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Abstract: Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and, together
with associated risk factors such as diabetes, hypertension, and dyslipidaemia, greatly impact
patients’ quality of life and health care systems. This burden can be alleviated by fomenting lifestyle
modifications and/or resorting to pharmacological approaches. However, due to several side effects,
current therapies show low patient compliance, thus compromising their efficacy and enforcing the
need to develop more amenable preventive/therapeutic strategies. In this scenario, medicinal and
aromatic plants are a potential source of new effective agents. Specifically, plants from the Allioideae
subfamily (formerly Alliaceae family), particularly those from the genus Allium and Tulbaghia, have
been extensively used in traditional medicine for the management of several CVDs and associated
risk factors, mainly due to the presence of sulphur-containing compounds. Bearing in mind this
potential, the present review aims to gather information on traditional uses ascribed to these genera
and provide an updated compilation of in vitro and in vivo studies validating these claims as well as
clinical trials carried out in the context of CVDs. Furthermore, the effect of isolated sulphur-containing
compounds is presented, and whenever possible, the relation between composition and activity and
the mechanisms underlying the beneficial effects are pointed out.

Keywords: Allium; Tulbaghia; extracts; sulphur-containing compounds; antiplatelet aggregation;
hypertension; diabetes; dyslipidaemia

1. Introduction

Cardiovascular diseases (CVDs) continue to lead mortality rates worldwide [1], ac-
counting for nearly 18 million annual deaths, primarily due to coronary heart disease and
stroke [2]. Unfortunately, these numbers tend to increase as several non-modifiable and
modifiable risk factors associated with the onset and development of these disorders are
also escalating. While non-modifiable risk factors such as aging, gender, genetic predis-
position, family history of heart-related problems and ethnicity cannot be altered [3–5],
modifiable risk factors are changeable. These include hypertension, dyslipidaemia, diabetes,
obesity, smoking, alcohol misuse, unhealthy diet, sedentary lifestyle, and psychosocial
factors [6] and are recognised as relevant targets to manage CVDs. For example, the IN-
TERHEART case–control study pointed out that 90% of acute myocardial infarction cases
are due to these risk factors and that controlling or eliminating them per se could lead
to a drastic decrease in CVD mortality [7,8]. Indeed, due to their huge impact on CVDs,
these risk factors are included in the World Health Organisation (WHO) target list that
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aims to reduce their prevalence by 2025 [9]. The negative impact of CVDs is further fuelled
by the fact that 60% of patients fail to correctly adhere to the therapeutic regimen [10],
mainly due to the cost of CVD therapies [11]. Therefore, new therapeutic interventions
and/or preventive strategies with fewer side effects are mandatory, with aromatic and
medicinal plants emerging as promising agents to manage both CVDs and associated risk
factors. In fact, herbal medicines are relevant sources of bioactive molecules, used by ca.
80% of the world’s population in basic health care [12]. Moreover, many of these medicinal
plants have already been used in the treatment of chronic and acute conditions including
CVDs [13–16] and are part of the Mediterranean-style diet with proven beneficial effects
on cardiovascular risk factors [17], as pointed out in several meta-analysis and critical
reviews [18–23]. Interestingly, these effects are associated with the increased consumption
of fruit, vegetables, spices, garlic, and onions [24]. Overall, the preventive/therapeutic
potential of aromatic and medicinal plants is mainly attributed to the presence of secondary
metabolites [25] including phenolic compounds, terpenes, alkaloids, and organosulfur
compounds [26]. Organosulfur compounds are widely found in plants from the Allioideae
subfamily (ex-Alliaceae family) and, together with extracts or raw bulbs from these plants,
are widely reported for their medicinal properties [27]. Therefore, bearing in mind the
bioactive potential of these plants, a systematised review gathering information on the
effects of sulphur-containing extracts/compounds on major CVD risk factors, namely
hypertension and dyslipidaemia/diabetes, is presented. Additionally, whenever reported,
the mechanisms underlying the observed effects are referred to and the relation between
composition and activity pointed out. To achieve this, a bibliographic search was conducted
using Pubmed, Scopus and Google scholar databases, combining the keywords “Allium”,
“Tulbaghia”, “Alliaceae” or “Allioideae” with “cardiovascular”, “diabetes”, “obesity”, “dys-
lipidaemia”, “hypertension” or “vasorelaxation”. Studies published over the last 20 years
that had an available DOI were considered.

2. Importance of Allioideae Species in Cardiovascular Diseases

In the following sections, both the relevance and potential of plants from the Allioideae
subfamily are described. First, the traditional uses ascribed to these plants in several
ethnobotanical surveys is shown in order to highlight their importance in local health care
systems. Then, studies validating some of these effects are systematised, considering pre-
clinical approaches and clinical trials. The effect of isolated sulphur-containing compounds
is also presented, and whenever possible, the relation between composition and activity is
discussed, thus opening new avenues for further investigations in the field.

2.1. Traditional Uses of Allioideae

A plethora of traditional uses are ascribed to Allioideae plants or plant-based prepara-
tions, as summarised in Table 1. Plants’ scientific and common names are included as well
as the region of use. In addition, the plant part or preparations used (with reference to the
preparation method and posology, when known) and beneficial effects on the cardiovascular
system are pointed out. Overall, the majority of the studies focus on the genus Allium, with
only a few studies reporting the effects of two species from the Tulbaghia genus. In traditional
preparations, the plant bulb is commonly used (7/11 total studies), with leaves (1/11), aerial
parts (1/11) or whole plants (1/11) referred to in much less often. In addition, the use of a
combination of plants is frequent and, therefore, this information is also provided. A list of
abbreviations, used throughout the table, is provided at the end of the table.

2.2. Pre-Clinical Studies Validating the Cardioprotective Effects of Allioideae

Given the importance of Allioideae plants in the management of CVDs and associ-
ated risk factors in ethnopharmacological studies, we next compile several pre-clinical
studies validating these effects. First, the effect of plants or their extracts is pointed out
(Table 2) followed by the effect of isolated sulphur-containing compounds (Table 3) and
then clinical trials.
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Table 1. Traditional uses ascribed to plants from the Allioideae subfamily.

Scientific Name
(Common Name) Region of Use Plant Part or Preparation

(Mode of Administration; Posology)

Cardiovascular Disease/
Risk Factor

(Observed Effect)
Ref.

Allium ampeloprasum L.
(wild leek) Suva planina, Serbia Raw aerial parts

(oral) Diabetes [28]

Allium cepa L.
(onion)

Serra de Mariola, Spain Whole plant
(oral) Hypertension [29]

Beni Mellal, Morocco Raw bulb
(oral) Diabetes [30]

Gabon Bulb
(oral) Diabetes, hypertension [31]

Edo, Nigeria

Mined and blended bulb mixed with honey
(oral; one tablespoonful twice a day)

Hypertension [32]

Bulb maceration—soaked in water with Vernonia amygdalina and Zingiber officinale for 5 days
(oral; one cup twice a day)

Bulb decoction with snail water and Capsicum frutescens, add small salt and filter
(oral; one small cup twice daily)

Bulb concoction with Viscum album, Persea americana, Ocimum gratissimum added with Elaeis
guineensis kernel oil and boiled for 10 min

(oral; drink as a soup)

Tamil Nadu, India

Bulb mixed with buttermilk
(oral)

Cardiovascular disease

[33]

Bulb boiled in milk, sugar from Borassus flabellifer added
(oral; once a day in the evening)

Raw bulb,
(oral; daily before eating for 45 days)

Dyslipidaemia
Raw bulb

(oral; daily in the morning for 20 days)

Juice from bulbs
(oral; 25 mL in the morning for two weeks)

Obesity
Bulb decoction with Macrotyloma uniflorum, Zingiber officinale and honey

(oral; daily in the morning for 30 days)
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Table 1. Cont.

Scientific Name
(Common Name) Region of Use Plant Part or Preparation

(Mode of Administration; Posology)

Cardiovascular Disease/
Risk Factor

(Observed Effect)
Ref.

Allium jacquemontii
Kunth. Dir, Pakistan Raw bulb,

(oral; for 3 weeks) Hypertension [34]

Allium rotundum L. Aladaglar, Turkey Raw bulb
(oral)

Hypertension (regulates blood
pressure) [35]

Allium sativum L.
(garlic)

Eastern Cape, South
Africa Not referred Diabetes [36]

Gabon Bulb maceration Diabetes, dyslipidaemia [31]

Suva planina, Serbia 3 peeled bulbs with 3 chopped lemons in 1 L of hot water for 12 h)
(oral; 1 cup a day for 40 days)

Dyslipidaemia (decreases TG),
hypertension (improves blood

circulation)
[28]

Togo

Bulb decoction with Khaya senegalensis bark
(oral) Diabetes

[37]

Bulb maceration with honey
(oral)

Hypertension
Bulb maceration with Parkia biglobosa

(oral)

Bulb powder containing Lippia multiflora, Stachytarpheta angustifolia and Persea americana
(oral)

Edo, Nigeria

Bulb maceration—soaked with guava, Vernonia amygdalina in water for 5 days
(oral; half a cup daily)

Hypertension [32]

Bulb decoction combined with Allium cepa and boiled in water
(oral; half a cup twice a day)

Bulb decoction combined with Allium cepa and Zingiber officinale and boiled in water
(oral; one cup twice a day)

Bulb decoction with Cocos nucifera boiled for 3 days
(oral; half a cup twice a day)

Bulb infusion after pounding with Carica papaya
(oral; one small cup 3 times a day)
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Table 1. Cont.

Scientific Name
(Common Name) Region of Use Plant Part or Preparation

(Mode of Administration; Posology)

Cardiovascular Disease/
Risk Factor

(Observed Effect)
Ref.

Bulb decoction with Musanga cecropoides, Talinum triangulare, Carica papaya boiled in water
(oral; half a cup twice a day)

Bulb decoction with Hunteria umbelleta, Sida acuta and potash in cold water
(oral; one cup a day)

Western Anti-Atlas,
Morocco

Raw bulb
(oral) Diabetes [38]

Tamil Nadu, India

Boiled bulb with Zingiber officinale rhizome and added milk
(oral; twice a day)

Cardiovascular disease

[33]

Bulb cooked with Foeniculum vulgare in milk
(oral; daily in the morning until cure)

Bulb cooked with Trachyspermum ammi in milk
(oral; daily in the morning until cure)

Bulb boiled in water, and added milk
(oral; daily in the evening) Hypertension

Bulb boiled in milk
(oral; daily in the evening for a month) Obesity

Bulb as a food supplement with Moringa oleifera
(oral; twice a week at lunch) Hypertension

Bulb syrup with Citrus limon juice, Zingiber officinale rhizome, Malus pumila cider vinegar and
honey

(oral; 10 mL twice a day)

Cardiovascular disease,
obesity

Bulb syrup with Citrus limon juice, Zingiber officinale rhizome, Malus pumila cider vinegar and
honey

(oral; 15 mL twice a day after meals)

Cardiovascular disease,
dyslipidaemia

Bulb paste with Coriandrum sativum, Solanum torvum and Zingiber officinale, consumed with honey
(oral; once a day in the morning)

Cardiovascular disease
Bulb combined with honey

(oral; 5 mL once a day in the morning)



Plants 2022, 11, 1920 6 of 29

Table 1. Cont.

Scientific Name
(Common Name) Region of Use Plant Part or Preparation

(Mode of Administration; Posology)

Cardiovascular Disease/
Risk Factor

(Observed Effect)
Ref.

Bulb combined with honey
(oral; 5 mL twice a day for a month) Dyslipidaemia

Bulb combined with honey
(oral; 10 mL twice a day) Hypertension

Bulb jam with sugar from Borassus flabellifer and oil from Sesamum indicum
(oral; 10 g twice a day for 45 days) Dyslipidaemia

Tamil Nadu, India

Bulb jam with sugar from Borassus flabellifer (oral; 20 g twice a day till cure) Obesity

Bulb jam with sugar from Borassus flabellifer and oil from Sesamum indicum
(oral; 10 g twice a day) Hypertension

Bulb powder with Cinnamomum verum, Piper cubeba and Vitis vinifera
(oral; 2–3 g once a day in the evening)

DyslipidaemiaBulb gravy with Arachis hypogea, Cissus quadrangularis, Murraya koenigii, Tamarindus indica and
clarified butter

(oral; twice a week until cure)

Beni Mellal, Morocco Raw bulb
(oral) Diabetes [30]

Allium ursinum L.
(wild garlic) Suva planina, Serbia Leaf tincture diluted in a small glass of water

(oral; 10 drops 3 times a day before meals)

Hypertension,
hypercholesterolemia (lowers

blood cholesterol)
[28]

Tulbaghia alliacea L.
Eastern Cape, South

Africa
Not referred Diabetes [36]Tulbaghia violaceae

Harv.

TG—triglycerides.
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Table 2. Effects of plant parts/extracts from the Allioideae on the cardiovascular system.

Plant Species
Plant Part or
Extract Used

(Preparation; Concentration)
Study Model: Insult or Injury Main Findings Ref.

Ischaemic injury/Myocardial infarction

Allium cepa

Aqueous extract
(i.v. 30 min before injury; 0.1, 0.3 and 1 g/kg) Rat: Brain ischaemia ↓ Brain edema; prevented ZO-1 and occludin disruption; ↑

Cat and GPx; ↓MDA [39]

Methanolic extract (0.01, 0.05 and 0.1 g/mL) Cardiomyoblasts (H9c2): Hypoxia ↓ ROS production, mitochondrial membrane depolarisation,
cytochrome c and caspase-3 release

[40]
Methanolic extract

(p.o. 14 days before injury; 0.1, 1 and 10 g/Kg) Rat: Ischaemic injury ↓ Infarct area, apoptotic cell death and MDA

Allium macrostemon Decoction with bulbs and Trichosanthes kirilowii
(gavage for 4 weeks; 1.14, 2.27 and 4.53 g/Kg)

Rat: LAD ligation-induced
infarction

↓ HW/BW, LV/BW, systemic inflammation, myocardial
fibrosis, and collagen I and III expressions; ↓ TGFβ1, TGFβ2

and Smad 2/3 expression; ↑ Smad7 expression
[41]

Allium sativum

Aged garlic extract
(p.o. for 3 weeks; 2 and 5 mL/Kg)

Rat: ISO-induced myocardial
infarction

↑ Heart function, SOD and Cat; ↓ LDH, CK-MB and MDA [42,43]

Homogenate
(p.o. for 30 days; 125, 250 and 500 mg/kg) ↑ SOD and cat; ↓ LDH, CK-MB and structural changes [44]

Raw homogenate
(p.o. 30 days before injury; 125, 250 and 500 mg/kg)

↓MDA, LDH and structural changes [45]

Rat: I/R

↓MDA and structural changes; ↑ SOD, cat, GSH and GPx [46]

Black garlic extract
(gavage for 4 weeks; 300 mg/kg) ↑ HO-1

[47]
Raw garlic extract

(gavage for 4 weeks; 300 mg/kg) ↑ HO-1 and eNOS

Garlic oil
(intragastric for 14 days, 100 mg/kg)

Rat: ISO-induced myocardial
necrosis

↓ HW, LDH, CK-MB, cTnC and systemic inflammation; ↑ SOD
and cat [48]

Allium ursinum
Methanolic extract

(p.o. 28 days before injury in drinking water; 125,
250, and 500 mg/kg)

Rat: I/R ↑ Cardiac function and antioxidant system [49]

Tulbaghia violacea Methanolic extract
(intragastric for 30 days before injury; 60 mg/kg)

Rat: ISO-induced myocardial
infarction ↓ CK, CK-MB, LDH and MDA; ↑ LV function, SOD and GSH [50]
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Table 2. Cont.

Plant Species
Plant Part or
Extract Used

(Preparation; Concentration)
Study Model: Insult or Injury Main Findings Ref.

Dyslipidaemia/Diabetes/Metabolic syndrome

Allium cepa Aqueous extract
(p.o. for 4 weeks; 0.5, 1.5 and 4.5 g/kg)

Rat: HFD-induced hyperlipidaemia

↓ TC, LDL, MDA, lipid droplets in liver, foam cell
accumulation and HMG-CoA; ↑ HDL, SOD and LDLR [51]

Allium cepa var.
destiny and var.

cavalier

Raw onion
(p.o. for 6 weeks; 16 and 40 g/kg)

↓ TC, glucose, LDL, HDL, TG, erythrocyte number and
haemoglobin; ↑ white blood cell number [52]

Allium elburzense Hydroalcoholic extract
(intragastric for 7 days, 100, 200, and 400 mg/kg) Rat: DEX-induced diabetes ↓ TG, TC, LDL, MDA and liver steatosis; ↑ HDL [53]

Allium eriophyllum Hydroalcoholic extract
(gavage for 4 weeks; 30 and 100 mg/kg) Rat: T2DM + Hypertension ↓ SBP, BG, CK-MB, infarct size and coronary resistance; ↑ SOD,

GSR [54]

Allium hirtifolium Ethyl acetate fraction from hydroalcoholic extract
(gavage for 4 weeks; 5 mg/kg) Rat: STZ-induced diabetes ↓ BG; ↑ LVDP, HR, RPP and +dp/dt [55]

Allium hookeri

Powder
(p.o. for 4 weeks; 3% and 5% in chow) Rat: HFD-induced obesity ↓ BW, BW gain, adipose tissue, TG, TC, LDL, AI, cardiac risk

factor, LDH, AST and ALP [56]

Powder
(p.o. for 13 weeks; 0.2 g/Kg) Hamster: HFD-induced obesity ↓ TG, TC and LDL [57]

Hydroalcoholic extract
(p.o. for 4 weeks; 200 and 400 mg/kg in chow) Mice: HFD-induced obesity ↓ liver and adipose tissue weight, TG, TC, LDL, AI, AST and

ALT; ↑ HDL [58]

Allium sativum

Aged garlic extract
(intra-abdominal injection every 12 h for one month;

125 mg/kg)
Rat: Metabolic syndrome ↓ TG, insulin, leptin, AGE, SBP and MDA; ↑ GSH, and GPx;

restored vascular and cardiac function [59]

Aged garlic extract (1, 2.5 and 5 g/L)
HUVEC: oxLDL ↓ LDH release and cell damage

[60]In chemico: Cu2+-induced LDL
oxidation ↓ Cu2+-induced LDL oxidation

Aged garlic extract
(p.o. for 12 or 24 weeks; 3% in chow) Mice: ApoE−/− ↓ Atherosclerotic lesions, TC, TG and CD11b+ cells in spleen [61]
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Table 2. Cont.

Plant Species
Plant Part or
Extract Used

(Preparation; Concentration)
Study Model: Insult or Injury Main Findings Ref.

Fresh homogenate
(intragastric for 41 days; 100 mg/kg) Pregnant rat: High cholesterol diet

On mothers: ↓ systemic inflammation, disruption of
mitochondrial network, infiltration of foam cells, TC, TG, LDL

and CK
On offspring: ↓ abnormalities and abortions

[62]

Homogenate and raw garlic
(p.o. for 100 weeks; 0.5% in chow) Rat: High cholesterol diet Homogenate: ↓ TC, LDL and TG

Raw garlic: ↓ TC, LDL and TG; ↑ excretion of TG and TC [63]

Aged garlic extract
(p.o. for 56 days; 500 mg/kg)

Rat: STZ-induced diabetes

↓ Glucose, CK, LDH and AGER gene expression; ↑Mn-SOD [64]

Raw garlic
(p.o. for 4 weeks; 250 mg/kg) ↑ Cat, SOD, SIRT3 activity, TFAM and PGC-1α mRNA; ↓ ROS [65]

Black garlic extract
(p.o. for one month; 250 mg/kg) Rat: High fat/sucrose diet ↓ Calory intake, BW, TG, LDL, insulin, leptin and leptin

receptor, pro-inflammatory genes; induced vasorelaxation [66]

Garlic oil
(p.o. for 8 weeks; 1% in chow) Hamster: High cholesterol ↓ Cardiac apoptosis and apoptotic markers; ↑

IGFR/PI3K/Akt pathway [67]

Garlic oil
(gavage daily for 16 days; 100 mg/kg) Rat: Diabetic cardiomyopathy ↓ Cardiac apoptosis and apoptotic markers dependent of

death receptor and mitochondria; ↑ IGFR/PI3K/Akt pathway [68]

Aqueous extract (5 mg/mL added to the blood
collection tube) Human: Healthy individuals ↓ TC and TG [69]

Aqueous extract
(i.p. for 8 weeks; 100 mg/kg)

Rat: STZ-induced diabetes

↓ STZ-induced vasoconstriction [70–72]

Aqueous extract
(p.o. for 16 weeks; 100 mg/kg)

↓ Coronary arterioles thickening and BG; ↑ aortic/coronary
blood flow [73]

Aqueous extract
(gavage for 28 days; 2500 and 500 mg/kg) Rat: Obese and insulin resistant ↓ Insulin, BG, and lipid levels; ↑ cardiac function and

mitochondrial homeostasis [74]

High pressure garlic extract
(p.o. for 5 weeks; 2% in chow) Rat: High-fat diet ↓ Plasma and hepatic LDL and TG; ↑ plasma HDL, hepatic

mRNA ApoA1, ABCA1 and LCAT [75]

Bulb powder
(gavage for 28 days; 200 mg/kg)

Rat: STZ/Nicotinamide-induced
diabetes

↓ Hyperglycaemia, dyslipidaemia, AI and MDA; ↑ Insulin
production, GSH activity [76]
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Table 2. Cont.

Plant Species
Plant Part or
Extract Used

(Preparation; Concentration)
Study Model: Insult or Injury Main Findings Ref.

Powder
(p.o. for 35 days; 300 mg/kg) Rabbit: HC-induced atherogenesis ↓ Neointima formation, cholesterol, TG, PL and collagen

accumulation; ↓ TG, TC, PL blood levels; ↓ AI [77]

Powder (n/a) Rat: In vivo Fe2+-induced LDL
oxidation

↓ LDL oxidation and oxLDL mobility; ↓MDA hepatic, serum
and heart levels [78]

Allium ursinum Leaf lyophilizate
(p.o. for 8 weeks; 2% in chow) Rabbit: Hypercholesterolaemic ↑ Heart function in vivo and ex vivo; ↑ HO-1; ↓ TC, TG, ApoB

and atherosclerotic lesions [79]

Tulbaghia violacea Methanolic extract
(p.o. for 2 weeks; 0.25 and 0.50 g/kg) Rat: Atherogenic diet

↓ TG, TC, LDL, VLDL, MDA, fibrinogen, LDH, AST, ALT,
bilirubin, creatinine, and fatty streak plaques; ↑ HDL, SOD,

cat, and NO
[80]

Hypertension/Vasorelaxation

Allium cepa Raw onion
(p.o. for 3 weeks; 5% in chow)

Rat: L-NAME-induced
hypertension ↓ SBP and TBARS; ↑ NO metabolites excretion [81]

Allium fistulosum

Raw or boiled juice (cumulative doses from 3 × 10−5

to 4 × 10−3 g/mL)
Aortic rings: NE precontracted Raw juice: Induced relaxation

Boiled juice: ↑ EDCF [82]

Raw green part
(p.o. for 4 weeks, 5% in chow) Rat: HFD-induced hypertension ↓ SBP, O2

2− and NOX activity; ↑ NO levels [83]

Allium macrostemon Volatile extract (cumulative doses from 0.01% to
0.1%) Pulmonary arteries: Phe contracted Induced relaxation; ↑ NOS phosphorylation and Ca2+ influx

to ECs
[84]

Allium sativum

Aged garlic extract
(gavage for 12 weeks; 2 g/kg) Rat: Dahl salt-sensitive hypertensive ↓ LVEDP, pressure half-time, interstitial fibrosis, LV mass and

SBP [85]

Aged garlic extract (cumulative doses from 0.001 to
1%) Aortic rings: NE-contracted Induced relaxation in a dose-dependent manner [86]

Fresh homogenate
(p.o. for 8 weeks; 250 mg/kg)

Rat: High fructose

↓ LVH, NF-κB and oxidative stress; ↑ cat, GSH, GPx, and Nrf2 [87]

Homogenate
(p.o. for 3 weeks; 125 and 250 mg/kg)

↓ SBP, HR, TC, TG, glucose, LDH, CK-MB; ↑ SOD, cat and
heart function [88]
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Table 2. Cont.

Plant Species
Plant Part or
Extract Used

(Preparation; Concentration)
Study Model: Insult or Injury Main Findings Ref.

Raw garlic
(p.o. 1 day or 3 weeks before MCT injection + 3

weeks; 1% in chow)
Rat: MCT-induced PH ↓ RVSP, RVH, vasoconstriction in CEC; induced relaxation [89]

Garlic juice (cumulative doses from 1 to 50 µg/mL) Aortic rings: Phe contracted Induced relaxation in a dose-dependent manner [90]

Aqueous extract
(p.o. for 4 weeks; 50 mg/kg) Rat: 2-kindey-1-clip hypertension ↓ SBP and ACE activity [91]

100% methanol fraction from a methanolic extract
(cumulative doses from 30 to 750 µg/mL) Aortic rings

Precontracted with KCl or Phe: Induced relaxation
Pre-treatment with the fraction: Prevented contraction evoked

by KCl or Phe
[92]

Aqueous extract (0.045 mg/mL) Aortic rings: NE-contracted Prolonged relaxation induced by GSNO; Inhibited chloride
channels [93]

Aqueous extract (cumulative doses from 3 to
500 µg/mL)

Pulmonary arteries

Normoxia: Induced dose-dependent relaxation
Hypoxia: Inhibited the transient relaxation and sustained

contraction elicited by hypoxia
↓ ET-1 induced contractions

[94]

Aqueous and 5% ethanol extracts (cumulative doses
from 1 to 500 µg/mL) ↓ Phe-induced contractions; ↑ ACh-induced relaxation [95]

Aqueous and ethanol extract (non-cumulative doses
from 0.1 to 3 mg/L)

Atria: Spontaneously or
EPI-induced contraction Negative inotropic and chronotropic effect [96]

Allium ursinum Leaf lyophilizate
(p.o. for 8 weeks; 2% in chow) Rat: MCT-induced PH ↑ RV function and PDE5 activity; ↓Medial thickness of PA [97]

Tulbaghia violacea Methanolic extract
(i.p. for 7 weeks; 50 mg/kg) Rat: Dahl salt-sensitive hypertensive ↓ SBP; ↑ [Na] in urine and AT-1a receptor levels [98]

Protection against cardiotoxic compounds

Allium cepa
Raw juice

(intragastric intubation for 14 days; 1 mL) Rat: DOX-induced cardiotoxicity ↓ Apoptotic cells; ↓ CK, CK-MB, LDH, cTn1 and MDA levels;
↑ SOD, GSH, GPx [99]
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Table 2. Cont.

Plant Species
Plant Part or
Extract Used

(Preparation; Concentration)
Study Model: Insult or Injury Main Findings Ref.

Raw juice
(intragastric intubation for 14 days; 1 mL)

Rat: DOX-induced endothelial
dysfunction ↓ Apoptotic cells; ↓MDA levels; ↑ GSH [100]

Rat: Cd-induced cardiotoxicity

↓ Apoptotic cells; ↓ CK, CK-MB, LDH, cTnT and MDA levels;
↑ SOD, GSH, GPx [101]

Raw juice
(intragastric intubation for 8 weeks; 1 mL/100 g BW) ↓ TC, TG, LDL, albumin and MDA; ↑ HDL and SOD [102]

Allium sativum

Aged garlic extract (1000 µg) Rat: DOX-induced cardiomyocyte
apoptosis ↓ p53 activation, and caspase-3 activity; ↑ 8-isoprostane levels [103]

Aged garlic extract
(p.o. for 6 days before DOX; 2860 mg/kg)

Mice: DOX-induced cardiotoxicity

↑ survivability, and tumour uptake of DOX [103]

Aged garlic extract
(p.o. for 28 days; 250 mg/kg) ↓ LDH, CK and MDA [104]

Homogenate
(p.o. days; 250 and 500 mg/kg)

Rat: Adriamycin-induced
cardiotoxicity ↑ SOD, GPx, and cat; ↓MDA, TNF-α accumulation [105]

Aqueous extract
(p.o. for 3 weeks; 250 mg/kg)

Rat: Gentamycin-induced renal
failure

↑ Renal function, BW, HW/BW, cardiac Na+/K+-ATPase
activity, and antioxidant capacity; ↓ BP, LDH, CK-MB, MDA [106]

Allium ursinum Water and methanolic extracts (4 h pre-treatment;
50 µg/mL)

Cardiomyoblasts (H9c2):
DOX-induced toxicity

Water: ↓ intracellular and mitochondrial ROS and cell death
induced by DOX

Methanolic: ↓ intracellular and mitochondrial ROS
[107]

Antiplatelet aggregation

Allium
ampeloprasum Raw juice (n/a) Human: Platelet aggregation in

whole blood

↓ Platelet aggregation (IC50 = 114.9 and 117.3 mg/mL)
[108]

Allium ascalonicum ↓ Platelet aggregation (IC50 = 6.9 and 30.9 mg/mL)

Allium cepa

Heated extract (n/a) Human: Platelet-rich plasma ↓ Platelet aggregation, which is lost with higher heating times
or microwave heating [109]

Peel aqueous extract (50, 100 and 500 µg/mL)
Rat: Collagen-induced platelet

aggregation

↓ Platelet aggregation, [Ca2+]i, TXA2; ↑ cAMP [110]

Methanolic extract and methanolic fractions (0.5, 1, 3
and 5 mg/mL) ↓ Platelet aggregation [111]
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Table 2. Cont.

Plant Species
Plant Part or
Extract Used

(Preparation; Concentration)
Study Model: Insult or Injury Main Findings Ref.

Raw juice (n/a) Human: Platelet aggregation in
whole blood ↓ Platelet aggregation (IC50 = 46.7 and 116.7 mg/mL) [108]

Raw juice
(i.v. after CFR induction; 0.09 ± 0.01 mL/kg) Dog: Chronic platelet-mediated

thrombosis
↓ Platelet aggregation

[112]
Raw homogenate

(intragastric after CFR induction; 2 g/kg)

Raw juice (1, 10 and 100 mL/L) Human and dog: In vitro platelet
aggregation

↓ Platelet aggregation in both blood type, stronger effect on
dog

Allium fistulosum

Raw juice (n/a) Human: Platelet aggregation in
whole blood ↓ Platelet aggregation (IC50 = 113.8 and 113.2 mg/mL) [108]

Raw juice
(p.o. for 4 weeks; 2 g/Kg) Rat

↓ SBP, platelet adhesion to fibrinogen, platelet aggregation
and thromboxane release; ↑ bleeding time, cAMP and 6-keto

prostacyclin F1α

[113]

Raw or boiled juice (0–4 mg/mL) Human: ADP-induced aggregation

Raw juice: ↓ [Ca2+]i and thromboxane production; ↑ cAMP
levels

Boiled juice: ↑ [Ca2+]i and thromboxane production; induced
morphological changes

[114]

Allium sativum

Aged garlic extract (3.12 to 12.5%) Human: Fibrinogen- and
ADP-induced platelet aggregation

↓ Platelet adhesion to fibrinogen; Prevented platelet
conformational changes induced by ADP; ↑ cAMP [115]

Aged garlic extract (0.78–25%)
Human: ADP-induced platelet

aggregation ↓ Platelet aggregation and [Ca2+]i [116,117]

Human: ADP aggregated PRP Induced platelet disaggregation [116]

Aged garlic extract
(p.o. for 7 or 14 days; 1, 2 or 5 g/kg) Rat: Healthy fed AGE

↓ Platelet aggregation after 14 days without prolonging
bleeding time; ↑ extracellular ATP, TXB2 and ↓

phosphorylation of ERK, p38 and JNK after collagen treatment
[118]

Aged garlic extract
(p.o. for 13 weeks; 5 mL)

Human: ADP-induced platelet
(13 days pre-treatment) ↓ % of aggregated platelets and the initial rate of aggregation [119]
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Table 2. Cont.

Plant Species
Plant Part or
Extract Used

(Preparation; Concentration)
Study Model: Insult or Injury Main Findings Ref.

Aged garlic extract (0.19–6.25%) Human: ADP-induced platelet
aggregation

↓ Platelet aggregation; ↑ cGMP and cAMP which were
inhibited by ODQ and SQ22536 [120]

Garlic juice (n/a) Human: Platelet aggregation in
whole blood ↓ Platelet aggregation (IC50 = 3.2 and 4.0 mg/mL) [108]

Aqueous and alcoholic extract (n/a) Human: Platelet-rich plasma Aqueous: ↓ ADP-induced aggregation
Alcoholic: ↓ ADP-, AA-, EPI-induced aggregation [121]

Odourless powder
(p.o. for 2 weeks; 1 g/kg in chow) Rat: In situ loop ↓ Thrombus formation [122]

Allium
schoenoprasum Raw juice (n/a) Human: Platelet aggregation in

whole blood ↓ Platelet aggregation (IC50 = 45.4 and 50.1 mg/mL) [108]

Allium ursinum Aqueous extract (n/a) Rat: Platelet aggregation ↓ ADP-, collagen-, AA- and EPI-induced aggregation [121]

Other activities

Allium
ampeloprasum Aqueous extract (0.045 mg/mL) NO release from

S-nitrosoglutathione Induced NO release [93]

Allium ascalonicum Ethyl acetate fraction from a hydroethanolic extract
(500 and 800 ng/mL)

HUVEC: Angiogenesis
Chorioallantoic membrane assay Promoted angiogenesis [123]

Allium cepa Aqueous extract (0.045 mg/mL) NO release from
S-nitrosoglutathione Induced NO release [93]

Allium sativum

Aged garlic extract (1–4 mg/mL) HUVEC ↑ HO-1, GCLM and Nrf2 activation [124]

Aged garlic extract
(p.o. for 6 weeks; 4% in chow) Rat: Folate-deficient diet ↓ Homocysteine total, protein-bound and free levels [125]

Chloroform extract of aged black garlic (30 min
before treatment; 30 µg/mL) HUVEC: TNF-α ↓ ROS, NF-κB activation, VCAM-1 mRNA and protein

expression and THP-1 adhesion to HUVEC [126]

Aqueous extract (0.045 mg/mL) NO release from
S-nitrosoglutathione Induced NO release [93]
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Table 2. Cont.

Plant Species
Plant Part or
Extract Used

(Preparation; concentration)
Study Model: Insult or Injury Main Findings Ref.

Aqueous extract (0.2–1.0%) Macrophages/HUVEC: LPS- and
IFNγ stimulated

Macrophages: ↓ iNOS expression
HUVEC: ↑ eNOS activity and cGMP levels [127]

Garlic skin or flesh extract (1, 2.5 and 5 µL/mL) Cardiomyocyte: NE-induced
hypertrophy ↓ Cell hypertrophy, cell death, apoptosis, and oxidative stress [128]

Aqueous extract
(p.o. for 5 weeks; 800 µg/Kg) Rabbit: Vascular restenosis ↓Myointimal hyperplasia [129]

Hydroalcoholic extract (1, 10, 50, and 100 µg/mL) Mice: LPS-stimulated heart ↓ PGE2 and 8-iso-PGF2α levels; ↓ COX2, IL-6 and NF-κB
mRNA [130]

Aqueous fraction of garlic powder (4 days before
treatment; 0.25–4.0 mg/mL) CAEC: IL-1α ↓ ICAM-1, VCAM-1 and monocyte adhesion to ECs [131]

↑—Increase; ↓—Decrease; +dp/dt—Ratio of pressure change in the ventricular cavity during the isovolaemic contraction period; 8-iso-PGF2α—8-iso-Prostaglandin F2α; AA—
Arachidonic acid; ABCA1–ATP-binding cassette transporter; ACE—Angiotensin-converting enzyme; Ach—Acetylcholine; ADP–Adenine diphosphate; AGE—Advanced glycation end
products; AGER—Advanced glycation end products receptor; AI—Atherogenic index; Akt—v-Akt Murine thymoma viral oncogene/Protein kinase-B; ALP—Alkaline phosphatase;
ALT—Alanine aminotransferase; ApoA1—Apolipoprotein A1; ApoB—Apolipoprotein B; ApoE—Apolipoprotein E; AST—Aspartate aminotransferase; AT-1a—Type 1A angiotensin II
receptor; ATP—Adenosine triphosphate; BG—Blood glucose; BW—Body weight; Ca2+—Calcium; CAEC—Coronary artery endothelial cells; cAMP—Cyclic adenosine monophosphate;
Cat—Catalase; Cd—Cadmium; CEC—Coronary endothelial cells; cGMP—Cyclic guanosine monophosphate; CK—Creatine kinase; CK-MB—Creatine kinase—muscle/brain isoform;
COX2—Cyclooxygenase-2; CRF—Cyclic flow reduction cTn1—Cardiac troponin T; Cu2+—Copper (II); DEX—Dexamethasone; DOX—Doxorubicin; EC—Endothelial cell; EDCF—
eEndothelium-derived contracting factor; eNOS—Endothelial nitric oxide synthase; EPI—Epinephrine; ERK—Extracellular signal-regulated kinases; ET-1—Endothelin-1; Fe2+—Iron
(II); GCLM—Glutamate-cysteine ligase modifier subunit; GPx—Glutathione peroxidase; GSH—Glutathione; GSNO—S-Nitrosoglutathione; GSR—Glutathione reductase;; C—High
cholesterol; HDL—High-density lipoprotein; HFD—High-fat diet; HMG-CoA—β-Hydroxy β-methylglutaryl-Coenzyme A; HO-1—Hemeoxygenase-1; HR—Heart rate; HUVEC—
Human umbilical cord vein endothelial cell; HW/BW—Heart weight/body weight ratio; I/R—Ischaemia/Reperfusion; IC50—Concentration needed to inhibit 50% of the enzyme
activity; ICAM-1– Intercellular adhesion molecule 1; IFNγ—Interferon gamma; IGFR—Insulin-like growth factor 1 receptor; i.p.—Intraperitoneal injection; IL-1α—Interleukin-1
alpha; IL-6—Interleukin-6; iNOS—Inducible nitric oxide synthase; ISO—Isoproterenol; JNK—c-Jun N-terminal kinase; KCl—Potassium chloride; LAD—Left anterior descending;
LCAT—Lecithin-cholesterol acyltransferase; LDH—Lactate dehydrogenase; LDL—Low-density lipoprotein; LDLR—Low-density lipoprotein receptor; L-NAME—Nω-nitro-L-arginine
methyl ester; LPS—Lipopolysaccharide; LV—Left ventricle; LV/BW—Left ventricle weight/body weight ratio; LVDP—Left ventricle diastolic pressure; LVEDP—Left ventricle
end-diastole pressure; LVH—Left ventricle hypertrophy; MCT—Monocrotaline; MDA—Malondialdehyde; Mn-SOD—Manganese superoxide dismutase; mRNA—Messenger RNA;
n/a—Not available; Na—Sodium; NE—Norepinephrine; NF-κB—Nuclear factor kappa-light-chain-enhancer of activated B cells; NO—Nitric oxide; NOX—Dihydronicotinamide-
adenine dinucleotide phosphate oxidase; Nrf2—Nuclear factor erythroid 2-related factor 2; O2

2—Superoxide; ODQ—[1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one]; oxLDL—Oxidised
low-density lipoprotein; p38–p38 Mitogen-activated protein kinases; PA—Pulmonary artery; PDE5—phosphodiesterase type 5; PGC-1α—Peroxisome proliferator-activated receptor-
gamma coactivator-1alpha; PGE2—Prostaglandin E2; PH—Pulmonary hypertension; Phe—Phenylephrine; PI3K—Phosphoinositide 3-kinase; PL—Phospholipid; p.o.—Per os (orally);
PRP—Platelet-rich plasma; ROS—Reactive oxygen species; RPP—Rate pressure product; RV—Right ventricle; RVH—Right ventricle hypertrophy; RVSP—Right ventricle systolic
pressure: SBP—Systolic blood pressure; SIRT3—Sirtuin 3; SOD—Superoxide dismutase; SQ22536—Inhibitor of adenylyl cyclase; STZ—Streptozotocin; T2DM—Type 2 diabetes
mellitus; TBARS—Thiobarbituric acid reactive substances; TC—Total cholesterol; TFAM—Mitochondrial transcription factor A; TG—Triglycerides; TGF—Transforming growth factor;
THP-1—Spontaneously immortalised monocyte-like cell line; TNF-α—Tumour necrosis factor alpha; TXA2—Thromboxane A2; TXB2—Thromboxane B2; VCAM-1—Vascular cell
adhesion protein 1; VLDL—Very low-density lipoprotein; ZO-1—Zonula occludens-1.
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2.2.1. The Effect of Plant Parts or Extracts

In Table 2, studies reporting the beneficial effects of plant parts or extracts is presented
with reference to the species name, the plant part/extract used (with reference to the
preparation method and concentration), the study model and the main findings regarding
the effect observed in the cardiovascular system. Unless stated, a daily administration
was used. Studies are grouped considering the cardiovascular disease and/or risk factor
assessed with plants organised in alphabetical order of their scientific name. A list of
abbreviations, used throughout the table, is provided at the end of the table.

Plants from this subfamily are rich in cysteine sulfoxide derivatives, such as alliin [132],
which, by the action of alliinase, are converted into thiosulfinates, e.g., allicin, which in
turn are instable and change into organosulfur compounds like ajoene [133]. Thiosulfinates
are considered to be the main class of compounds responsible for the biological activities
reported for plants from Allioideae subfamily [134]. Accordingly, several studies have
assessed the role of alliinase activity on the effect of the extracts. Indeed, the antihyperten-
sive effect of onions (Allium cepa) is lost or is much weaker upon boiling [81]. Similarly,
the antiplatelet aggregation potential of these bulbs is also compromised, since longer
heating times in either a conventional oven or microwave led to a pro-aggregatory effect
rather than the expected anti-aggregatory potential [109]. Additionally, with the loss of
alliinase activity, the vasorelaxant properties of Allium sativum, were abolished in aortic
rings pre-contracted with phenylephrine [95]. Similar dependency on alliinase activity
was reported for the hypolipidemic activity of A. sativum where long heating times or
microwave heating compromised this effect [135].

On the other hand, the antidyslipidaemic and antidiabetic effects of A. sativum seem
to depend on the PI3K/Akt/Nrf2 [87] or IGFIR/PI3K/Akt [67,68] pathways since, upon
treatment, activation of these pathways is observed.

In order to better disclose the putative factors underlying the hypolipidemic effect
of A. hookeri, a metabolomic analysis on the serum of hamsters consuming a high-fat diet
and administered A. hookeri powder orally was carried out. The authors found 25 putative
markers which could explain the lipid-lowering effect of this species, with phosphatidyl-
cholines, lysophosphatidylcholines and lysophosphatidylethanolamines the most common
targets. Furthermore, the metabolism for glycerophospholipids was increased in the treated
group [57].

2.2.2. The Effect of Isolated Sulphur-Containing Compounds

In this section, the effect of isolated sulphur-containing compounds found in the
Allioideae subfamily is presented. Then, a composition–activity relation is discussed in
order to bring attention to potential active extracts. Table 3 systematises the main studies
performed in these compounds, with the compound name, chemical structure, study model
used, and the main findings of the study pointed out. Additionally, whenever reported, the
route of administration and concentration used is highlighted. A list of abbreviations, used
throughout the table, is provided at the end of the table.

Table 3. Effects of sulphur-containing compounds on the cardiovascular system.

Compound Study Model: Insult or Injury (Route of
Administration; Concentration) Main Findings Ref.
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Table 3. Cont.

Compound Study Model: Insult or Injury (Route of
Administration; Concentration) Main Findings Ref.

In chemico: Cu2+-induced oxidation of
LDL from treated ApoE/LDLR-deficient

mice
(p.o.; 9 mg/kg)

↓ LDL oxidation [137]

In chemico: Cu2+-induced LDL oxidation
(0.1, 1 and 10 mM)

↑ LDL oxidation (at higher doses) [60]

Phe-contracted PA rings (0.1, 0.3 and
1.0 µg/mL) Induced relaxation [95]

Rat: SHR
(p.o. for 6 weeks; 80 mg/kg on chow) ↓ SBP and TG [139]

Alliin
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Table 3. Cont.

Compound Study Model: Insult or Injury (Route of
Administration; Concentration) Main Findings Ref.

Cardiomyocytes: HG-induced apoptosis
(10 µM) ↓ Apoptosis [147,148]

Rat: STZ-induced diabetic
(i.p. for 14 days; 500 µg/kg)

↑ NO, eNOS proteins and
phosphorylation levels, blood perfusion

and capillary density
[149]

HUVEC (1.3, 2.5, 5, and 10 µM) ↓ Tube formation, VEGF2 release and
VEGF2R expression [150]

HEPC: In vitro neovasculogenesis (0.1, 1,
and 10 µM) In vitro: ↑ tube formation

[141]
Rat: In vivo neovasculogenesis
(gavage for 2 weeks; 10 mg/kg)

In vivo: ↑ new vessels in a xenograft
model of neovasculogenesis
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Intraperitoneal injection; ISO—Isoproterenol; LCAT—Lecithin-cholesterol acyltransferase; LDH—Lactate dehy-
drogenase; LDL—Low-density lipoprotein; LDLR—Low-density lipoprotein receptor; LPS—Lipopolysaccharide;
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Despite the interest in these compounds and their potential, only one study from
those listed in Table 3 focused on the mechanisms of action underlying the observed effects.
Indeed, it was shown that allicin reduced oxidised low-density lipoprotein-induced damage
by inhibiting apoptosis and decreasing oxidative stress [138].

Although the compounds presented in Table 3 are commonly found in plants from the
Allioideae subfamily, there are others that, despite being found in lower amounts, have
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been assessed for their cardioprotective effect. For example, the antidyslipidaemic effects
reported for garlic (A. sativum) seem to be due to the capacity of S-allyl cysteine, N-acetyl-S-
allyl cysteine, alliin, allixin, and allylmercaptocysteine to suppress low-density lipoprotein
oxidation since all these compounds were able to reduce LDL oxidation induced by copper
(II) [60]. Additionally, S-methylcysteine sulfoxide in high cholesterol-fed rats, was able to
reduce the levels of total cholesterol, triglycerides and phospholipids. Furthermore, this
compound reduced the activity of lipoprotein lipase without affecting the activity of other
lipogenic proteins, while decreasing the levels of free fatty acids. In addition, the excretion
of bile acids and sterols was enhanced in the treated group [154].

Furthermore, the antiplatelet activity of aged garlic extract was related to the presence
of S-ethylcysteine, S-methyl-L-cysteine, S-1-proponyl-L-cysteine, since the remaining con-
stituents of the extract (alliin, cycloalliin, S-allyl-L-cysteine, S-allylmercapto-L-cysteine, and
fructosyl-arginine) failed to significantly inhibit platelet aggregation [116]. Moreover, two
compounds, sodium n-propyl thiosulfate and sodium 2-propenyl thiosulfate decreased
adenosine diphosphate-induced platelet aggregation in both dogs and human blood [155].

Regarding the vascular protective effect of garlic, it seems that allithiamine (vita-
min B analogue found in garlic) might play a relevant role. Indeed, the presence of this
compound in HUVEC growing in high glucose conditions showed a lower level of ad-
vanced glycation end products as well as a lower inflammatory profile when compared
to high glucose-only treated cells. In addition, this compound also showed a very potent
antioxidant potential [156]. Moreover, 2-vinyl-4H-1,3-dithiin, an organosulfur compound
found in macerated garlic oil or in stir-fried garlic, decreased spontaneously hypertensive
rat’s vascular smooth muscle cells proliferation and cell migration and arrested cell cycle
at G2 phase. Furthermore, it decreased reactive oxygen species production induced by
angiotensin II [157]. Also, diallyl disulphide and diallyl trisulphide have been reported
for their capacity to induce neovasculogenesis via PI3K/Akt pathway activation [68,141].
In addition, reduction of cell death dependent on death receptor and mitochondria is also
reported for both compounds [68]. Furthermore, for diallyl trisulphide, the promotion
of neovasculogenesis is also attributed to a decrease in the microRNA 221 [68,141]. This
compound also activated Nrf2 via the PI3K/Akt pathway [147] and induced the release
of hydrogen sulphide by cystathionine-γ-lyase [148] using in vitro conditions mimicking
diabetes. The reported effects for ajoene might be due to its capacity to inhibit protein
prenylation, particularly that dependent on protein farnesyltransferase and protein ger-
anylgeranyltransferase type I [136].

Some studies also assessed the activity of synthetic derivatives of naturally occurring
sulphur-containing compounds. A study compared the antihypercholesterolaemic proper-
ties of diallyl disulphide analogues and showed that all the tested analogues lowered serum
and hepatic levels of several lipids, including low-density lipoprotein while increasing
those of high-density lipoprotein. The authors suggested that this lipid-lowering effect is
due to the modulation of the 3-hydroxy-3-methylglutaryl-CoA reductase activity since a de-
crease in mRNA levels with a concomitant inactivation of sterol regulatory element-binding
protein-2 and cyclic adenosine monophosphate response element-binding protein is ob-
served [158]. Another study assessed the antihypertensive and vasorelaxant properties of
five synthetic derivatives of diallyl disulphide. The results showed that all analogues were
able to decrease systolic blood pressure in the Nω-nitro-L-arginine methyl ester-induced
hypertensive animal model. Similarly, all compounds restored the antioxidant defences
as observed by an increase in the activity of glutathione peroxidase, glutathione and su-
peroxide dismutase with concomitant decrease in malondialdehyde and protein carbonyl
levels. Furthermore, nitric oxide metabolites and cyclic guanosine monophosphate levels
were restored by all the analogues, while the activity of angiotensin-converting enzyme
was decreased [159].

The effect of sulphur-containing compounds on the pharmacodynamic and phar-
macokinetics of other drugs was also assessed. Indeed, it was reported that the oral
co-consumption of diallyl trisulphide and nifedipine led to a higher maximum concen-
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tration and area under the curve, thus suggesting that the compound might affect the
gastrointestinal metabolism of nifedipine, since no effect on the pharmacokinetics was
observed when nifedipine was given intravenously [160].

2.2.3. Clinical Trials

The importance of plants from the Allioideae subfamily is also validated by a small
number of clinical trials. However, some contradictory results have been reported that
may be related to the different doses used, duration of the treatment and/or association
with other compounds. For example, in a small placebo-controlled and double-blind trial,
firefighters were given four tablets containing 300 mg/table of aged garlic extract and
30 mg/table of coenzyme Q10 for up to 1 year. The results showed that the consumption
improved their vascular elasticity and endothelial function [161]. In another study, the
consumption of 1200 mg of this extract daily for 4 weeks followed by 4 weeks of washout
had no effect on several parameters assessed such as glycated haemoglobin A1c, blood
pressure, total cholesterol, triglycerides and high-density lipoprotein, and did not prevent
endothelial dysfunction, oxidative stress or inflammation in patients with type 2 diabetes
with high cardiovascular risk [162]. Furthermore, the administration of aged garlic ex-
tract (250 mg) supplemented with vitamins B12 and B6, folic acid and L-arginine daily
for a 12-month period increased the ratio between brown and white epicardial adipose
tissues with concomitant increase in the temperature-rebound index, while decreasing
homocysteine levels and preventing the progression of coronary artery calcification [163].
In patients with coronary artery calcification and increased cardiovascular disease risk, the
consumption of 2400 mg of aged garlic extract daily for 1 year inhibited the progression
of the calcification. Regarding secondary outcomes, the extract decreased interleukin-6
levels as well as the glucose levels and blood pressure [164]. The same concentration
increased cutaneous microcirculation in diabetic patients, thus suggesting that aged garlic
extract might promote wound healing in these patients [165]. Overall, it seems that longer
treatment durations (up to 1 year) have better outcomes.

Regarding other extracts, the consumption of 125 mL of red wine extract of onion
twice daily for 10 weeks by healthy individuals showed hypocholesterolaemic, antioxidant
and anti-inflammatory effects [166]. Additionally, the consumption of 300 mg of A. sativum
standardised powder for 8 weeks by patients undergoing haemodialysis decreased the
absolute values for oxidised low-density lipoprotein and homocysteine. In addition, the
powder significantly ameliorated the values of calcium, triglycerides, oxidised low-density
lipoprotein and homocysteine [167]. The consumption of quercetin-rich A. cepa extract daily
for 6 weeks decreased systolic blood pressure in hypertensive individuals when compared
to the placebo group [168]. The consumption of A. cepa peel extract twice daily for 12 weeks
improved the flow-mediated dilation as well as the number of circulating endothelial
progenitor cells in healthy overweight and obese patients. Indeed, the rate of patients with
endothelial dysfunction decreased from 26% to 9% after extract administration [169].

Concerning CVD risk factors, some studies have been performed, such as the Tehran
Lipid and Glucose study that assessed the effect of dietary consumption of A. sativum and
A. cepa in cardiometabolic risk factors (body mass index, waist circumference, systolic blood
pressure, diastolic blood pressure, fasting plasma glucose, triglycerides-to-high-density
lipoprotein ratio, insulin, creatinine, estimated glomerular filtration rate and creatinine
clearance) for 6 years. The results showed that high consumption of these vegetables led to
a 64% reduction in CVD outcomes, as well as a lower incidence of chronic kidney disease
and hypertension while no association was made with type 2 diabetes. Furthermore, it
improved TG levels and creatine clearance [170].

Although the majority of the reported clinical trials are conducted using a small cohort
of patients and are usually single-centre studies, they highlight the potential of plants
from the Allioideae subfamily in the management of CVDs and associated risk factors.
Nevertheless, these effects should be validated in more complete clinical trials with access
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to bigger multicentre cohorts to account for the genetic polymorphisms which impact the
activity of drug metabolising enzymes leading to altered pharmacokinetics [171].

Drug interactions between conventional drugs or between these and herbal medicines
are common, with both beneficial and detrimental effects reported. For example, the
consumption of capsules containing 0.5 g of A. macrostemon bulb extract powder (three
times a day) for eight weeks by patients undergoing baseline therapy for unstable angina,
led to lower oxidised low-density lipoprotein and plasminogen activator inhibitor-1 level,
while increasing plasminogen activity [172]. Moreover, in patients undergoing simvastatin
therapy, supplementation with fenugreek and garlic for 8 weeks significantly reduced total
cholesterol, triglycerides, non-high-density lipoprotein and low-density lipoprotein levels
and increased those of high-density lipoprotein [173]. On the other hand, care must be taken
with antiplatelet drugs, particularly warfarin and aspirin, as a simultaneous consumption of
garlic or onion with these drugs can increase the risk of bleeding [174,175]. This interaction
is attributed to their capacity to decrease platelet adhesion and aggregation, by inhibiting
plasminogen activating factor and fibrinogen receptors and by decreasing thromboxane X2
synthesis [176]. In addition, garlic consumption is known to inhibit CYP3A4, the enzyme
responsible for warfarin metabolism [175].

3. Final Remarks

The present review sheds light on the potential of plants from the Allioideae subfamily
in the management of CVDs and associated risk factors. Traditional uses of some of these
species are widely recognised, with garlic (Allium sativum) and onions (Allium cepa) being
the most common. Additionally, pre-clinical studies and clinical trials validating their
beneficial potential are frequent, thus confirming their importance. Nevertheless, other
species such as A. jacquermontii, A. rotundum and Tulbaghia alliacea, despite being used in
traditional remedies in some regions, lack scientific validation while other plants have
undergone clinical trials but with no beneficial effects on the cardiovascular system.

Regarding CVD risk factors, plants from the Allioideae subfamily showed promising
antiplatelet aggregation, antidiabetic, and dyslipidaemic effects, and were able to exert
protection against atherosclerotic events.

Overall, we gathered information on both the tapped and untapped potential of
plants belonging to the Allioideae subfamily, by highlighting scientific gaps as well as well-
validated effects that pave the way for the development of new preventive/therapeutic
approaches for CVDs.
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