statistical significance based on 9999 permutations. T.AG5, T.AG10, T.BG5, SMC, SBD and
SOM indicate temperature at 5 cm above ground, temperature at 10 cm above ground, temperature at
5 cm in soil, soil moisture content, soil bulk density and soil organic matter, respectively. * indicates
the significance of correlation (p = 0.05).

We also found that there was also no linear regression between total ecosystem biomass
and biodiversity, that plant communities with high stability also have widely varying total
biomass, and that high community stability does not necessarily result in high productivity.
Moreover, there was no significant linear relationship between biodiversity and ecosystem
function under different treatments (dots with different colors in Figure 8).
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Figure 8. The relationship between biodiversity and biomass and community stability, and the
relationship between biomass and community stability. Different colored dots indicate different
treatments, gray translucent areas indicate 95% confidence intervals. Shannon, Simpson and Pielou
indicate different indices of diversity. PD, PE and PSV indicate phylogenetic diversity, phylogenetic
endemism and phylogenetic species variability, respectively. AGB and BGB denote aboveground
biomass and belowground biomass. Com.stab indicates community stability.

3. Discussion

OTC warming is a passive form of warming related to the natural environment of the
region [29], and the different sizes of OTC we set up in this study yielded different magni-
tudes of air warming; soil surface temperature and soil moisture were also significantly
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affected. The vegetation type in our study area is a dwarf shrub meadow, with most of
the vegetation being approximately 10 cm in height [30]. Therefore, the air temperature
at 10 cm above ground in this study showed a good temperature gradient. The treatment
with simulated grazing reduced standing dead material and the accumulation of dead
leaves on the ground; soil–air contact was more adequate; soil temperature and moisture
could be strongly correlated with temperature changes in the ground air; and the removal
of standing dead material caused an increase in soil bulk, a decrease in organic matter and
a deterioration in soil quality [31].

The distribution of species is the result of numerous ecological processes influenced by
species evolution, geographic variation, and environmental factors, resulting in different
patterns of variation in species diversity [32]. Our study found that alpine meadow plant
community biodiversity did not decrease monotonically with warming, but was moderately
disturbed, confirming that alpine vegetation on the Tibetan Plateau has lived in unfavorable
habitats for a long time [33–36], and that future warming will have a positive impact on
alpine grasslands on the Tibetan Plateau, but too strong a warming effect will still reduce
alpine grassland vegetation diversity [37–39]. Furthermore, our study found that for
vegetation on the Tibetan Plateau, a temperature increase of approximately 1 ◦C is the
threshold limit for vegetation to survive well, and that the direct factor affecting the survival
of alpine vegetation is soil moisture content. This result is consistent with the majority
of studies showing that biodiversity loss is closely linked to drought [40–42]. Grazing
reduces the number of plant species and alters the competitive relationships of species
in the community, as shown in previous studies where grazing reduced the amount and
height of taller grasses and shorter weeds had more ecological niches to grow [43–46].
Our study showed that simulated grazing significantly reduced phylogenetic diversity
and increased phylogenetic endemism in plant communities, and slightly altered species
interactions. This is the same as the results of the previous study, but we also found that
simulated grazing did not significantly affect plant biodiversity, unlike the previous results;
this is probably related to the way we simulated grazing, and that simulated grazing had
only a very weak effect on the following year’s growth of alpine meadow plants, which
was not sufficient to cause species loss.

In terms of microbial diversity, bacterial diversity showed significant changes with in-
creasing temperature gradient. As temperature increased, bacterial diversity also increased,
which is consistent with the results of previous studies [47,48], and the greatest bacterial
diversity was found in the moderately increasing temperature treatment, indicating that
bacteria had a threshold of tolerance to the environment; simulated grazing had no effect
on bacterial diversity but significantly increased fungal diversity; and temperature had
no significant effect on fungal diversity, which is related to the function of fungi—mostly
saprophytic aerobic taxa [49]. Simulated grazing increased fungal diversity because grazing
improved air circulation on the soil surface.

The response of grassland biomass to the warming gradient in this study showed a
hump-shaped change, which is more similar to the change in biodiversity in this study,
indicating a positive correlation between biodiversity and grassland biomass in this study,
and suggesting that moderate warming is beneficial to grassland vegetation on the Tibetan
Plateau [37]. Our study also found that warming led to a shift in vegetation biomass to the
subsurface, which was associated with a decrease in soil moisture caused by warming, with
more roots enhancing the ability of plants to access water [50]. Furthermore, simulated
grazing in this study resulted in compensatory plant growth, with a weak increase in
biomass following simulated grazing. Community stability was not significantly affected by
warming and grazing. Some studies have shown that the number of species first decreases
and then increases after long-term warming [51]; therefore, there was no significant change
in the stability of the community calculated by the variability of species diversity.

While many previous studies have disputed the extent to which biodiversity affects
ecosystem function [5–7], this study, after considering plant species diversity, functional
aspects of diversity (phylogenetic diversity) and microbial diversity, shows that biodiver-



Plants 2022, 11, 1428 12 of 17

sity does not contribute significantly to ecosystem productivity and community stability,
and that community stability and productivity are not significantly correlated, while envi-
ronmental factors partially affect ecosystem function. This could be related to the alpine
environment in which the study area is located, which resulted in the vegetation being
in an unsaturated state; environmental disturbances resolved this unsaturation when
plant biodiversity did not change significantly, and biomass showed a dramatic response.
This resulted in ecosystem function not being significantly affected by biodiversity, while
environmental factors altered ecosystem function.

4. Materials and Methods
4.1. Study Site

This study was conducted at the Haibei Alpine Meadow Ecosystem Research Station
(37◦36′ N, 101◦19′ E, 3220 m above sea level) (Figure S1), where the climate is plateau
continental. The annual mean temperature is −2 ◦C, and the annual mean precipitation is
500 mm, of which the majority occurs during summer. The growing season extends from
May to September. Mollic-Cryic Cambisol is the main soil type [52]. The main vegetation
type in this area is the typical zonal vegetation of the Qinghai-Tibet Plateau. The alpine
shrub meadows with Potentilla fruticosa as the constructive species are distributed in the
shady slopes, foothills and valley lowlands of the mountains; the alpine Kobresia meadows,
with Kobresia humilis as the constructive species, are found on the sunny slopes and beaches
of the mountains; and the swampy meadows, with Kobresia tibetica as the dominant species,
are found on the river banks. The plant community is simple in structure, with small
species composition, a short growing season and low biological productivity. The main
grazing animals are Tibetan sheep and yaks.

4.2. Experimental Design and Treatments

This field experiment was established in July 2011 within a fenced 50 × 50 m2 flat
area, which was previously used as a winter pasture, to examine how the alpine meadow
ecosystem responds to gradient warming and grazing. Fifty plots composed of five temper-
ature treatments (ambient temperature and four warming treatments) with ten replicates
were distributed into subplots divided into 10 rows and 5 columns following a random
block design (Figure S2). A 2 m buffer strip between each plot was used to separate each
area from its neighboring areas (Figure 9). Half blocks were treated with simulated grazing
by clipping 60% of the dead standing biomass before the growing season every year, and
the remaining half was not clipped (Figure S2). Four levels of warming treatments were
achieved by installing four types of conical open-top chambers (OTCs, Solar Components
Corporation, Manchester, NH, USA) constructed of 1.0 mm-thick fiberglass. The four types
of OTCs were each 40 cm in height, but the top and bottom diameters were 1.6 m and
2.05 m (hereafter referred to as treatment (A)), 1.3 m and 1.75 m (B), 1.0 m and 1.45 m (C),
and 0.7 m and 1.15 m (D), respectively. These four types of OTC treatments successfully
generated increased air and soil temperature gradients.

4.3. Sample Collection and Soil Physicochemical Property Analysis

The Onset U23-001 (Onset Computer Corporation, Bourne, MA, USA) temperature
data logger was used to record the ground temperature in the experimental area. The
data logger was fixed to the center of the OTC sample (to avoid the edge effects) using
a homemade iron frame and the data sensor was positioned approximately 5 cm above
the ground (T.AG5). Additionally, the Onset HOBO Environmental Weather Data Logger
H21-002 (Onset Computer Corporation, Bourne, MA, USA) was also set up to collect
temperature at 10 cm above the ground (T.AG10) and soil temperature (T.BG5) data from
two adjacent plots. All the temperatures were collected every 2 h, continuously collected
throughout the year, and the data were exported when the battery was replaced.
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The soil moisture content (SMC) was measured using the drying method. The soil
at a depth of 10 cm was collected and placed into a sealed bag. After taking it back to
the laboratory, the fresh weight was weighed, then dried at 80 ◦C for more than 48 h to a
constant weight and then weighed. The difference between the two measurements was
determined via the measurement of the soil moisture weight, the ratio of fresh weight to
soil moisture content and the water content of each sample 3 times in parallel, using the
mean value to represent the final moisture content (%) of each soil sample.

From late August to early September in 2019 and 2020, a sample square measuring
0.5 × 0.5 m2 was selected as an above-ground plant sample in each experimental sample
plot to investigate plant species and numbers, and then we calculated community stability
using the surveyed data, which was expressed as the inverse of the coefficient of variation
of the population density of the species in the community. Given the small size of the
experimental sample plot, plant samples were collected from a 0.25 × 0.25 m2 square,
mowed and brought to the laboratory in sample bags, then dried to a constant weight
and weighed as aboveground biomass (AGB). Soil bulk density (SBD) was determined
using the ring knife method. Plant debris and contaminants on the soil surface of the plot
were cleaned, and samples were collected at a depth of 0–10 cm using a ring knife. Two
replicates were collected and placed in separate sealed bags. Samples were then taken
to the laboratory and dried at 105 ◦C to a constant weight, and soil bulk density was
calculated as the dry weight per unit volume. We used a soil auger (5 cm inner diameter)
to collect 0–30 cm of soil in 3 layers throughout the experiment in the plant sampling area.
Two replicates were collected from each plot, the two spiral samples were mixed to form a
composite soil sample, stones visible to the naked eye were removed, and root samples
were collected and placed in a sealed bag, then returned to the laboratory and dried to
constant weight as the belowground biomass (BGB). The soil organic matter (SOM) content
was determined using the potassium dichromate oxidation–external heating method.

4.4. Soil Microbial DNA Sequencing

In 2020, when collecting plants and soil, 0–10 cm of soil was collected using a soil
auger with an inner diameter of 3 cm. Three soil borers were taken from each sample
quadrat, 3 samples were mixed into one sample, and each sample was sieved through
a 2 mm sieve after removing roots and debris. Samples were then frozen (−20 ◦C) until
DNA was extracted. DNA was extracted using the E.Z.N.A. Soil DNA Extraction Kit
(Omega Bio-Tek, Norsross, GA, USA) following the manufacturer’s instructions. For bacte-
rial community composition, 515f/806r primer sets (515f, GTGYCAGCMGCCGCGGTAA,
806r, GGACTACNVGGGTWTCTAAT) were used to amplify (triplicate reactions for each
sample) the 16S rRNA gene (cited by Earth Microbiome Project). For fungal community
composition, the ITS1f/ITS2 primer pair (ITS1f, CTTGGTCATTTAGAGGAAGTAA, ITS2,
GCTGCGTTCTTCATCGATGC) was selected to amplify the ITS1 region of the rRNA gene
(cited by Earth Microbiome Project). PCR sequence amplification was performed using
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commonly used methods. The 16S rRNA amplicons and ITS amplicons were pooled sepa-
rately and then sequenced with the Illumina MiSeq instrument (Illumina, San Diego, CA,
USA). Raw sequence data were processed using the QIIME v1.9 pipeline, where sequences
were quality filtered, chimera checked and OTU clustered, and taxonomy assignment
was performed. The USEARCH algorithm was utilized to conduct chimera detection
and OTUs clustering (97% similarity). Taxonomy was identified for each OTU using the
RDP classifier [53] trained on the Greengenes and UNITE databases for bacterial and
fungal sequences.

4.5. Statistical Analysis

We used muscle (version 5.1) [54] to align the DNA sequences, and then used the
dist.ml and NJ functions of the ‘phangorn’ package in the R language to calculate the
neighbor-joining evolutionary tree of bacteria and fungi, and finally used the ‘picante’
package pd function to calculate the phylogenetic diversity of bacteria and fungi, and the
alpha diversity of bacteria and fungi was calculated using the ‘vegan’ package diversity
function. The metrics of species diversity of plant communities were also calculated using
the diversity function of the package ‘vegan’; the phylo.maker function of the package
‘V.PhyloMaker’ was used to construct a phylogenetic tree of the plant community; and
then the functions pez.shape and pez.endemism of the ‘pez’ package in R were used to
calculate the phylogenetic diversity, phylogenetic endemism [55] and phylogenetic species
variability [56] of plants. To determine if there were significant differences in environmental
factors, species diversity, and ecosystem functions among treatments, two-way ANOVA
and Duncan’s new multiple range test were used. The relationship between environmental
factors and ecosystem structure and function was further investigated using Mantel analysis
based on the mantel function of the ‘vegan’ package and correlation analysis based on the
‘corrplot’ package; we also analyzed the relationship between biodiversity and ecosystem
function, and the relationship between biomass and community stability through linear
regression based on the rlm function of the ‘MASS’ package. All analyses were performed
in the R 4.1.1 environment. The visualization of the data was performed with R software
(version 4.1.1, R Foundation for Statistical Computing, Vienna, Austria) and Origin (version
2018C SR1 b9.5.1.195, OriginLab Corporation, Northampton, MA, USA), and all graphics
were enhanced in Adobe Illustrator CC 2018 (version 22.0.0, Adobe Systems Incorporated,
San Jose, CA, USA).

5. Conclusions

There is increasing evidence that grassland biodiversity loss and functional decline
(grassland degradation, etc.) are closely related to climate change and anthropogenic
grazing activities. The combined effects of this are still underexplored [40]. Our study
analyzed the effects of simulated gradient warming and grazing on the relationship between
plant diversity and productivity and community stability, which resulted in three key
findings: (1) Plant biodiversity, soil microbial diversity and community productivity in
alpine grasslands show fluctuating trends with temperature gradients, and a temperature
increase below approximately 1 ◦C is beneficial to alpine grasslands; moderate grazing
only increases the fungal diversity of the soil surface layer. (2) The warming shifted plant
biomass underground in alpine grasslands to obtain more water in response to the decrease
in soil moisture caused by the temperature rise; community stability was not affected by
the warming or grazing. (3) Community stability was not significantly correlated with
productivity, and environmental factors, rather than biodiversity, influenced community
stability and productivity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11111428/s1, Table S1: Effects of gradient warming and
simulated grazing on environmental factors, biodiversity and ecosystem function; Figure S1: Location
of the study site (Haibei Alpine Meadow Ecosystem Research Station) on the Qinghai-Tibet Plateau,
China; Figure S2: Schematic diagram of the experimental treatment design; Figure S3: Network co-
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occurrence analysis of plant communities; Figure S4: Correlation of co-occurrence network analysis
results with biodiversity and ecosystem function.
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