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Abstract: Over the last few decades, a growing incidence of Banana Wilt (BW) has been detected in
the banana-producing areas of the central zone of Venezuela. This disease is thought to be caused by
a fungal–bacterial complex, coupled with the influence of specific soil properties. However, until
now, there was no consensus on the soil characteristics associated with a high incidence of BW. The
objective of this study was to identify the soil properties potentially associated with BW incidence,
using supervised methods. The soil samples associated with banana plant lots in Venezuela, showing
low (n = 29) and high (n = 49) incidence of BW, were collected during two consecutive years (2016
and 2017). On those soils, sixteen soil variables, including the percentage of sand, silt and clay,
pH, electrical conductivity, organic matter, available contents of K, Na, Mg, Ca, Mn, Fe, Zn, Cu, S
and P, were determined. The Wilcoxon test identified the occurrence of significant differences in
the soil variables between the two groups of BW incidence. In addition, Orthogonal Least Squares
Discriminant Analysis (OPLS-DA) and the Random Forest (RF) algorithm was applied to find soil
variables capable of distinguishing banana lots showing high or low BW incidence. The OPLS-DA
model showed a proper fitting of the data (R2Y: 0.61, p value < 0.01), and exhibited good predictive
power (Q2: 0.50, p value < 0.01). The analysis of the Receiver Operating Characteristics (ROC) curves
by RF revealed that the combination of Zn, Fe, Ca, K, Mn and Clay was able to accurately differentiate
84.1% of the banana lots with a sensitivity of 89.80% and a specificity of 72.40%. So far, this is the first
study that identifies these six soil variables as possible new indicators associated with BW incidence
in soils of lacustrine origin in Venezuela.

Keywords: calcium; clay; iron; machine learning; random forest; zinc

1. Introduction

Bananas (Musa spp.) represent an important crop for Venezuela’s economy, which is
predominantly based on oil. During the last 20 years, banana production has undergone
slight reductions, reaching 650,051 tons in 2019, with a cultivated area of around 41,708 ha,
partially due to the shortage of agricultural inputs (fertilizers and agrochemicals), problems
of access to foreign currency to meet domestic demand, the inadequate management of
agricultural policies and the impact of drought, pests and diseases [1].
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Banana Wilt (BW), also called “False Panama Disease” was first described in South
Africa by Deacon et al. [2]. Although some of the Fusarium species have been associated
with BW plants, pathogenicity tests using those strains were not successful and the etiology
of BW could not be established. Both biotic and abiotic factors [3], including some physical
and chemical soil characteristics and potentially pathogenic soil microorganisms [4] have
been referred to as the potential causes of BW. However, BW is a disease of unknown
etiology up to date, and is mainly considered as a physiological and metabolic plant
disorder, whose symptoms can be easily confounded with those of Fusarium wilt, caused
by Fusarium oxysporum f.sp. cubense (Foc) (Sin: Fusarium odoratissimum), considered one of
the most destructive diseases of bananas worldwide [5,6].

In the Aragua state of Venezuela, one of the main producing areas in the country,
the yields of Cavendish bananas have been decreasing since 2006 associated with the BW
disease [7,8], increasing the concerns of the farmers. However, since the causal agent of
this disease has not yet been properly identified, its prevention and control are difficult.

The scientific literature and the evidence in the field of Martínez et al. [7] and Rey et al. [8]
in Venezuela suggest that there is a potential relationship between the properties of the
soil that generates a stress situation in the plant caused by specific abiotic factors, which
next would enhance the deleterious effect of certain microorganisms, such as fungi and
bacteria (fungal–bacterial complex), inducing the expression of wilt symptoms in the plant.
Thus, according to Rey et al. [8], BW is associated with a fungal–bacterial complex, with
some agroecological conditions characterized by silty soils presenting drainage problems
and with nutritional imbalances, typical of the lacustrine soils that are accentuated by
inappropriate fertilization regimens in the last few years. Additionally, the appearance of,
and increase in, the disease is associated with an average annual decrease in precipitation
and an increase in maximum temperatures [9].

Despite the technological advances, it is difficult to find studies that relate soil proper-
ties to disease incidence through the use of supervised methods, such as Random Forest
(RF), Orthogonal Least Squares of Discriminant Analysis (OPLS-DA) and other algorithms.
RF is a supervised learning classifier that can be used in complex situations [10,11] and
has been proved to be a highly accurate classifier, but it has rarely been applied in the
identification of soil properties associated with the incidence of diseases, such as BW [12,13].

In order to anticipate the potential occurrence of BW disease, it would be very valuable
if certain soil characteristics could be associated with a major risk of the occurrence of
BW. This research presents a study aimed to validate the hypothesis that it is possible to
identify the specific soil properties associated with a high incidence of BW, using supervised
methods such as RF and OPLS-DA, whose results can be of straightforward agronomic and
environmental interpretation.

2. Results
2.1. Incidence of BW in Experimental Lots

The analysis of the identification of pathogenic microorganisms revealed the presence
of bacteria (Pectobacterium and Erwinia genera) and fungi (F. moniliforme, F. oxysporum, and
F. solani). These microorganisms were also found by Sabadell [14] in tissues with BW
symptoms from the Canary Islands (Spain), and recently by Rey et al. [8] in the lacustrine
banana soils of Venezuela, but no vascular Fusarium oxysporum isolates were recovered
from the internal plant vascular tissue, which indicated that the symptoms observed in the
field plot were associated with BW and not with Fusarium wilt.

The symptoms of BW disease are shown in Figure 1. Generally, yellowing begins
on the lower or older leaves. The margin of each leaf turns pale green to yellow, necrotic
stripes appear surrounded by a yellow margin, and the leaf eventually dies (Figure 1a). The
lower leaves die and hang from the pseudostem, resembling a skirt (Figure 1b). According
to Beer et al. [15], the base of the leaf remains green and healthy, while its distal part dies.
Often one to four upper leaves remain green, but are smaller in size and their development
stops. New leaf growth can occur, but the bunches in this case are generally small with
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short and thin bananas, which generates economic losses due to the rejection of the fruit in
the market.
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However, there were no significant differences in the BW incidence according to the date 
on which different banana lots were established within the study area, according to the 
Kruskal–Wallis test (p value: 0.107). 

Figure 1. Symptoms of Banana Wilt disease in study area. (a) The yellow margins on the leaves and
the necrotic stripes surrounded by the yellow margins on the lower or older leaves; (b) Set of dead
leaves hanging from the pseudostem of a plant affected with Banana Wilt disease.

All of the lots evaluated (n = 78) in the study area have BW disease. The percentage of
the lots with a low incidence (<1.90%) of BW reached 37.18% (n = 29), while the lots with
a high incidence (≥1.90%) represented 62.82% (n = 49) (Figure 2). The highest incidence
values were found in lot 36 with 8.47%, lot 32 (5.97%) and lot 34 (5.13%) for the year
2017 (Figure 2b), while during 2016 the maximum incidence values were registered in
lots 38 and 45 with 5.57% and 5.03%, respectively. On the other hand, lots 12, 13 and lot
17 presented low incidence values that did not exceed 1.0% in both of the years of evaluation.
For the entire dataset, the mean incidence was 2.17 ± 1.40 with a P50 of 1.90 (Figure 2a).
However, there were no significant differences in the BW incidence according to the date
on which different banana lots were established within the study area, according to the
Kruskal–Wallis test (p value: 0.107).

2.2. Description of Soil Properties in Experimental Lots

Figure 3 shows the results of the heat map of the soil data, classified into the high and
low incidence groups. The heat map provides an intuitive visualization of the data used;
each colored cell in the map corresponds to a concentration value in the data table, with the
soil properties in the rows and the 78 banana lots in the columns. In general, the soils with
a high incidence of BW presented with loam to silty loam textures, with a predominance of
the particles with an equivalent diameter between 2 and 50 µm. In these soils, the banana
lots classified as a high incidence of BW showed high values of Na, Fe and Mg, with slightly
higher pH values (Figure 3).
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Figure 2. Cumulative incidence (%) of Banana Wilt in the study area during 2016 (a) and 2017 (b) (n = 78; mean = 2.17 ± 1.40%; min = 0.11%; max = 8.47%; asymmetry 
= 1.78; kurtosis = 4.46; P50 = 1.90%). 

Figure 2. Cumulative incidence (%) of Banana Wilt in the study area during 2016 (a) and 2017 (b) (n = 78; mean = 2.17 ± 1.40%; min = 0.11%; max = 8.47%;
asymmetry = 1.78; kurtosis = 4.46; P50 = 1.90%).
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Figure 3. Heatmap generated from soil data of the banana lots with low (green) or high (purple) incidence of BW evaluated in year 2016 (s6) and year 2017 (s7),
which represents increasing concentration values of the soil variables (blue to red color) for the study periods.
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On the other hand, the characteristics of the parental material of these soils produced
very high levels of Ca. The limitations for the development of the roots in these soils with a
high incidence of BW could be associated with chemical conditions, such as the presence
of a high CaCO3 content, the limiting ratios being Ca Mg−1 and Ca K−1 (data not shown).
The sodium levels were high in most of the lots with a high incidence of BW, which could
generate toxicity problems for the plants and low structural stability in the soils. Likewise,
low levels of Cu were observed in the lots with a low incidence of BW. The metabolic nature
of these elements means that their deficiency can greatly affect the development of the crop.
It is important to highlight that in some of the lots with a high incidence of BW, high levels
of P were present on the surface, possibly due to overfertilization.

In the very loamy soils, with low permeability and limited drainage, and with a
nutrient imbalance, BW disease was more frequent. Additionally, in the soils showing a
high incidence of BW, the clay content was slightly higher, whereas the K and Zn contents
was slightly lower. However, a high incidence of BW occurred in those plant lots where the
Ca content was higher, while the soils were more saline in depth.

2.3. Wilcoxon Rank Test

For a direct comparison of the soil variables’ levels, the Wilcoxon analysis was used to
identify the critical significant variables differentiating between the groups with a low and
high incidence of BW. The analysis revealed a total of six significant soil variables (adjusted
p value < 0.05) (Table 1): Zn, Ca, Fe, Clay, Mn and K. In our study, a small fraction of false
positives could be accepted as substantially increasing the total number of discoveries;
therefore, the false discovery rate (FDR) obtained is usually appropriate and useful. The
FDR is the rate at which the so-called significant features are actually null. The significant
and most important soil variables that were responsible for the observed differentiation
between the two BW incidence groups are shown in Figure 4.
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Table 1. Important variables selected by Wilcoxon Rank Test with threshold 0.05.

Variable V p Value −log10(p) FDR

Zn 1199 9.52 × 105 80.21 1.52 × 103

Ca 222 2.46 × 102 56.08 1.38 × 101

Fe 223 2.60 × 102 55.85 1.38 × 101

Clay 357 0.001 29.61 0.004
Mn 386 0.003 25.05 0.009
K 921 0.005 22.41 0.015

Note: (V): The V-statistic. These values are based on the unpaired data; FDR: The false discovery rate.

2.4. Identification of Important Soil Variables

The results of the descriptive analysis (Table 2) indicated important differences be-
tween the characteristics of the soils of the sampled banana lots. The variable importance
in the projection (VIP) values were obtained from the OPLS-DA model. The VIP was taken
for selection, and those variables with a VIP > 1 were considered as possible candidate
variables for the group discrimination (Table 2). Accordingly, the analysis revealed promi-
nent values in three variables: K, Fe and Zn. On the other hand, as shown in Figure 5a,
the OPLS-DA allowed us to analyze the information collected in the predictive component
independently from the orthogonal components. That is, it allowed the separation of the
variability responsible for the discrimination from the noise generated by the uncorrelated
variability. For this reason, the OPLS-DA was the method chosen for the selection of
the relevant variables in the discrimination of groups. In addition, based on the loading
values > 0.2, the OPLS-DA identified six critical variables: Clay, Mn, K, Ca, Fe and Zn
(Figure 5b). Besides, the OPLS-DA model showed a proper fitting of the data (R2Y = 0.61,
p value < 0.01), and exhibited good predictive power (Q2 = 0.50, p value < 0.01) (Figure 5c).

Table 2. Input variables used in model’s construction (mean ± standard deviation, coefficient of
variation, maximum and minimum) and the variable importance in the projection (VIP) values
obtained from the OPLS-DA model.

Variable Mean ± SD Median CV (%) Min Max VIP

Clay (%) 16.10 ± 7.86 15.00 48.78 1.00 40.00 0.36
Silt (%) 76.82 ± 9.75 78.30 12.70 39.93 90.84 0.08

Sand (%) 7.08 ± 4.98 6.27 70.33 0.38 38.07 0.01
pH 7.86 ± 0.22 7.85 2.74 7.41 8.55 0.15

EC (dS m−1) 0.65 ± 0.53 0.45 82.51 0.21 2.58 0.28
OM (%) 3.39 ± 1.52 3.50 44.86 0.25 6.33 0.32

P (mg kg−1) 12.98 ± 15.48 5.67 119.32 0.35 54.97 0.24
K (mg kg−1) 110.57 ± 229.26 35.60 207.34 1.48 1336.00 1.16
Ca (mg kg−1) 9704.51 ± 2968.46 8892.00 30.59 4936.00 16,648.00 0.68
Na (mg kg−1) 152.80 ± 97.07 132.40 62.33 10.72 472.00 0.55
Mg (mg kg−1) 300.47 ± 55.34 296.00 18.65 216.00 640.00 0.06
Cu (mg kg−1) 1.41 ± 0.87 1.60 61.20 0.03 3.20 0.15
Mn (mg kg−1) 9.47 ± 10.81 5.60 114.12 0.80 58.40 0.66
Fe (mg kg−1) 13.39 ± 22.59 5.20 168.72 0.04 78.40 2.91
Zn (mg kg−1) 13.21 ± 13.28 7.60 100.57 0.36 36.80 2.11
S (mg kg−1) 17.09 ± 11.86 11.84 69.43 6.47 48.80 0.34
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Figure 5. (a) OPLS-DA score plot of all soil variables, based separation of the incidence (low incidence
of BW, n = 29; high incidence of BW, n = 49); (b) Loading plot weights of each variable selected from
OPLS-DA; The color indicates the class in which the variable has the maximum level of expression;
(c) internal validation of the corresponding OPLS-DA model by permutation analysis (n = 100);
fraction of the variance of descriptor class response (Y) (R2Y) = 0.61 (blue bars), p value < 0.01; fraction
of the variance predicted (cross-validated) (Q2) = 0.50 (red bars), p value < 0.01.
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2.5. Classifier Performance and Accuracy Assessment

Table 3 shows the measures of the importance of the soil variables selected by the
RF model. The results establish the frequency with which an independent variable is
selected greater than/equal to a defined importance threshold (0.5). The Mean Decrease
Accuracy (MDA) allows for the visualization of the relative impact on the performance of
the RF classifier by subtracting each specific soil variable. Figure 6 shows the classification
results after the RF analysis; the receiver operating characteristic (ROC) curve of the
best-performing model indicated an area under the curve (AUC) of 0.91 (95% confidence
interval CI: 0.80% to 0.99%) (Figure 6a). The scores plot (Figure 6b) shows the predicted
class probabilities for all of the samples included in the analysis, indicating the correct
classification of 44 banana lots out of 49 with a high incidence of BW, and 21 banana lots
out of 29 with a low incidence.

Table 3. Frequencies of variables being selected (%), Mean Decrease Accuracy and descriptive
statistics of the model soil variables with Random Forest (Accuracy: 84.10%).

Variables
Frequencies

of Being
Selected (%)

Mean
Decrease
Accuracy

Low Incidence Group
(n = 29)

High Incidence Group
(n = 49)

Mean ± SD Range Mean ± SD Range

Zn (mg kg−1) 1.00 0.18 26.03 ± 12.98 (1.60–38.00) 5.66 ± 5.41 (0.36–30.40)
Fe (mg kg−1) 1.00 0.05 7.04 ± 16.84 (0.04–69.60) 17.14 ± 24.79 (0.06–78.40)
Ca (mg kg−1) 0.97 0.04 7326.34 ± 1675.99 (4936.00–11,496.00) 11,111.18 ± 2657.83 (6472.0–16,648.0)

Clay (%) 0.88 0.01 15.66 ± 8.70 (5.00–31.00) 16.37 ± 7.39 (1.00–40.00)
K (mg kg−1) 0.65 0.01 142.20 ± 199.53 (5.60–984.00) 91.83 ± 245.22 (1.50–1336.0)

Mn (mg kg−1) 0.50 0.01 6.38 ± 6.19 (1.60–33.60) 11.30 ± 12.49 (0.80–58.40)

Our results showed the great power of the RF classifier to correctly differentiate the
lots of bananas with a high or low BW incidence. Furthermore, our proposed system
reached 89.80% sensitivity and 72.40% specificity in the test dataset, which implies that
most of the banana lots with a low BW incidence were correctly classified with a false
negative (FN) rate of 5/49, and most of the banana lots with a high BW incidence were also
correctly classified with a false positive (FP) rate of 8/29 (Figure 6c).

Finally, the McNemar test was used to determine if the observed vs. predictive
proportions of the banana lots with a high and low incidence of BW were different. The
results establish that the p value of the McNemar test (0.41) is greater than 0.05, so there is
no evidence to reject the null hypothesis, and it is concluded that there are no significant
differences in the proportion of banana lots with a high and low incidence of BW before
(observed data) and after classification with RF (predictive data).
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Figure 6. Classification of bananas lots according to the incidence of banana wilt (BW). (a) Receiver operating characteristic (ROC) curve after obtained by Random
Forest as classification method. The values generated for the area under the curve (AUC) (0.91) along with the 95% confidence intervals (CI) (0.80–0.99) are given
within the graph and accuracy: 84.10%; (b) Predicted class probabilities for each banana lot, allowing display of misclassified bananas lots (lots of high BW incidence
are shown as black dots; lots of low BW are shown as white dots). Since a balanced subsampling approach is used for model training, the classification limit is
always in the center (x = 0.5, the dotted line); (c) Confusion matrix showing the number of true positives (44/49), true negatives (21/29), false positives (8/29) and
false negatives (5/49). Sensitivity and specificity are given in the regions highlighted in purple, being 89.80% and 72.40%, respectively.
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3. Discussion

Banana Wilt is a disease of unknown etiology that has not yet been properly studied.
Indeed, the incidence of BW has only been assessed in a few countries, including Costa Rica,
where a BW incidence of 7.3% was reported [16]; in Colombia, where an incidence of 0.31%
was reported in some of the banana-producing areas with a prevalence of 4.30% [17]; and
in Indonesia, where the average incidence of BW in 15 provinces was as high as 24% [18].

In the case of the banana areas located in the Aragua state of Venezuela, Martínez et al. [19],
Ramírez et al. [20] and Rey et al. [8] reported incidences of BW ranging from 0.32% to
11.41% in different plant lots. These values are similar to those obtained in our study, where
the vast majority of the foci showing an incidence of BW were centralized between lots
31 to 46 of the farm sampled and for both of the years evaluated. This could suggest that
the spread of the disease may be linked to specific soil physical–chemical characteristics,
combined in some degree with poor agronomic management (inappropriate fertilization)
that generates a significant nutritional imbalance in the soil.

The identification of the symptoms associated with BW represented the first step in
understanding and identifying the causes of the disease in the field and distinguishing the
areas affected by the disease, to later perform a classification based on certain previously
established statistical, economic and agronomic management parameters. In our study,
we established two levels (low and high) for describing the incidence of BW, based on
previous experience in the banana field plots in Venezuela presenting similar type of soils
and agronomical practices (J. C. Rey, personal communication). This threshold incidence
value of 1.90% was selected as that inducing severe yield loss.

The studies indicated that the soil factors, specifically its physical and chemical proper-
ties, are closely associated with the occurrence of BW in bananas [7,8,14,15]. In the present
study, using a RF model, we identified soil differences in six soil variables (i.e., Zn, Fe, Ca,
K, Mn and Clay) between the zones with different levels of BW incidence. The K contents
were highest (5.6–984.0 mg kg−1) in the group of lots with a low incidence of BW. However,
Ca contents were excessively high in both of the groups, with the concentrations being
more notable in the lots with a high incidence of BW (6472–16,648 mg kg−1), due to the
lacustrine origin of the soils, which can generate K and Mg deficiencies in the plants. In
relation to the microelements, Fe (0.06–78.40 mg kg−1) and Mn (0.8–58.4 mg kg−1) were
present at high levels in the group of lots with a high incidence of BW, while Zn was at low
levels (0.3–30.4 mg kg−1) (Table 3). These high Fe and Mn contents could be associated
with a higher clay content that can generate drainage problems. Under these conditions of
excess humidity, the solubility of Fe2+ and Mn2+ increases [21].

Regarding Zn, in the Canary Islands, the authors of [22] demonstrated that the appli-
cation of Zn in the soil notably reduced the incidence and severity of BW because this type
of soil shows a Zn deficiency. Therefore, in our study, conducted in the soils of Aragua,
Venezuela, the low levels of this element in the plant lots with a high incidence of BW may
have favored the appearance of the BW symptoms. According to Domínguez et al. [4], the
banana soils in the Canary Islands that presented severe BW problems showed a tendency
to the formation of stable aggregates of clays, that with an excess of irrigation favored
anaerobiosis in the soil and high concentrations of Fe, which caused compaction when the
soil became dry. These relationships of the clay content (1–40%) with the water and the
detrimental effect of compaction in banana soils results in a decrease in the productivity
and plant height, and a reduction in the number of offspring plants in the banana produc-
tion unit. Additionally, according to the results of Dorel [23] and Sabadell [14] the most
significant effect would be related to the reduction in the absorption of N, P, K, Ca and the
massive absorption of Mn.

The results of our analysis established that the heavy texture in the lots with a high
incidence of BW favored the appearance of symptoms, agreeing with the other studies
that found that this disease developed in the presence of soils with a heavy texture [24]
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and poor drainage [25], in conditions of high humidity, favoring infection by deleterious
microorganisms in the lateral rootlets.

The study by Rey et al. [8] establishes that the variables that showed the highest
significant correlation with the incidence of BW were the sand and silt content, organic
carbon, exchangeable Mg content and the Ca/Mg ratio. The authors found that a positive
correlation was observed with BW incidence for the silt content and the Ca and Mg levels
in the banana soils of Aragua, indicating that in very silty soils with low permeability
and limited drainage, it was more frequent to find a high incidence of BW. Likewise, they
found that, the C/N ratio and the K content, the nutritional relationships between the
exchangeable cations (Ca, Mg and K) and the Zn content were the variables that had the
greatest importance in the differentiation between the field areas, coinciding with the
results of this study.

Our results also showed that the incidence of the disease was not uniform throughout
the farm; the most affected areas had very silty soils with drainage problems, certain
nutrient deficiencies and nutritional imbalances, related to the natural condition of the
lacustrine soils and, surely, the lack of appropriate fertilization cycles in recent years [8].

In recent times, modern approaches, such as machine learning and deep learning
algorithms, have been employed to identify the characteristics of banana agroecosystems
that could be affecting productivity and the appearance of diseases in the field. Several
investigations were carried out in the field of machine learning for the detection and
diagnosis of banana diseases, using RF [11,12,26–28], artificial neural networks [11], support
vector machine (SVM) [10,11,29,30] and decision trees [26], among others. This study aimed
to use a RF model analysis strategy to determine the soil variables that could favor the
development of BW disease, with the final aim of helping to avoid using those soils or
promoting the application of the appropriate corrective fertilization treatments.

In those studies, reported above, the machine learning analysis approaches were used
to detect Fusarium wilt and Black Sigatoka diseases using aerial images, but none of them
used in situ soil data to predict the occurrence of a banana disease, as is the case in our study.
This evidences the existence of an information gap regarding the application of these novel
algorithm-based techniques, using data from the sampled soils. Our study is a pioneer in
showing results from the application of supervised methods, such as OPLS-DA and the RF
algorithm, to identify the soil variables associated with BW incidence. According to our
results, it is reported for the first time that soil variables, such as Zn, Fe, Ca, K, Mn and
Clay content, could be promising new soil indicators to classify the lots of bananas prone
to show a higher incidence of BW disease in the lacustrine soils in Venezuela.

The RF classifier achieved a significant advantage over the classifiers used in previous
works [11,12,28]. The characteristics of the RF classifier, and the way in which the most
important soil variables are selected through the OPLS-DA, determine the performance
of the RF classifier. However, the precision of classifying the banana lots with different
levels of BW incidence can be affected by many different factors, such as the quality
and representativeness of the information obtained, the performance of the characteristic
extraction algorithm, and the subsets used for training and testing purposes, as established
by the studies of [11,12]. The results of our study showed that RF performed well in
differentiating the banana lots with a high or low BW incidence. More interestingly, our
model provides an easy, fast and inexpensive method to accurately identify the risk of
incidence of BW in bananas.

Nevertheless, we are aware that it is not only the soil properties that may be directly
related to the plants that develop BW, since it is a disease caused by a fungal–bacterial
complex. Consequently, it is logical to think that the climatic variables of the site, other
than the physical and biological soil properties, and the physiological and agronomic
management of the plantation, among other factors, could also have an important influence
on the manifestation of the disease. However, all of those factors were not the object of this
study; so, it would be necessary to establish additional methods of analysis that would
allow for the analysis of the complexity of this type of disease, to obtain findings that do
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not depend on a single method of analysis and to explore other potential factors that may
influence the development of BW.

4. Materials and Methods
4.1. Study Area

The study was carried out in a banana plantation located in the Aragua state, with
205 ha planted with Cavendish cv. Pineo Gigante (67.58◦ W, 10.14◦ N; Figure 7). These
plants had at the time of sampling: (i) a leaf number from 16 to 18; (ii) height values ranging
from 3.5 to 4.5 m; and (iii) a growth period from 9 to 10 months. This region is characterized
by a Tropical Savanna climate (Aw). The annual mean rainfall is 980 mm [31] and shows
a marked seasonal pattern, with a wet season from May to October. The mean annual
temperature is 26.2 ◦C, whereas the mean annual relative humidity is 70.0% [32]. The
terrain relief is mostly flat (slope ranging 0–2%). The predominant types of soil are Mollisol
and Entisol, which are mostly of lacustrine origin, with medium textures, high nutrient
availability, moderate to good drainage, soil pH varying from neutral to alkaline, good
fertility and high soil organic matter content [33,34].
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4.2. Soil Sampling

A systematic soil sampling was carried out in 39 banana lots sampled during January
2016 and 2017 (total banana lots sampled, n = 78) (Figure 7). These lots were established at
different periods at the time of disease monitoring (<6 years, 6 to 12 years, and >12 years) [8].
The sampling was conducted following the guidelines of Lozano et al. [35], with an ap-
proximate distance of 150 m between the sampling sites. The composite soil samples were
obtained in each of the banana lots, in the first horizon at a depth of 0 to 20.0 ± 5.0 cm.
The samples were subjected to soil analysis for fertility characterization purposes; in total,
16 soil variables were determined including: percentage of sand, silt and clay [36]; soil
reaction (pH); electrical conductivity (EC, dS m−1) in suspension 1: 2 (soil: water) [37];
organic matter (OM, %) [38]; available contents of potassium (K, mg kg−1); sodium (Na,
mg kg−1); magnesium (Mg, mg kg−1); calcium (Ca, mg kg−1); manganese (Mn, mg kg−1);
iron (Fe, mg kg−1); zinc (Zn, mg kg−1); copper (Cu, mg kg−1); sulfur (S, mg kg−1) and
phosphorus (P, mg kg−1) [39].
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4.3. Banana Wilt Incidence

Before the beginning of the study, the plants with the typical symptoms of BW disease
were located and identified in all of the lots of the farm, from which the tissue samples
were taken from the pseudostem and roots, for the identification of the pathogenic microor-
ganisms. The isolation method, in PDA culture medium and humid chamber, was used, in
the laboratory of the Faculty of Agronomy of the Central University of Venezuela.

For the identification of the BW incidence in the field, in each banana lot each banana
plant was individually inspected on a monthly basis for the presence of symptoms com-
patible with BW. The banana plants showing BW symptoms were eliminated in each lot
and each evaluation period. Therefore, in the next monthly inspection, only the number of
plants with new BW symptoms to that date were counted. The cumulative incidence of
BW was determined in each of the 78 banana lots sampled during 2016 and 2017, using the
guidelines by Bosman [40]. The main aim of the continuous monitoring of BW incidence
was to determine the new cases of BW that occurred in the total population of plants in
each banana lot in a given plot and sampling time and for all of the physiological plant
stages growing simultaneously. The harvest of the fruit was carried out throughout the
year, which is interpreted as a staggered harvest, so that in the same lot it is possible that
the plants are in different phenological phases: Vegetative; Floral and Fruiting; that is why
the annual accumulated incidence was obtained to prevent the incidence of BW from being
confused with plant age. Within a banana lot, a plant grows for a maximum of 11- to
12-month period when the fruit is harvested and the mother plant removed. Hence, the
cumulative incidence rate is calculated as the sum of the monthly incidence of BW values
of all of the plants at different phenological stages in percentage for each banana lot in a
particular year according to Equation (1):

Cumulative incidence rate (%) =100 ×
12

∑
i=1

n◦ of diseased plants (BW)

Total plants planted
(1)

In the scientific literature, there is no information describing the threshold values to
establish the categories for BW incidence for the study area, nor in any other banana areas
of Venezuela. The percentiles were established in agronomy as an important alternative
to disease incidence indicators in bananas [41,42]. In this sense, the percentile (50) (P50)
or median represented by the value below which a certain proportion of the observations
falls was selected. In this study, the P50 (and thus also the percentile rank classes) offer an
alternative to the mean-based ratios for the disease incidence classes. The selection of this
measure of the statistical position is based on the low influence of the extreme values of the
distribution, such as the mean value; as additionally, the non-dependence of the choice of
the specific probability density functions compared to the arithmetic mean, which requires
normally distributed data [43].

The two percentile-rank classes are aggregated as follows: low incidence of BW < 1.90%
(incidence values of BW with a percentile less than the P50); and high incidence of BW ≥ 1.90%
(incidence values of BW with a higher percentile equal to the P50).This high incidence value
would represent a decrease of up to 13,300 kg ha−1 year−1 in those banana lots showing an
incidence of BW of 1.90% and was selected based on the information provided by J.C. Rey
(personal communication, 28 September 2019) and several years of experience observing
yield losses associated with BW.

4.4. Data Analysis

Before the data analysis, we checked the data integrity. The normalization of the
soil variables was carried out using the statistical package in R software version 4.0.2
(R Core Team, Austria) [44] based on the geometric mean, and a generalized logarithmic
transformation using “glog” function in R was performed to make the variables comparable
among themselves due to differences in the units to measure them [45,46]. Figure 8 shows
the general scheme of the data analysis procedures followed in this work.
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4.4.1. Identification of Important Soil Variables

For the identification of the relevant soil variables characterizing the incidence of BW,
a Wilcoxon rank sum test was performed to find the most important features of the soil
variables at a threshold p value < 0.05 [45], showing the differences between the group
of bananas lots with a low and high incidence of BW. Next, an Orthogonal Least Squares
Discriminant Analysis (OPLS-DA) was used to reduce the number of the soil variables
in the high-dimensional data to produce a robust and easy-to-interpret model, and to
identify the main soil characteristics that drive the separation of the plant lots based on BW
incidence (low or high). This multivariate statistical analysis was carried out using “ropls”
R packages [47].

The variable importance in projection (VIP) > 1, and the corresponding |loading
values| > 0.2 in the model were used to identify the variables responsible for distinguishing
both of the BW categories [48]. Furthermore, a permutation test with 100 permutations
was employed to validate the performance of OPLS-DA model. For the quality criteria,
we chose in the OPLS-DA model, the R2Y (goodness of fit parameter) and Q2 (predictive
ability parameter) > 0.5 [49].

4.4.2. Classifier Performance and Accuracy Assessment

The random forest (RF) algorithm was used as a machine-learning approach for
classifying the lots with a high and low incidence of BW [50]. The RF models allow for
the prediction of unknown samples (i.e., a test dataset) after training on a known dataset
(i.e., a training dataset). The receiver operating characteristic (ROC) curves were generated
by Monte Carlo cross validation (MCCV) [51], that is, a cross validation approach which
creates multiple random splits of the dataset into training and validation data. In each
MCCV, two/three of the samples were used to evaluate the feature importance, and the
remaining third were used to validate the model created in the first step [52,53].
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To determine the predictive performance of the model, the graphs of the ROC curve
were used, from which the sensitivity was defined as the relationship between the number
of P correctly classified and the total P observed, against “1—specificity” (specificity is the
relationship between the number of N correctly classified and the total N observed). A
model will have a high predictive performance if at low values of “1—specificity” a high
sensitivity is obtained, that is, a good capacity to correctly classify P with a low number of
false positives. This yields a curve closer to the upper left corner [54]. The Area under the
ROC curve (AUC) quantifies this relationship, so that a model is considered acceptable if
the AUC ≥ 0.7, excellent if the AUC ≥ 0.8 and outstanding if the AUC ≥ 0.9.

5. Conclusions

This study was focused on an analysis of the key soil properties that play an important
role in the incidence of BW. So far, crop-disease detection models primarily focus on
leaf symptoms through image recognition technology. This means that the diseases can
be detected only after they have appeared. In the present study, by using a random
forest analysis approach, we identified that the risk of low or high incidence of BW in a
banana farm in Venezuela could be associated with the differences in six key soil variables,
including Zn, Fe, K, Ca, Mn and Clay content. The findings may contribute to increasing
our understanding of the basic mechanisms and progression of BW incidence, and indicated
that these soil variables are potentially the determining factors of a risk of high BW incidence
in the tropical lacustrine soils of Venezuela.

Although the Random Forest analysis performed well in this particular study, and its
performance in other banana areas in Venezuela has not yet been proven, we consider that
this machine learning algorithm, using the soil properties as indicators, has the potential
to be further explored as a simple and effective tool in banana areas with the risk of
developing BW.

Our results open the field for further research in which we could quantitatively predict
the risk of BW in banana fields based on available, or relatively easy to gather, information,
which in turn could allow farm managers to implement preventive measures to minimize
BW risk and target other techniques (e.g., plant sampling, withdrawal of infested material)
on the areas where there is maximum risk.

In the future, new research can be improved through the systematic use of new
locations to obtain a much larger database of BW-affected plants, and also to take into
consideration various environmental, physiological and agronomic variables, among others,
and apply new and different statistical analyses that may help to identify other factors
potentially associated with BW development.
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