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Abstract: Although bulked segregant analysis (BSA) has been used extensively in genetic mapping,
user-friendly tools which can integrate current algorithms for researchers with no background in
bioinformatics are scarce. To address this issue, we developed an R package, PNGSeqR, which takes
single-nucleotide polymorphism (SNP) markers from next-generation sequencing (NGS) data in
variant call format (VCF) as the input file, provides four BSA algorithms to indicate the magnitude of
genome-wide signals, and rapidly defines the candidate region through the permutation test and
fractile quantile. Users can choose the analysis methods according to their data and experimental
design. In addition, it also supports differential expression gene analysis (DEG) and gene ontology
analysis (GO) to prioritize the target gene. Once the analysis is completed, the plots can conveniently
be exported.

Keywords: bulk segregate analysis (BSA); R package; next-generation sequencing (NGS); algorithm

1. Introduction

Mapping genomic regions is often the first step for the characterization of both qualita-
tive and quantitative traits. Since the early 1990s, bulked segregant analysis (BSA) has been
widely used for genetic mapping [1,2]. BSA maps genetic loci using a wide variety of mark-
ers [3–5], including the single-nucleotide polymorphism (SNP) marker which stands out
due to its ability to combine BSA with next-generation sequencing (NGS) technology [6].

The NGS-BSA procedure is typically performed based on two bulks of segregants,
which includes extreme phenotypic individuals selected from a segregation population. If
a gene does not control the target trait, its alleles will be randomly selected in the two bulks.
Otherwise, its alleles will be enriched in each bulk. Quantification of allelic frequencies
of genome-wide markers enables the evaluation of the genetic linkage between causal
loci and genetic markers. Although the real allele frequencies are similar in closely linked
locations, these can be affected by random noise generated by the variation in sequencing
read coverage. Smoothing of discontinuous variables was proposed to reduce the noise
and improve the accuracy of the result [7–9].

According to this basic principle, several BSA algorithms have been developed, such as
G-test [7], empirical Bayes [10], ∆SNP [11], and Euclidean distance (ED) [8]. The algorithms
are developed based on different sequencing data and are suitable for different situations.
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Additionally, these algorithms are based on various platforms and different computer
languages, and different algorithms have different threshold standards. It is not convenient
for researchers with little background in bioinformatics to explore BSA with multiple
algorithms [12].

RNA sequencing (RNA-seq) takes fewer reads to achieve a greater read depth owning
to the fact that the transcriptome is much smaller than the genome [13,14]. RNA-seq could
not only recall genetic markers but could also quantify the transcript levels for further
analysis, such as differential expression [13,15,16], making it a cost-effective alternative for
NGS-BSA [8]. Comparing the expression profiling between mutant and wildtype lines can
produce candidate genes associated with the target trait [17–19]. Enrichment analysis of
differentially expressed genes can reveal the biological processes related to the trait [17,20].

In this study, we developed the PNGSeqR package to help researchers perform ge-
netic mapping conveniently through R language (https://www.r-project.org/, accessed on
31 March 2021), which has the advantage of free, open sources, and multi-system compati-
bility [21]. The PNGSeqR package allows users to conduct multiple types of analysis by
choosing different functions and parameters.

2. Results

PNGSeqR was developed based on R version 4.0.0 and depends on several packages,
such as vcfR, dplyr, tidyverse, readr, locfit, DESeq2, ggplot2, topGO, and rtracklayer [21–29].
The software is freely available on GitHub (https://github.com/smilejeen/PNGseqR, accessed
on 30 June 2022) and can be easily installed for use at the command line in any R-based
development environment, such as RStudio. Example data and a complete user manual for its
various features and functions have also been made available on GitHub (https://github.com/
smilejeen/PNGseqR, accessed on 30 June 2022).

PNGSeqR provides users with a straightforward pipeline with multiple functions,
including (Figure 1): (1) importing SNP data in variant call format (VCF) from the Genome
Analysis Toolkit (GATK) (https://github.com/broadinstitute/gatk/releases, accessed on
14 May 2019), (2) filtering SNPs that may affect the accuracy of analysis based on the quality
of SNPs, (3) carrying out BSA according to the users’ experimental design, (4) identifying
the candidate regions and producing the analysis results in the form of scatter plots and/or
line plots, (5) performing differential expression gene analysis (DEG) and gene ontology
analysis (GO) according to users’ needs, and (6) extracting the genes in the candidate
region and prioritizing candidate genes based on the results of DEG and GO analysis. For
users’ convenience, we provide shell command lines to create the VCF and read count files
required for PNGSeqR (Supplementary Implementation).

Functions in PNGseqR can be classified into three function models. The first model is
used to handle the VCF file, which can be converted into a data frame through “vcf2table()”
(Table S1). The rows of the data frame show SNP information, including SNP positions,
read count, and quality control information (GQ) of the reference and alternative alleles
of both bulks. The number of total SNPs will be printed when the procedure is over. To
reduce noise, the “BSAfilter()” function offers options for filtering based on total read depth,
read depth of each bulk, the absolute difference in read depths between the two bulks,
and genotype quality score (Table S1). The number of filtered and remaining SNPs will be
reported after running the “BSA_filter()” function.

The second model is designed for BSA and visualization (Table S1). This model pro-
vides four functions to calculate four BSA statistics, including “DeltaSNP()”, “Bayesian()”,
“ED()”, and “Gprime()”. The parameters are different for different functions. For example,
the length of the reference genome and bulk size should be provided in “Bayesian()”. All
functions need to set the width of the sliding window for tricube-smoothing the statistics,
which reduces noisy signals. For each function, users can define candidate regions based
on the quantiles and p-values. The “plot_BSA()” function is designed to plot the analysis
results. For each statistic, a scatter plot for the unsmoothed data and a line plot for the
tricube-smoothed data can be exported. If users set the threshold by inputting a quantile or
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a p-value, a red or blue line will be added on the plots, enabling the visualization of the
candidate regions. The “chromlist” parameter allows users to choose which chromosome
will be plotted.
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Figure 1. Flow chart for using R package: (A) The script flow running on the Linux shell system.
This script will produce the VCF file, which includes NGS-SNP information, as a PNGSeqR input file.
(B) The main statistics and functions in PNGSeqR.

The last model is designed for the identification of differentially expressed genes and
performing gene annotation analysis (Table S1). “DEG_analysis()” needs to input the reads
count file, and to set the number of biological replicates. Users can use “sig.level” and
“exp.fold” to set the threshold for identifying differentially expressed genes. The gene list
produced by “DEG_analysis()” can be used for GO analysis using the “GO_analysis()”
function. Users need to provide a file containing the relationship between GO terms and
the genes of the species. Several parameters, such as the types of GO analysis, methods
for testing significance, and top GO terms, can be used according to the users’ needs. The
parameter “plot” is optional in both “DEG_analysis()” and “GO_analysis()” functions.
“DEG_analysis()” can export a volcano plot showing differentially expressed genes, and
“GO_analysis()” can export the acyclic plot, bubble plot, or histogram showing the enriched
GO terms. The function “resultanno()” is designed to rapidly prioritize the target genes
in the candidate regions. To run “resultanno()”, users should input the position of the
candidate regions identified by BSA and the annotation file in GTF format. Users can
choose to input the list of differentially expressed genes in the candidate region. Table S1
shows the complete list of arguments that can be used in PNGSeqR.

We used three examples to demonstrate the performance of PNGSeqR and highlight
some of the many options in this software. In example 1, a maize small-kernel mutant
was crossed with a wildtype line to form an F2 population. The RNA of the mutant
and wildtype samples were bulked and sequenced, and the candidate region on maize
chromosome 8 was detected using multiple algorithms in PNGSeqR. Further analysis
identified the DEGs in the candidate region and biological pathways that are related to
the genes in the candidate. In example 2, multiple BSA algorithms were used to map the
quantitative trait loci (QTLs), controlling cold tolerance of rice seedlings using sequencing
data of DNA pools. In example 3, we used a recombinant inbred line (RIL) population to
demonstrate how PNGSeqR can map QTLs in permanent populations.
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2.1. Example 1—Prioritizing the Candidate Gene Controlling Quality Trait by Using RNA-Seq Data

We tested the ability of PNGSeqR to reproduce a published result of our labora-
tory. This work characterizes a maize mutant with defects in kernel development and
clones ZmECR1, which encodes the RUB activating enzyme E1 subunit [20]. Raw RNA-seq
data were downloaded from NCBI (accession number: PRJNA699154) and aligned to the
Zea_mays.AGPv4.32 genome, and the VCF file containing SNPs and the read count file were
obtained by running the shell script (Supplementary Materials). A total of 112,719 SNPs were
obtained, and SNP filtering produced 79,917 SNPs, which will be used for performing BSA.

We used all algorithms for analyzing the RNA-seq data and used the analysis result
to determine the threshold. All algorithms confirmed that the candidate region is on
chromosome 8 (Figure 2), and the candidate regions varied with the variations of the
algorithms and the threshold values (Table 1). When p-value < 0.01, the candidate region
selected by different algorithms was 0.08–11.28 Mb, which is the same as the candidate
region identified by setting the fractile quantile > 99%. When the fractile quantile was set
to >99.9%, ZmECR1 was still in the candidate regions identified by either algorithm. When
p-value < 0.001, ZmECR1 was also in the candidate regions identified by two algorithms
(empirical Bayesian and Euclidean distance), indicating that a stringent threshold may
exclude the candidate gene from the candidate region.

Table 1. The candidate region for maize small-kernel mutant identified by PNGseqR.

Criteria a Methods b Chrom c Start d End e Length f

— — — — — —Mb— — — — — —

p-value

0.01

Bayes 8 0.08 11.28 11.20
ED 8 0.08 10.65 10.57

∆SNP 8 0.08 10.00 9.92
G-test 8 0.08 10.65 10.57

0.005

Bayes 8 0.08 10.49 10.41
ED 8 0.08 10.20 10.12

∆SNP 8 0.08 9.36 9.28
G-test 8 0.08 8.05 7.97

0.001

Bayes 8 1.46 3.42 1.96
ED 8 0.08 3.37 3.30

∆SNP 8 0.08 2.21 2.13
G-test 8 0.08 1.67 1.59

Quantile

99%

Bayes 8 0.08 11.28 11.20
ED 8 0.08 10.65 10.57

∆SNP 8 0.08 10.00 9.92
G-test 8 0.08 10.65 10.57

99.5%

Bayes 8 0.08 11.03 10.95
ED 8 0.08 10.65 10.57

∆SNP 8 0.08 9.36 9.28
G-test 8 0.08 10.45 10.37

99.9%

Bayes 8 1.46 3.42 1.96
ED 8 0.08 3.29 3.21

∆SNP 8 0.08 3.29 3.21
G-test 8 0.08 3.29 3.21

Notes: a: Multiple thresholds were used to declare the candidate region by defining p-value and quantile. b: The
statistics used to identify the candidate region. c: The chromosome that contains the candidate region. d: The start
position of the candidate region. e: The end position of the candidate region. f: The length of the candidate region.
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Figure 2. Candidate region identified by different algorithms in PNGseqR for maize small-kernel
mutant. The “plot_BSA()” function was used to draw the plot with a 5 Mb sliding window. (A–D)
The scatter plots were exported from the BSA results, and the algorithms were ∆SNP, empirical Bayes,
ED, and G-test, respectively. (E–H) The tricube-smoothed values of the corresponding statistics.
The red line is the threshold set by the >99.5% quantile, and the blue line is the threshold set by
p-values < 0.001.

DEGs were identified by setting the criteria as (|log2foldchange| > 0.5 and FDR < 0.05),
and the volcano plot can be exported by using the “DEG_analysis()” function. Among the
2408 DEGs, 1130 were upregulated and 1278 were downregulated (Figure 3A; Table S2). These
numbers of DEGs are larger than those reported by Chen et al. [20], which may be related
to the different maize reference genome used in this study. Through inputting the DEGs
and GO terms (Tables S2 and S3), we can perform GO analysis by using the “GO_analysis()”
function in PNGSeqR. We found that GO terms were mainly enriched in the cell cycle,
nutrient reservoir activity, structure of cytoskeleton, DNA replication, and glucose−starch
metabolic process (Figure 3B–D). By using the “result_anno()” function, 92 genes in the
candidate region under p-value < 0.001 (0.08–3.42 Mb) (Table S4) were annotated, including
7 DEGs that were identified based on the standard of |log2foldchange| > 1.5 and FDR < 0.05
(Table 2). As expected, the gene ZmECR1 was one of the DEGs in this region.
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Figure 3. Differential expression analysis and GO analysis for the maize small-kernel mutant. (A) The
volcano plot shows the DEGs for the maize small-kernel mutant, and the analysis was performed by
using “DEG_analysis()”. (B) The histogram shows the result of GO analysis of differentially expressed
genes for the maize small-kernel mutant, and the analysis was performed by using “GO_analysis()”.
The top 20 terms of each mode (“BP”, “CC”, “MF”) are shown in this plot. (C) A part of the directed
acyclic plot drawn using the “MF” mode of “GO_analysis()”. (D) Bubble plot shows the result of GO
analysis, and the GO terms are the same as in (B).

These results demonstrate that the algorithms in PNGSeqR can accurately identify the
candidate region and select the candidate genes by combining the BSA results with DEG
and GO analysis.
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Table 2. The differential expression genes in the candidate region for the maize small-kernel mutant.

Chrom a Start b End c Gene d Log2
(foldchange) e FDR f

8 563764 569489 Zm00001d008179 −1.6552 4.96 × 10−3

8 909115 910111 Zm00001d008196 −7.1323 1.86 × 10−3

8 957005 966468 Zm00001d008198 2.4286 3.83 × 10−2

8 1238180 1242266 Zm00001d008209 2.6675 4.95 × 10−5

8 1299092 1300668 Zm00001d008211 −3.7562 6.48 × 10−4

8 1983066 1984497 Zm00001d008229 −2.6535 3.86 × 10−2

8 3193712 3222186 Zm00001d008256 g −1.5896 6.63 × 10−13

Notes: a: The chromosome. b: The start position of candidate genes. c: The end position of candidate genes.
d: The gene IDs. e: The logarithm of fold changes. f: False discovery rate. g: The target gene verified by Chen et al.
(2021) [20].

2.2. Example 2—Mapping QTLs by Using DNA-Seq Data

To show that PNGSeqR can use DNA-seq data to map QTL, we reproduced the
analysis described by Yang et al. [30] using PNGSeqR. Raw reads were downloaded from
the NCBI database (accession number: SRP021494) and aligned to the v7 Nipponbare
genome (http://rice.plantbiology.msu.edu/, accessed on 11 June 2022) using BWA-MEM
v0.7.12 [31] with the default settings. SNPs were called following Best Practices [32,33]
methods in GATK v3.7 [34] and exported as a data frame using the GATK “VariantsToTable”
tool. We used the “BSA_filter()” function to import this data frame and to filter SNPs.
Then, we used three algorithms to perform BSA and used p-value < 0.05 as a criterion
for defining the thresholds. The analysis results were used to draw the scatter and line
plots using “plot_BSA()” function (Figure 4). The QTLs on chromosomes 1 and 8 were
significant when the p-value was lower than 0.05 for each algorithm (Figure 4, Table 3).
However, the signals on chromosomes 2, 5, and 10 that were selected as QTLs in the
published results [30] were not detected. When the fractile quantile was 85%, the QTLs
on chromosomes 2, 5, and 10 were also detected (Figure 4, Table 3), indicating that the
p-value < 0.05 threshold determined by the permutation test is much more stringent. In
addition, PNGSeqR can select the chromosome(s) which contain QTL and plot the selected
chromosome(s) (Figure 5).

Table 3. QTLs for cold tolerance at the seedling stage in rice identified by different algorithms in
PNGseqR.

Chrom a ∆SNP (Mb) b G-Test (Mb) c ED (Mb) d

Quantile > 85% p-Value < 0.05 Quantile > 85% p-Value < 0.05 Quantile > 85% p-Value < 0.05

Chr1 25.61–34.62 26.20–33.34 25.56–34.90 26.22–33.63 25.45–34.49 26.12–33.20
Chr2 9.58–19.44 10.06–10.60 9.58–19.58 10.01–10.51 9.28–19.64 9.73–10.40
Chr5 27.09–28.75 - 27.35–28.68 - 27.14–29.96 -
Chr8 17.04–27.30 21.27–25.24 16.92–27.37 21.40–25.17 16.90–27.54 21.34–25.43

Chr10 17.50–20.25 - 17.67–20.26 - 17.66–20.33 -

Notes: a: The chromosomes containing the candidate regions. b: The candidate regions identified by the ∆SNP
algorithm. c: The candidate regions identified by the G-test algorithm. d: The candidate regions identified by the
Euclidean distance algorithm.

http://rice.plantbiology.msu.edu/
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Figure 5. QTLs for rice seedling cold tolerance on chromosomes 1 and 8 identified by ∆SNP and
G-test in PNGseqR plots drawn by the “plot_BSA()” function, and statistics are tricube-smoothed
with a 5 Mb sliding window. (A) The line plot drawn by using the ∆SNP algorithm. (B) The line plot
drawn by using the G-test algorithm. The red line is the threshold set by the >85% quantile and the
blue line is the threshold set by p-values < 0.05.
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2.3. Example 3—Mapping QTLs Using a RIL Population

In example 3, we demonstrate that PNGSeqR can handle bulk DNA-sequencing
data of permanent populations. The data have been used to detect QTLs for rice cold
tolerance [35]. Two DNA pools were constructed by selecting the top 20 cold-tolerant
and cold-sensitive lines from an RIL population containing 190 lines. We downloaded
the bulk DNA-sequencing data from NCBI (SRR6327817, SRR6327818) and aligned the
data to the rice reference genome IRGSP-1.0_genome.fasta. SNP calling was performed
as stated in example 2, producing a total of 1,386,657 SNPs. After filtering SNPs by
running “BSA_filter()”, 147,494 SNPs were obtained and used to perform BSA. When
p-value < 0.05, 6 QTLs on chromosomes 4, 4, 5, 6, 6, and 11 were detected by running
“ED()” and “DeltaSNP()”, and 3 more QTLs were detected by running “Gprime()” (Figure 6
and Table 4). The lengths of candidate regions ranged from 8.81 to 9.81 Mb (Table 4).
The QTLs on chromosome 11 detected in this study were not found by Sun et al. [35].
The lengths of candidate regions of QTLs detected by Sun et al. [35] were larger than
those defined by the ED statistic, smaller than those defined by ∆SNP in this study, and
similar to those defined by fractile quantile > 95% (Figure 6, Table S5). The functional gene
LOC_Os06g39750 was in the candidate region on chromosome 6 detected by either statistic
(Table 4). Results of the analysis indicate that PNGSeqR can handle bulk sequencing data
of permanent populations.
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Plots were drawn by the “plot_BSA()” function with a 1 Mb sliding window. (A–C) The scatter plots
were drawn by using the ∆SNP, Euclidean distance, and G-test algorithms. (D–F) Tricube-smoothed
values on the genome. The red line is the threshold set by the >95% quantile and the blue line is the
threshold set by p-values < 0.05.
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Table 4. QTLs detected for cold tolerance in a rice RIL population using different statistics
in PNGseqR.

Chrom a ED (Mb) b ∆SNP (Mb) c G-Test (Mb) d

Start End Size Start End Size Start End Size

4 5.53 6.30 0.77 5.57 6.32 0.75 5.98 6.19 0.21
4 21.31 23.69 2.38 21.03 23.69 2.66 20.81 23.69 2.88
5 - - - - - - 15.31 16.07 0.77
5 18.97 19.57 0.60 19.18 19.57 0.39 18.07 19.21 1.14
6 5.37 6.99 1.62 5.32 7.00 1.68 5.23 7.00 1.77
6 21.79 24.68 2.89 21.79 24.68 2.89 23.31 24.80 1.49
6 - - - - - - 27.21 27.55 0.34

11 - - - - - - 21.71 21.98 0.27
11 23.89 24.44 0.55 23.92 24.44 0.52 23.37 24.30 0.93

Total - - 8.81 - - 8.89 - - 9.81

Notes: For each statistic, the threshold for identifying QTL is p-value < 0.05. a: The chromosomes containing the
candidate regions. b: The candidate regions identified by Euclidean distance in PNGseqR: start, end, and size
indicate the start position, end position, and size of the candidate regions, respectively. c: The candidate regions
identified by ∆SNP in PNGseqR. d: The candidate regions identified by the G-test in PNGseqR.

Additionally, it is difficult to confirm candidate regions for unsmooth statistics in
the three examples (Figures S1–S3). The tricube-smoothed statistics clearly identified the
QTLs (Figure 2) and enabled users to define the candidate intervals. The comparison
demonstrates that the tricube-smoothed statistics could remove noisy signals across the
whole genome.

3. Discussion

Although tools for analyzing bulk sequencing data are publicly available [7,8,10,11],
these tools have different shortcomings. For example, some tools could only analyze
DNA or RNA data, some tools could not provide thresholds for declaring significant
loci, and some tools could not prioritize candidate genes based on differential expression
and gene annotation. To provide a user-friendly and all-in-one tool for performing BSA,
we developed PNGSeqR, which provides four R functions to implement four algorithms.
Theoretically, since the four algorithms are calculated based on the marker frequencies
of two pools, any biparental segregation population could be used to perform BSA. As
demonstrated in this study, PNGSeqR is not only applicable to temporary populations such
as the F2 and F3 populations used in examples 1 and 2, but it is also suitable for permanent
populations, such as the RIL population used in example 3.

For species that might not have high-quality genome sequences, there might be some
errors in SNP data after performing SNP calling. “BSA_filter()” can eliminate low-quality or
mismatched SNPs before analysis to ensure the accuracy of analysis. We tested the influence
of the quality of the reference genome on BSA mapping results using the sequencing data in
example 1. Maize B73 reference genome version 3 was assembled with second-generation
sequencing technology [36] and the version 4 genome was assembled with the third-
generation sequencing technology [37]. We found that there were no differences in the
detection of the candidate region between the two reference genomes (Table S6, Figure S4),
which is the same as the result in a rice study [38,39]. However, a high-quality reference
genome might be desirable to ensure the mapping accuracy for highly heterozygous species,
such as apple [9].

Tricube smoothing of each statistic integrated in PNGSeqR is crucial to map the correct
candidate regions [7,9]. Tricube smoothing can remove the occasional extreme data that
might be caused by low-quality reference genomes, and diminish the influence of these
data [7]. However, since the size of the sliding window might be related to factors such as
population type, sequencing depth, pool size, and impact mapping result [9,12,40], the size
of the sliding window should be adjusted based on actual data.
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We used RNA-seq data in example 1 to investigate whether the sequencing depth
influenced the mapping region obtained by PNGSeqR. We randomly selected 1/5 and
1/2 reads from the 30× RNA-seq data, forming the 6× and 15× test datasets. A total of
29,310 SNPs and 56,943 SNPs were obtained from the 6× and 15× datasets and used for
BSA. We found that the candidate region obtained by using the 6× dataset was larger
than that obtained by using the 15× dataset and the full dataset (Tables 1, S7 and S8).
Although a stable candidate region containing the target gene can be identified through
these algorithms, the length of the candidate region generally increases with the decrease
of the sequencing depth.

4. Materials and Methods
4.1. Data Import and Filtering

PNGSeqR uses a VCF file generated by GATK software as input. PNGSeqR can
convert the VCF file into a data frame, in which the row indicates that the SNP information
and columns are descriptive data. The first four columns indicate the chromosomes,
position, reference alleles, and alternative alleles of the SNPs, respectively. Next, “AD.REF”,
“AD.ALT”, “DP”, and “GQ” of SNPs of the two bulks are shown in the following eight
columns, where “AD.REF” and “AD.ALT” indicate the read depth of the reference and
alternative alleles in each bulk, “DP” indicates the coverage of SNPs of each bulk, and “GQ”
indicates the quality control information of each bulk. If all the above columns are available,
users can use PNGSeqR to perform subsequent analysis. To reduce noise and improve
the quality of the result according to the users’ needs, the software offers options for SNP
filtering based on total read depth, read depth in each bulk, the absolute differences in read
depth between the bulks, and genotype quality score. The number of remaining SNP and
removed SNPs can be printed when verbose is set as “True”.

4.2. Bulk Segregant Analyses

PNGSeqR provides four different BSA algorithms, which are optional according to
the sequencing data, mainly including DNA-sequencing (DNA-seq) data and RNA-seq
data. Among the four approaches, G-test [7], ∆SNP [11], and Euclidean distance (ED) [8]
can be used for both DNA-seq data and RNA-seq data. Empirical Bayes [10] is the only
algorithm that was suitable for RNA-seq data, and needs to provide the length of the
reference genome and number of samples in each bulk. For more detailed information
about these algorithms, please read the Supplementary Materials.

One major feature of PNGSeqR is that it provides a simple, efficient, and unified
method to reduce the noise and estimate the threshold value based on different algorithms.
To exclude the random noise generated from the variable sequence read coverage, we
performed Nadaraya–Watson kernel regression [41,42], a local polynomial regression, for
each BSA algorithm. The first application of tricube smoothing in BSA was performed to
smooth the G statistic [7], then it was used to smooth ∆SNP [43] and ED statistics [9]. To
obtain the candidate interval from BSA, PNGSeqR provides two methods to set threshold
criteria for these four algorithms. One method is to sort the tricube-smoothed values and
select the value at a specific quantile (95% or 99%) as the threshold [44,45]. The other
method is to perform permutation tests and estimate the significance of each SNP based on
the tricube-smoothed values [44,46]. PNGSeqR can export scatter and line plots containing
the threshold line for each smooth algorithm.

4.3. DEG and GO Analyses

PNGSeqR can also integrate BSA with other strategies to predict and prioritize the
causal genes [44,47]. Our shell script can calculate the read count of each RNA-seq sample,
facilitating the users to perform differential expression analysis [31,48–50]. After that, DEG
genes can also be used to perform GO analysis using PNGSeqR. These tools will help
researchers to identify potential candidate genes within the candidate regions. The volcano
plot showing the significance of DEGs could be printed and exported in PDF format, and
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the acyclic, bubble, and histogram plots showing the functional enrichment patterns could
also be exported in PDF format after performing GO analysis. Lastly, a function was
developed to identify the genes located in the candidate region, and whether these genes
show differential expression.

5. Conclusions

PNGSeqR provides a user-friendly and convenient tool for researchers to integrate
four major NGS-BSA algorithms. PNGSeqR can rapidly identify the candidate region by
using tricube smoothing and the permutation test. The candidate region can be shortened
by comparing the mapping results obtained using different algorithms. Based on the
BSA mapping result, PNGSeqR can aid in prioritizing candidate genes through DEG and
GO analysis.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants11141821/s1. Supplementary Figure S1: The distri-
bution of unsmooth statistics for example 1 across the whole genome. Supplementary Figure S2: The
distribution of unsmooth statistics for example 2 across the whole genome. Supplementary Figure S3:
The distribution of unsmooth statistics for example 3 across the whole genome. Supplementary Figure S4:
Positioning results by PNGseqR for maize small kernel mutant with version3 maize B73 reference genome
Supplementary Table S1: Description of PNGseqR functions and arguments. Supplementary Table S2.
The list of differential expression genes identified in example1. Supplementary Table S3. The gene IDs and
GO terms of maize genes in B73 reference genome version 4. Supplementary Table S4. The list of genes in
the candidate region on chromosome 8. Supplementary Table S5. QTLs detected for cold-tolerance in a
rice RIL population by PNGseqR. Supplementary Table S6. The candidate region for maize small kernel
mutant identified by PNGseqR (based on B73 version3 reference genome). Supplementary Table S7.
The candidate region for maize small kernel mutant identified by PNGseqR (using 1/5 RNA-seq reads).
Supplementary Table S8. The candidate region for maize small kernel mutant identified by PNGseqR
(using 1/2 RNA-seq reads). Supplementary Implementation.
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