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Abstract: This integrative review aims to identify the main flavonoids present in some species of the
Myrtaceae family. Studies published between 2016 and 2022 were selected, specifically those which
were fully available and written in Portuguese, English, or Spanish, and which were related to the
fruits araçá (Psidium cattleianum), cambuí (Myrciaria floribunda), gabiroba (Campomanesia xanthocarpa),
jabuticaba (Plinia cauliflora), and jambolan (Syzygium cumini). Scientific studies were gathered and
selected in Google Scholar, Scielo, and Science Direct indexed databases, out of which 14 were about
araçá, 7 concerned cambuí, 4 were about gabiroba, 29 were related to jabuticaba, and 33 concerned
jambolan, when we observed the pre-established inclusion criteria. Results showed that the antho-
cyanins, such as cyanidin, petunidin, malvidin, and delphinidin, were the mostly identified class of
flavonoids in plants of the Myrtaceae family, mainly relating to the purple/reddish color of the evalu-
ated fruits. Other compounds, such as catechin, epicatechin, quercetin, and rutin were also identified
in different constituent fractions, such as leaves, peel, pulp, seeds, and in developed products, such
as jams, desserts, wines, teas, and other beverages. It is also worth noting the positive health effects
verified in these studies, such as anti-inflammatory qualities for jambolan, antidiabetic qualities for
gabiroba, antioxidant qualities for araçá, and cardioprotective actions for jabuticaba, which are related
to the presence of these phytochemicals. Therefore, it is possible to point out that flavonoids are
important compounds in the chemical constitution of the studied plants of the Myrtaceae family, with
promising potential in the development of new products by the food, chemical, and pharmaceutical
industries due to their bioactive properties.

Keywords: bioactive compounds; Psidium cattleianum; Myrciaria floribunda; Campomanesia xanthocarpa;
Plinia cauliflora; Syzygium cumini

1. Introduction

Myrtaceae is a family comprising 121 genera and 5800 plant species, occurring mainly
in tropical and subtropical regions of the world, being a predominant group in the Brazilian
Atlantic Forest [1]. Several species have significant economic and technological value, such
as eucalyptus (Eucalyptus spp.), used in the production of wood and flavoring agents [2],
as well as numerous fruit plants, such as the araçazeiro (Psidium cattleianum Sabine) [3],
cambuizeiro (Myrciaria floribunda (H. West ex Willd.) O. Berg) [4], gabirobeira (Campomanesia
xanthocarpa (Mart.) O. Berg) [5], jambolão (Syzygium cumini (L.) Skeels) [6], and jabuticabeira
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(Plinia cauliflora (Mart.) Kausel) [7], studied mainly for their nutritional, sensory, and
bioactive properties.

Various species of the Myrtaceae family, when processed, provide important products,
such as essential oils, dyes, and food products, and can be also employed in traditional
medicine [8–11]. This medicinal potential has been experimentally proven and associated
with anti-rheumatic, antidiabetic, antimicrobial, diuretic, and digestive system regulatory
activities, among others health beneficial activities, and has been evaluated in different
experimental models both in vitro and in vivo [5–7,12].

The range of utilities provided by these plants may be related to the presence of
phytochemicals, such as flavonoids, which are the main compounds of interest in this
study. These compounds help in the prevention of various chronic non-communicable
diseases, such as cardiovascular pathologies, oxidative stress, certain types of cancers,
atherosclerosis, diabetes, Alzheimer’s disease, cataracts, and other respiratory disorders,
and are concentrated in different parts of the plant [13]. Flavonoids are phenolic compounds
of plant origin and have several biological properties with antioxidant, anti-inflammatory,
antibacterial, antiallergic, and vasodilatory action [13].

In this context, fruit trees of the genera Psidium, Myrciaria, Campomanesia, Plinia, and
Syzygium stand out for their phytochemical composition with a multitude of bioactive
compounds, characterized by the production of flavonoids, water-soluble and condensed
tannins, saponins, mono- and sesquiterpenes, and triterpenoids, among others [14].

The genus Psidium originates from tropical and subtropical America, which has great
biological and economic importance in Brazil. This group includes several species of
trees and shrubs, with emphasis on the guava tree (Psidium guajava L.) and araçá tree (P.
cattleianum), plants geographically distributed in several regions of Brazil [15].

Popularly, the fruits of the araçá tree are known as araçá, yellow araçá, red araçá, araçá-
de-comer, araçá-da-praia, araçá-de-coroa, and araçá-do-mato. Despite the distinction of
names, varieties and color, the fruits are characterized by having an ovoid shape, translucent
pulp, and a kernel full of seeds, which can vary from approximately 22 to 250 units
(Figure 1) [16–18].
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Araçá has high agro-food potential due to its chemical composition. Among the
compounds found in this fruit, organic acids, carotenoids, and flavonoids stand out [19].
In terms of the proximate composition of the fresh fruit, the nutrient contents are found
in the following concentrations: 81.73–84.9 g of moisture; 4.32–10.01 g of carbohydrates;
3.87–6.14 g of fiber; 0.63–1.50 g of minerals; 0.75–1.03 g of proteins, and 26.8 kcal of en-
ergy [18].
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Food technology allows the incorporation of araçá into a multitude of products in
order to make it available on the market, and it is found in the form of sweets, jams, and
flour, benefiting producers and adding economic value to certain communities [20]. In
scientific study, araçá was used in the development of jams [20], yoghurts [21], chewable
bullets [22], and bulk candy [10].

Part of the genus Myrciaria, the cambuí tree is a medium-sized tree (with a height of
6–14 m) and a rounded crown, distributed throughout the northeast and north of South
and Central America. Its fruits are characterized by being shiny, fleshy, and juicy elliptical
berries, which can have a diverse color, ranging from orange to dark purple (Figure 2), a
characteristic dependent on the stage of maturation and the variety evaluated [23].
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(2022).

In terms of physical properties, the cambuí fruit can reach up to 13 mm in diameter,
with an average weight of 0.86 g and a number of seeds ranging from 1–3 units. When ripe,
they can be consumed fresh or industrialized, in the form of sweets, jams, juices, and other
dry or freeze-dried products. The contents of its physicochemical composition are equal to
3.53 for pH, 13.42 ◦Brix for the content of soluble solids, 4.03% of citric acid for titratable
acidity, and 3.49 for the ratio between soluble solids and titratable acidity [4].

Cambuí presents a succulent pulp, a sweet and astringent flavor, and is characterized
by having high concentrations of sugars and excellent levels of vitamin C (129.43 mg of
ascorbic acid/100 g−1). Additionally, they are fruits that have antioxidant compounds in
their constitution, especially carotenoids and flavonoids [24,25].

The gabiroba tree, of the genus Campomanesia, is a fruit tree native to Brazil, distributed
in the territory of the south, center-west, and northeast regions, presenting an erect habit
and reaching between 4 and 25 m in height. Its leaves are used in traditional medicine
and in the preparation of teas, as well as being employed in the treatment of inflammation,
kidney diseases, and hypercholesterolemia [26].

Gabiroba tree fruits are popularly known as gabiroba and have sensory characteristics,
such as a sweet acid flavor, juicy pulp, yellow-orange color, and thin skin (Figure 3). Among
the various compounds already identified in gabiroba, the classes of flavonoids, carotenoids,
and vitamins stand out, which have a high antioxidant and anti-inflammatory capacity [27].

Due to its sensory and bioactive properties, gabiroba has already been used as a
raw material in the development of jams [28], added in a dehydrated form into chocolate
bars [29], and its seeds have been evaluated for their antidiabetic and hypolipidemic
potential [5], despite the industrial exploitation of gabiroba still being in its initial stages.

Jambolan, of the genus Syzygium, is popularly known as jamelão, cereja, jalão, kambol,
jamun, azeitona-do-nordeste, ameixa-roxa, murta, guapê, jambuí, azeitona-da-terra, baga-
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de-freira, brinco-de-viúva, or jambalau [30]. It is a plant native to India, but one which
is currently widespread in different Brazilian regions; it reaches 10 m in height and has a
leafy crown [31].
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Figure 3. Gabiroba (C. xanthocarpa). Illustration made by the Ribeiro, L.V. (2022).

Fruits are small and ovoid in shape. Before ripening, they are characterized by their
green color and, when ripe, they may have a purplish black hue [32] (Figure 4). Due
to its varied chemical composition, jambolan represents a potential raw material for the
development of new fermented products, such as wines, liqueurs, and spirits, due to the
significant levels of sugars. Additionally, it can also be used in the development of juices,
jams, and yoghurts, as a way of preserving the fruits [33].
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Studies involving jambolan are mainly related to its physicochemical and therapeutic
properties, since they present expressive concentrations of flavonoids, carotenoids, resver-
atrol, and other polyphenols. Lago et al. [34] mention that the mineral, fiber, and lipid
contents of these fruits are about 0.3%, proteins are equal to 0.7%, carbohydrates to are
equal to 10.7% and 88% of the fruit is moisture.
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Among the Brazilian wild fruit trees, the jabuticaba tree is of a great economic impor-
tance. It is a medium-sized plant (with an average of 6 to 9 m in height), with a varied,
dense crown and a smooth reddish-yellow stem [35]. Its fruits have a globose berry shape,
with diameters varying between 2 and 3.5 cm and red, purple, or black peels. Its pulp
has a whitish color, a mucilaginous appearance, and a bittersweet flavor, with one to four
seeds [36] (Figure 5).
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Jabuticaba has high mineral concentrations, such as iron, copper, and manganese,
as well as vitamin C; however, it stands out in the research scenario for its significant
concentration of phenolic compounds, mainly anthocyanins, which are concentrated mainly
in its peel, which is usually discarded and sees little use industrially [37].

According to Batista et al. [38], consumption of jabuticaba peel can contribute to the
improvement of gastrointestinal tract functioning and can protect the liver against the
action of certain free radicals, due to the abundance of fiber and antioxidant compounds,
such as flavonoids. In this scenario, the exploration of the bioactive and technological
potential of jabuticaba is extremely important and becomes a promising alternative product,
aimed at the development of food and/or drugs and the reduction, at an environmental
level, of the waste generated in the industrialization of these fruits.

Considering the large number of species of the Myrtaceae family and their impor-
tance, it is evident that there is still much to be studied, especially in relation to their
chemical constituents. Therefore, the objective of this study was to carry out an integrative
review identifying the main flavonoids present in Psidium cattleianum, Myrciaria floribunda,
Campomanesia xanthocarpa, Plinia cauliflora, and Syzygium cumini.

2. Results and Discussion

Through the search strategies, 2516 scientific works were identified in the aforemen-
tioned databases, with the selection process shown in Figure 6.

Out of these studies, 2358 were excluded by the previous analysis of the title and
abstract since they did not answer the guiding question or were found to be duplicated
in different research bases. After a complete reading of 158 works, 87 articles published
between 2016 and 2022 were selected to compose this integrative review, with an emphasis
on the phytochemical characterization of vegetables, beneficial effects on human health,
and product development with the maintenance of bioactive compounds.
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As shown in Figure 7, 14 manuscripts comprised research on araçá, 7 on cambuí, 4 on
gabiroba, and 29 on jabuticaba, while the remainder related to jambolan, with 33 articles
selected following the pre-established inclusion criteria. Regarding the period of publi-
cations, the scores (percentage and sample number) are as follows: articles published in
2022 (12.64%, n = 11), in 2021 (19.55%, n = 17), in 2020 (22.98%, n = 20), in 2019 (13.79%,
n = 12), in 2018 (13.79%, n = 12), in 2017 (9.20%, n = 8), and in 2016 (8.05%, n = 7).
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2.1. Phytochemical Characterization

Bioactive compounds or phytochemicals are substances derived from the secondary
metabolism of plants, with beneficial properties for human health [39]. Flavonoids stand
out among these compounds as an extensive class of antioxidants found in different parts
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of the plant, such as the fruits and their different constituent fractions (peel, pulp, and
seed), leaves, branches, and roots [40].

Table 1 summarizes the data referring to the selected articles that had the theme
of phytochemical characterization of plants of the Myrtaceae family. It is observed that
most studies comprised of assays with jambolan, jabuticaba, and araçá, using different
techniques and methodologies to identify and quantify flavonoids.

Table 1. Synthesis of selected works with the approach of phytochemical characterization of the
different constituent fractions of plants and their flavonoids.

Vegetable Fraction Flavonoids References

Araçá

Leaf
Catechin, gallocatechin, epigallocatechin, hesperetin-7-O-glucuronide, plantagoside, quercetin,

reynoutrin, luteolin-7-glucuronide, quercitrin, myricetin, apigenin-7-O-glucoside, peonidin-3-glucoside,
hispidulin, gardenin A, 8-hydroxy-5-methoxyflavanone, and 3′,4′-dimethoxy-7-hydroxyflavone

[41–44]

Fruit
Taxifolin, gallocatechin, catechin, epicatechin derivatives, myricetin, naringenin, quercetin, anthocyanins,

delphinidin, cyanidin, cyanidin-3-glucoside, cyanidin-3,5-diglucoside, malvidin-3-glucoside,
pinobanksin, isoquercitrin, isorhamnetin, luteolin, and kaempferol

[3,45–49]

Peel Anthocyanins [39]

Cambuí

Leaf Rutin, epigallocatechin, catechin, isoquercitrin, quercitrin, myricetin derivatives, procyanidin B dimer,
and kaempferol-O-rhamnoside [50,51]

Fruit Rutin and anthocyanins [52,53]

Peel Catechin and anthocyanins [54]

Pulp
Reynoutrin, quercetin, quercitrin, myricetin derivatives, myricthrin, procyanidin A2,

cyanidin-3-O-rutinoside, methyldihydromyricetin, catechin, diosmetin, petunidin, epicatechin gallate,
delphinidin hexoside, apigenin 7-O-neohesperidoside, and rutin

[4]

Gabiroba

Leaf Quercetin, luteolin, vitexin, isoquercetin, and quercitrin [55]

Fruit Catechin, epicatechin, quercetin, isorhamnetin 3-O-glucoside, naringenin, kaempferol, and apigenin [56]

Pulp Catechin [57]

Jabuticaba

Leaf Quercetin, myricitrin, catechin, luteolin 7-glucuronide, eriocitrin, and hesperetin [7]

Fruit Delphinidin, cyanidin, pelargonidin, peonidin, myricetin derivatives, quercetin derivatives, and catechin [58]

Peel
Quercetin, quercetin derivatives, catechin, myricetin, myricetin derivatives, epicatechin, gallocatechin,

epicatechin gallate, anthocyanins, delphinidin, delphinidin-3-glucoside, cyanidin, cyanidin-3-glucoside,
malvidin, pelargonidin, pelargonidin-3-glucoside, peonidin, peonidin-3-glucoside, and petunidin

[37,59–69]

Pulp Catechin, procyanidin B1, procyanidin B2, anthocyanins, cyanidin-3-glucoside, and kaempferol [70,71]

Seed Quercetin, rutin, procyanidin A2, malvidin-3,5-diglucoside, and cyanidin-3-glucoside [72]

Jambolan

Leaf Catechin, myricetin derivatives, quercetin, and epicatechin [73,74]

Plant Rutin, catechin, myricetin, and quercetin [75]

Fruit
Catechin, epigallocatechin gallate, isoquercitrin, isorhamnetin, kaempferol, myricetin, luteolin,

naringenin, quercetin, anthocyanins, cyanidin, cyanidin-3-glucoside, malvidin 3-glucoside, delphinidin,
epicatechin, rutin, and pinobanksin

[32,76,77]

Peel Anthocyanins, delphinidin-3,5-diglucoside, cyanidin-3,5-diglucoside, petunidin-3,5-diglucoside,
peonidin-3,5-diglucoside, and malvidin-3,5-diglucoside [78–82]

Pulp

Quercetin, catechin, rutin, myricetin, anthocyanins, delphinidin, delphinidin-3,5-diglucoside, cyanidin,
cyanidin-3,5-diglucoside, cyanidin-3-glucoside, petunidin, petunidin-3,5-diglucoside,

petunidin-3-glucoside, peonidin, peonidin-3,5-diglucoside, peonidin-3-glucoside, malvidin,
malvidin-3,5-diglucoside, malvidin-3-glucoside, and epigallocatechin

[83–88]

Seed Catechin, naringin, rutin, myricetin, epicatechin gallate, ramnetin, and epigallocatechin gallate [89–91]

(Authors 2022).
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For the identification and/or quantification of these bioactive constituents in the differ-
ent extracts evaluated, the following methods were employed: spectrophotometry [3], LC-
DAD-ESI-MS/MS [47], UPLC/QTOF/MS [42,50], PS-MS [4], liquid chromatography [56],
and HPLC-DAD-ESI/MS [37,58,59], among others.

Catechin and quercetin were the prominent flavonoids in the evaluation of the leaves
of the five species studied in this work, and these compounds were identified by Balyan and
Sarkar [73] and Balyan et al. [74] in jambolan leaves and by Faleiro et al. [41], Saber et al. [42],
Santos et al. [50], and Beltrame et al. [44] when studying araçá leaves. Anthocyanins,
flavones and flavonones were also identified in leaves of the same plant in the study of
Zandoná et al. [43].

Quercetin is an aglycone, which can be found in the glycosylated form bound to
different sugars; some examples are isoquercitrin (quercetin-3-O-glucoside), quercitrin
(quercetin-3-O–L-rhamnoside), and rutin (quercetin-3-O-rutinoside). All of these com-
pounds are found in extracts of cambuí and gabiroba leaves [51,55].

Fidelis et al. [72], Khan et al. [89], Mahindrakar and Rathod [90], and Andrade et al. [91]
when observing the presence of anthocyanins, flavanones, and other compounds, such
as epicatechin, ramnetin, and myricetin, reinforce the bioactive potential of jambolan and
jabuticaba seeds, which are usually neglected.

Another usually discarded and little used part of the fruit is the peel; however, several
studies were selected that aimed to characterize this constituent fraction as a source of
flavonoids (Table 1). These compounds are often responsible for the color of the fruit in its
different stages of maturation. Regarding araçá, the main flavonoids identified in the peels
were anthocyanins [39], while for cambuí fruits, in addition to anthocyanins, catechin was
also determined in the work of Santos et al. [54].

When it comes to jabuticaba and jambolan peels, the anthocyanins responsible for the
red, purple, and/or blue colors were mostly identified as delphinidin, cyanidin, malvidin,
pelargonidin, peonidin, and petunidin. Flavonoids, such as kaempferol, catechin, epicate-
chin, myricetin, quercetin, rutin and others were also found in of these fruits (Table 2).

Table 2. Basic structures of some flavonoid classes verified in selected studies.

Flavanone
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Table 2. Cont.

Flavanone

Plants 2022, 11, x FOR PEER REVIEW 10 of 36 
 

 

3   

O

OH

HO

O

O

OH

 

4   

Hesperetin (302.3 g/mol) Taxifolin (304.2 g/mol) 

5  

O

OH

HO

OH

O

OH

O

O

OH OH

OH

OH

 
6  

O

OH

O

OH

O

O

OH

OH

HO

O

O

OH

HO

HO

 

Plantagoside (466.4 g/mol) Naringin (580.5 g/mol) 

Flavanol 

7    8   

O

OH

OH

OH

HO

OH

Catechin
 

Epicatechin (290.3 g/mol) Catechin (290.3 g/mol) 

O

O

HO

OH

OH

OH

Taxifolin

O

OH

OH

OH

HO

OH

Epicatechin

Plants 2022, 11, x FOR PEER REVIEW 10 of 36 
 

 

3   

O

OH

HO

O

O

OH

 

4   

Hesperetin (302.3 g/mol) Taxifolin (304.2 g/mol) 

5  

O

OH

HO

OH

O

OH

O

O

OH OH

OH

OH

 
6  

O

OH

O

OH

O

O

OH

OH

HO

O

O

OH

HO

HO

 

Plantagoside (466.4 g/mol) Naringin (580.5 g/mol) 

Flavanol 

7    8   

O

OH

OH

OH

HO

OH

Catechin
 

Epicatechin (290.3 g/mol) Catechin (290.3 g/mol) 

O

O

HO

OH

OH

OH

Taxifolin

O

OH

OH

OH

HO

OH

Epicatechin

Plantagoside (466.4 g/mol) Naringin (580.5 g/mol)

Flavanol

Plants 2022, 11, x FOR PEER REVIEW 10 of 36 
 

 

3   

O

OH

HO

O

O

OH

 

4   

Hesperetin (302.3 g/mol) Taxifolin (304.2 g/mol) 

5  

O

OH

HO

OH

O

OH

O

O

OH OH

OH

OH

 
6  

O

OH

O

OH

O

O

OH

OH

HO

O

O

OH

HO

HO

 

Plantagoside (466.4 g/mol) Naringin (580.5 g/mol) 

Flavanol 

7    8   

O

OH

OH

OH

HO

OH

Catechin
 

Epicatechin (290.3 g/mol) Catechin (290.3 g/mol) 

O

O

HO

OH

OH

OH

Taxifolin

O

OH

OH

OH

HO

OH

Epicatechin

Plants 2022, 11, x FOR PEER REVIEW 10 of 36 
 

 

3   

O

OH

HO

O

O

OH

 

4   

Hesperetin (302.3 g/mol) Taxifolin (304.2 g/mol) 

5  

O

OH

HO

OH

O

OH

O

O

OH OH

OH

OH

 
6  

O

OH

O

OH

O

O

OH

OH

HO

O

O

OH

HO

HO

 

Plantagoside (466.4 g/mol) Naringin (580.5 g/mol) 

Flavanol 

7    8   

O

OH

OH

OH

HO

OH

Catechin
 

Epicatechin (290.3 g/mol) Catechin (290.3 g/mol) 

O

O

HO

OH

OH

OH

Taxifolin

O

OH

OH

OH

HO

OH

Epicatechin
Epicatechin (290.3 g/mol) Catechin (290.3 g/mol)

Plants 2022, 11, x FOR PEER REVIEW 11 of 36 
 

 

9   

O

OH

OH

OH

HO

OH

OH

 10   

O

OH

OH

OH

HO

OH

OH

 

Epigallocatechin (306.3 g/mol) Gallocatechin (306.3 g/mol) 

11  

O

OH

OH

OH

OH

HO

O

HO

HO

HO

OH

OH

 

12 

O

OH

OH

OH

OH

HO

O

HO

HO

HO

OH

OH

 

Procyanidin B1 (578.5 g/mol) Procyanidin B2 (578.5 g/mol) 

Plants 2022, 11, x FOR PEER REVIEW 11 of 36 
 

 

9   

O

OH

OH

OH

HO

OH

OH

 10   

O

OH

OH

OH

HO

OH

OH

 

Epigallocatechin (306.3 g/mol) Gallocatechin (306.3 g/mol) 

11  

O

OH

OH

OH

OH

HO

O

HO

HO

HO

OH

OH

 

12 

O

OH

OH

OH

OH

HO

O

HO

HO

HO

OH

OH

 

Procyanidin B1 (578.5 g/mol) Procyanidin B2 (578.5 g/mol) 

Epigallocatechin (306.3 g/mol) Gallocatechin (306.3 g/mol)



Plants 2022, 11, 2796 10 of 30

Table 2. Cont.

Flavanol

Plants 2022, 11, x FOR PEER REVIEW 11 of 36 
 

 

9   

O

OH

OH

OH

HO

OH

OH

 10   

O

OH

OH

OH

HO

OH

OH

 

Epigallocatechin (306.3 g/mol) Gallocatechin (306.3 g/mol) 

11  

O

OH

OH

OH

OH

HO

O

HO

HO

HO

OH

OH

 

12 

O

OH

OH

OH

OH

HO

O

HO

HO

HO

OH

OH

 

Procyanidin B1 (578.5 g/mol) Procyanidin B2 (578.5 g/mol) 

Plants 2022, 11, x FOR PEER REVIEW 11 of 36 
 

 

9   

O

OH

OH

OH

HO

OH

OH

 10   

O

OH

OH

OH

HO

OH

OH

 

Epigallocatechin (306.3 g/mol) Gallocatechin (306.3 g/mol) 

11  

O

OH

OH

OH

OH

HO

O

HO

HO

HO

OH

OH

 

12 

O

OH

OH

OH

OH

HO

O

HO

HO

HO

OH

OH

 

Procyanidin B1 (578.5 g/mol) Procyanidin B2 (578.5 g/mol) 
Procyanidin B1 (578.5 g/mol) Procyanidin B2 (578.5 g/mol)

Plants 2022, 11, x FOR PEER REVIEW 12 of 36 
 

 

13   

O

OH

HO

OH

OH

OH

O

OH

HO OH

OH

O

 

Procyanidin A2 (576.5 g/mol) 

Flavanonol  

14   

O

OH

HO

OH

O  

15   

O

OH

HO

O

OH

OH

O

OH

 

Pinobanksin (272.2 g/mol) Methyldihydromyricetin (334.3 g/mol) 

Procyanidin A2 (576.5 g/mol)

Flavanonol

Plants 2022, 11, x FOR PEER REVIEW 12 of 36 
 

 

13   

O

OH

HO

OH

OH

OH

O

OH

HO OH

OH

O

 

Procyanidin A2 (576.5 g/mol) 

Flavanonol  

14   

O

OH

HO

OH

O  

15   

O

OH

HO

O

OH

OH

O

OH

 

Pinobanksin (272.2 g/mol) Methyldihydromyricetin (334.3 g/mol) 

Plants 2022, 11, x FOR PEER REVIEW 12 of 36 
 

 

13   

O

OH

HO

OH

OH

OH

O

OH

HO OH

OH

O

 

Procyanidin A2 (576.5 g/mol) 

Flavanonol  

14   

O

OH

HO

OH

O  

15   

O

OH

HO

O

OH

OH

O

OH

 

Pinobanksin (272.2 g/mol) Methyldihydromyricetin (334.3 g/mol) 

Pinobanksin (272.2 g/mol) Methyldihydromyricetin (334.3 g/mol)



Plants 2022, 11, 2796 11 of 30

Table 2. Cont.

Flavanonol

Plants 2022, 11, x FOR PEER REVIEW 13 of 36 
 

 

16   

O

OH

HO

O

O

OH

O

O

OH

O

OH

OH

OH

 

Hesperetin-7-O-glucuronide (466.4 g/mol) 

Flavonol 

17 

 

O

O

OH

OH

HO

OH

Kaempferol
 18   

Kaempferol (286.2 g/mol) Quercetin (302.2 g/mol) 

19 

 

20 

 

 

Myricetin (318.2 g/mol) Rhamnetin (316.3 g/mol) 

O

O

OH

OH

HO

OH

OH

Quercetin

O

O

OH

OH

HO

OH

OH

OH

Myricetin

O

OH

O

OH

O

OH

OH

Hesperetin-7-O-glucuronide (466.4 g/mol)

Flavonol

Plants 2022, 11, x FOR PEER REVIEW 13 of 36 
 

 

16   

O

OH

HO

O

O

OH

O

O

OH

O

OH

OH

OH

 

Hesperetin-7-O-glucuronide (466.4 g/mol) 

Flavonol 

17 

 

O

O

OH

OH

HO

OH

Kaempferol
 18   

Kaempferol (286.2 g/mol) Quercetin (302.2 g/mol) 

19 

 

20 

 

 

Myricetin (318.2 g/mol) Rhamnetin (316.3 g/mol) 

O

O

OH

OH

HO

OH

OH

Quercetin

O

O

OH

OH

HO

OH

OH

OH

Myricetin

O

OH

O

OH

O

OH

OH

Plants 2022, 11, x FOR PEER REVIEW 13 of 36 
 

 

16   

O

OH

HO

O

O

OH

O

O

OH

O

OH

OH

OH

 

Hesperetin-7-O-glucuronide (466.4 g/mol) 

Flavonol 

17 

 

O

O

OH

OH

HO

OH

Kaempferol
 18   

Kaempferol (286.2 g/mol) Quercetin (302.2 g/mol) 

19 

 

20 

 

 

Myricetin (318.2 g/mol) Rhamnetin (316.3 g/mol) 

O

O

OH

OH

HO

OH

OH

Quercetin

O

O

OH

OH

HO

OH

OH

OH

Myricetin

O

OH

O

OH

O

OH

OH

Kaempferol (286.2 g/mol) Quercetin (302.2 g/mol)

Plants 2022, 11, x FOR PEER REVIEW 13 of 36 
 

 

16   

O

OH

HO

O

O

OH

O

O

OH

O

OH

OH

OH

 

Hesperetin-7-O-glucuronide (466.4 g/mol) 

Flavonol 

17 

 

O

O

OH

OH

HO

OH

Kaempferol
 18   

Kaempferol (286.2 g/mol) Quercetin (302.2 g/mol) 

19 

 

20 

 

 

Myricetin (318.2 g/mol) Rhamnetin (316.3 g/mol) 

O

O

OH

OH

HO

OH

OH

Quercetin

O

O

OH

OH

HO

OH

OH

OH

Myricetin

O

OH

O

OH

O

OH

OH

Plants 2022, 11, x FOR PEER REVIEW 13 of 36 
 

 

16   

O

OH

HO

O

O

OH

O

O

OH

O

OH

OH

OH

 

Hesperetin-7-O-glucuronide (466.4 g/mol) 

Flavonol 

17 

 

O

O

OH

OH

HO

OH

Kaempferol
 18   

Kaempferol (286.2 g/mol) Quercetin (302.2 g/mol) 

19 

 

20 

 

 

Myricetin (318.2 g/mol) Rhamnetin (316.3 g/mol) 

O

O

OH

OH

HO

OH

OH

Quercetin

O

O

OH

OH

HO

OH

OH

OH

Myricetin

O

OH

O

OH

O

OH

OH

Myricetin (318.2 g/mol) Rhamnetin (316.3 g/mol)



Plants 2022, 11, 2796 12 of 30

Table 2. Cont.

Flavonol

Plants 2022, 11, x FOR PEER REVIEW 14 of 36 
 

 

21 

 

 

22 

O

OH

HO

OH

O

O

OH

OH

OHO

 

Isorhamnetin (316.3 g/mol) Kaempferol-O-rhamnoside (432.4 g/mol) 

23   

24  

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

 

Reynoutrin (434.3 g/mol) Quercitrin (448.4 g/mol) 

O

OH

HO

OH

O

OH

O

O

OH

HO

OH

O

O

OH

OH

OH

OH

O

Plants 2022, 11, x FOR PEER REVIEW 14 of 36 
 

 

21 

 

 

22 

O

OH

HO

OH

O

O

OH

OH

OHO

 

Isorhamnetin (316.3 g/mol) Kaempferol-O-rhamnoside (432.4 g/mol) 

23   

24  

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

 

Reynoutrin (434.3 g/mol) Quercitrin (448.4 g/mol) 

O

OH

HO

OH

O

OH

O

O

OH

HO

OH

O

O

OH

OH

OH

OH

O

Isorhamnetin (316.3 g/mol) Kaempferol-O-rhamnoside (432.4 g/mol)

Plants 2022, 11, x FOR PEER REVIEW 14 of 36 
 

 

21 

 

 

22 

O

OH

HO

OH

O

O

OH

OH

OHO

 

Isorhamnetin (316.3 g/mol) Kaempferol-O-rhamnoside (432.4 g/mol) 

23   

24  

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

 

Reynoutrin (434.3 g/mol) Quercitrin (448.4 g/mol) 

O

OH

HO

OH

O

OH

O

O

OH

HO

OH

O

O

OH

OH

OH

OH

O

Plants 2022, 11, x FOR PEER REVIEW 14 of 36 
 

 

21 

 

 

22 

O

OH

HO

OH

O

O

OH

OH

OHO

 

Isorhamnetin (316.3 g/mol) Kaempferol-O-rhamnoside (432.4 g/mol) 

23   

24  

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

 

Reynoutrin (434.3 g/mol) Quercitrin (448.4 g/mol) 

O

OH

HO

OH

O

OH

O

O

OH

HO

OH

O

O

OH

OH

OH

OH

O

Reynoutrin (434.3 g/mol) Quercitrin (448.4 g/mol)

Plants 2022, 11, x FOR PEER REVIEW 15 of 36 
 

 

25   

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

OH

 
26    

Myricetin 3-arabinoside (450.3 g/mol) Myricitrin (464.4 g/mol) 

27   

O

OH

O

OH

OH

OH

O

O

OH

OH

HO

HO

 

Quercimeritrin (464.4 g/mol) 

28   

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

OH  29   

O

OH

HO

OH

O

O

O
O

OH

OH

OH

OH
 

Isoquercitrin (464.4 g/mol) Isorhamnetin-3-O-glucoside (478.4 g/mol) 

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

OH

Plants 2022, 11, x FOR PEER REVIEW 15 of 36 
 

 

25   

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

OH

 
26    

Myricetin 3-arabinoside (450.3 g/mol) Myricitrin (464.4 g/mol) 

27   

O

OH

O

OH

OH

OH

O

O

OH

OH

HO

HO

 

Quercimeritrin (464.4 g/mol) 

28   

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

OH  29   

O

OH

HO

OH

O

O

O
O

OH

OH

OH

OH
 

Isoquercitrin (464.4 g/mol) Isorhamnetin-3-O-glucoside (478.4 g/mol) 

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

OH

Myricetin 3-arabinoside (450.3 g/mol) Myricitrin (464.4 g/mol)



Plants 2022, 11, 2796 13 of 30

Table 2. Cont.

Flavonol

Plants 2022, 11, x FOR PEER REVIEW 15 of 36 
 

 

25   

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

OH

 
26    

Myricetin 3-arabinoside (450.3 g/mol) Myricitrin (464.4 g/mol) 

27   

O

OH

O

OH

OH

OH

O

O

OH

OH

HO

HO

 

Quercimeritrin (464.4 g/mol) 

28   

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

OH  29   

O

OH

HO

OH

O

O

O
O

OH

OH

OH

OH
 

Isoquercitrin (464.4 g/mol) Isorhamnetin-3-O-glucoside (478.4 g/mol) 

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

OH

Quercimeritrin (464.4 g/mol)

Plants 2022, 11, x FOR PEER REVIEW 15 of 36 
 

 

25   

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

OH

 
26    

Myricetin 3-arabinoside (450.3 g/mol) Myricitrin (464.4 g/mol) 

27   

O

OH

O

OH

OH

OH

O

O

OH

OH

HO

HO

 

Quercimeritrin (464.4 g/mol) 

28   

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

OH  29   

O

OH

HO

OH

O

O

O
O

OH

OH

OH

OH
 

Isoquercitrin (464.4 g/mol) Isorhamnetin-3-O-glucoside (478.4 g/mol) 

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

OH

Plants 2022, 11, x FOR PEER REVIEW 15 of 36 
 

 

25   

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

OH

 
26    

Myricetin 3-arabinoside (450.3 g/mol) Myricitrin (464.4 g/mol) 

27   

O

OH

O

OH

OH

OH

O

O

OH

OH

HO

HO

 

Quercimeritrin (464.4 g/mol) 

28   

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

OH  29   

O

OH

HO

OH

O

O

O
O

OH

OH

OH

OH
 

Isoquercitrin (464.4 g/mol) Isorhamnetin-3-O-glucoside (478.4 g/mol) 

O

OH

HO

OH

OH

O

O
O

OH

OH

OH

OH

Isoquercitrin (464.4 g/mol) Isorhamnetin-3-O-glucoside (478.4 g/mol)

Plants 2022, 11, x FOR PEER REVIEW 16 of 36 
 

 

30   

O

O

O

OH

HO

OH

OH

O

OO

OH

OH

OH

OH

OH

HO

 

Rutin (610.5 g/mol) 

Flavone 

31  

 

32 

 

OHO

O

O

O

 

Apigenin (270.2 g/mol 3′,4′-dimethoxy-7-hydroxyflavone (298.2 g/mol) 

33 
34 

 

O

O

HO

OH

OH

Apigenin

Rutin (610.5 g/mol)



Plants 2022, 11, 2796 14 of 30

Table 2. Cont.

Flavone

Plants 2022, 11, x FOR PEER REVIEW 16 of 36 
 

 

30   

O

O

O

OH

HO

OH

OH

O

OO

OH

OH

OH

OH

OH

HO

 

Rutin (610.5 g/mol) 

Flavone 

31  

 

32 

 

OHO

O

O

O

 

Apigenin (270.2 g/mol 3′,4′-dimethoxy-7-hydroxyflavone (298.2 g/mol) 

33 
34 

 

O

O

HO

OH

OH

Apigenin

Plants 2022, 11, x FOR PEER REVIEW 16 of 36 
 

 

30   

O

O

O

OH

HO

OH

OH

O

OO

OH

OH

OH

OH

OH

HO

 

Rutin (610.5 g/mol) 

Flavone 

31  

 

32 

 

OHO

O

O

O

 

Apigenin (270.2 g/mol 3′,4′-dimethoxy-7-hydroxyflavone (298.2 g/mol) 

33 
34 

 

O

O

HO

OH

OH

Apigenin
Apigenin (270.2 g/mol) 3′,4′-dimethoxy-7-hydroxyflavone (298.2 g/mol)

Plants 2022, 11, x FOR PEER REVIEW 17 of 36 
 

 

 

 

Luteolin (286.2 g/mol) Diosmetin (300.3 g/mol) 

35    

36   

O

OH

O

O

O

O

O

O

O

 

Hispidulin (300.3 g/mol) Gardenin A (418.4 g/mol) 

37   

O

OH

O

OH

O

O

HO

OH

OH

HO

 

Apigenin 7-O-glucoside (432.4 g/mol) 

O

O

HO

OH

OH

OH

Luteolin

O

O

HO

OH

OCH3

OH

Diosmetin

O

OH

HO

OH

O

O

Plants 2022, 11, x FOR PEER REVIEW 17 of 36 
 

 

 

 

Luteolin (286.2 g/mol) Diosmetin (300.3 g/mol) 

35    

36   

O

OH

O

O

O

O

O

O

O

 

Hispidulin (300.3 g/mol) Gardenin A (418.4 g/mol) 

37   

O

OH

O

OH

O

O

HO

OH

OH

HO

 

Apigenin 7-O-glucoside (432.4 g/mol) 

O

O

HO

OH

OH

OH

Luteolin

O

O

HO

OH

OCH3

OH

Diosmetin

O

OH

HO

OH

O

O

Luteolin (286.2 g/mol) Diosmetin (300.3 g/mol)

Plants 2022, 11, x FOR PEER REVIEW 17 of 36 
 

 

 

 

Luteolin (286.2 g/mol) Diosmetin (300.3 g/mol) 

35    

36   

O

OH

O

O

O

O

O

O

O

 

Hispidulin (300.3 g/mol) Gardenin A (418.4 g/mol) 

37   

O

OH

O

OH

O

O

HO

OH

OH

HO

 

Apigenin 7-O-glucoside (432.4 g/mol) 

O

O

HO

OH

OH

OH

Luteolin

O

O

HO

OH

OCH3

OH

Diosmetin

O

OH

HO

OH

O

O

Plants 2022, 11, x FOR PEER REVIEW 17 of 36 
 

 

 

 

Luteolin (286.2 g/mol) Diosmetin (300.3 g/mol) 

35    

36   

O

OH

O

O

O

O

O

O

O

 

Hispidulin (300.3 g/mol) Gardenin A (418.4 g/mol) 

37   

O

OH

O

OH

O

O

HO

OH

OH

HO

 

Apigenin 7-O-glucoside (432.4 g/mol) 

O

O

HO

OH

OH

OH

Luteolin

O

O

HO

OH

OCH3

OH

Diosmetin

O

OH

HO

OH

O

O

Hispidulin (300.3 g/mol) Gardenin A (418.4 g/mol)

Plants 2022, 11, x FOR PEER REVIEW 17 of 36 
 

 

 

 

Luteolin (286.2 g/mol) Diosmetin (300.3 g/mol) 

35    

36   

O

OH

O

O

O

O

O

O

O

 

Hispidulin (300.3 g/mol) Gardenin A (418.4 g/mol) 

37   

O

OH

O

OH

O

O

HO

OH

OH

HO

 

Apigenin 7-O-glucoside (432.4 g/mol) 

O

O

HO

OH

OH

OH

Luteolin

O

O

HO

OH

OCH3

OH

Diosmetin

O

OH

HO

OH

O

O

Apigenin 7-O-glucoside (432.4 g/mol)



Plants 2022, 11, 2796 15 of 30

Table 2. Cont.

Flavone

Plants 2022, 11, x FOR PEER REVIEW 18 of 36 
 

 

38   

O

OH

O

OH

O

OH
O

HO

OH

OH

HO

O

 

Luteolin 7-glucuronide (462.4 g/mol) 

39    

40  

 

O

OH

O

OH

O

O

OH

OH

HO

O

O

OH

HO

HO

 

Vitexin (432.4 g/mol) Apigenin 7-O-neohesperidoside (578.5 g/mol) 

41   

O

OH

O

OH

O

OH
O

HO

OH

OH
O

OH

HO

HO

OH

 

Eriocitrin (596.5 g/mol) 

Anthocyanins 

O

O

O

HO

OH

OH

OH

OH

HO

HO

Vitexin

Luteolin 7-glucuronide (462.4 g/mol)

Plants 2022, 11, x FOR PEER REVIEW 18 of 36 
 

 

38   

O

OH

O

OH

O

OH
O

HO

OH

OH

HO

O

 

Luteolin 7-glucuronide (462.4 g/mol) 

39    

40  

 

O

OH

O

OH

O

O

OH

OH

HO

O

O

OH

HO

HO

 

Vitexin (432.4 g/mol) Apigenin 7-O-neohesperidoside (578.5 g/mol) 

41   

O

OH

O

OH

O

OH
O

HO

OH

OH
O

OH

HO

HO

OH

 

Eriocitrin (596.5 g/mol) 

Anthocyanins 

O

O

O

HO

OH

OH

OH

OH

HO

HO

Vitexin

Plants 2022, 11, x FOR PEER REVIEW 18 of 36 
 

 

38   

O

OH

O

OH

O

OH
O

HO

OH

OH

HO

O

 

Luteolin 7-glucuronide (462.4 g/mol) 

39    

40  

 

O

OH

O

OH

O

O

OH

OH

HO

O

O

OH

HO

HO

 

Vitexin (432.4 g/mol) Apigenin 7-O-neohesperidoside (578.5 g/mol) 

41   

O

OH

O

OH

O

OH
O

HO

OH

OH
O

OH

HO

HO

OH

 

Eriocitrin (596.5 g/mol) 

Anthocyanins 

O

O

O

HO

OH

OH

OH

OH

HO

HO

VitexinVitexin (432.4 g/mol) Apigenin 7-O-neohesperidoside (578.5 g/mol)

Plants 2022, 11, x FOR PEER REVIEW 18 of 36 
 

 

38   

O

OH

O

OH

O

OH
O

HO

OH

OH

HO

O

 

Luteolin 7-glucuronide (462.4 g/mol) 

39    

40  

 

O

OH

O

OH

O

O

OH

OH

HO

O

O

OH

HO

HO

 

Vitexin (432.4 g/mol) Apigenin 7-O-neohesperidoside (578.5 g/mol) 

41   

O

OH

O

OH

O

OH
O

HO

OH

OH
O

OH

HO

HO

OH

 

Eriocitrin (596.5 g/mol) 

Anthocyanins 

O

O

O

HO

OH

OH

OH

OH

HO

HO

Vitexin

Eriocitrin (596.5 g/mol)

Anthocyanins

Plants 2022, 11, x FOR PEER REVIEW 19 of 36 
 

 

42 

 

43  

 

Cyanidin (287.2 g/mol) Petunidin (317.3 g/mol) 

44 

 
45    

Peonidin (301.3 g/mol) Delphinidin (338.7 g/mol) 

46 

 

O

OH

HO

OH

OH

+

 

47    

O

OH

HO

OH

O

OH

O

+

 

Pelargonidin (271.2 g/mol) Malvidin (331.3 g/mol) 

O

OH

HO

OH

OH

OH

Cyanidin Petunidin

O

OH

HO

OH

OH

OH

OCH3

Peonidin

O

OH

HO

OH

OH

OCH3

O

OH

HO

OH

OH

OH

OH

Delphinidin

Plants 2022, 11, x FOR PEER REVIEW 19 of 36 
 

 

42 

 

43  

 

Cyanidin (287.2 g/mol) Petunidin (317.3 g/mol) 

44 

 
45    

Peonidin (301.3 g/mol) Delphinidin (338.7 g/mol) 

46 

 

O

OH

HO

OH

OH

+

 

47    

O

OH

HO

OH

O

OH

O

+

 

Pelargonidin (271.2 g/mol) Malvidin (331.3 g/mol) 

O

OH

HO

OH

OH

OH

Cyanidin Petunidin

O

OH

HO

OH

OH

OH

OCH3

Peonidin

O

OH

HO

OH

OH

OCH3

O

OH

HO

OH

OH

OH

OH

Delphinidin

Cyanidin (287.2 g/mol) Petunidin (317.3 g/mol)



Plants 2022, 11, 2796 16 of 30

Table 2. Cont.

Anthocyanins

Plants 2022, 11, x FOR PEER REVIEW 19 of 36 
 

 

42 

 

43  

 

Cyanidin (287.2 g/mol) Petunidin (317.3 g/mol) 

44 

 
45    

Peonidin (301.3 g/mol) Delphinidin (338.7 g/mol) 

46 

 

O

OH

HO

OH

OH

+

 

47    

O

OH

HO

OH

O

OH

O

+

 

Pelargonidin (271.2 g/mol) Malvidin (331.3 g/mol) 

O

OH

HO

OH

OH

OH

Cyanidin Petunidin

O

OH

HO

OH

OH

OH

OCH3

Peonidin

O

OH

HO

OH

OH

OCH3

O

OH

HO

OH

OH

OH

OH

Delphinidin

Plants 2022, 11, x FOR PEER REVIEW 19 of 36 
 

 

42 

 

43  

 

Cyanidin (287.2 g/mol) Petunidin (317.3 g/mol) 

44 

 
45    

Peonidin (301.3 g/mol) Delphinidin (338.7 g/mol) 

46 

 

O

OH

HO

OH

OH

+

 

47    

O

OH

HO

OH

O

OH

O

+

 

Pelargonidin (271.2 g/mol) Malvidin (331.3 g/mol) 

O

OH

HO

OH

OH

OH

Cyanidin Petunidin

O

OH

HO

OH

OH

OH

OCH3

Peonidin

O

OH

HO

OH

OH

OCH3

O

OH

HO

OH

OH

OH

OH

Delphinidin
Peonidin (301.3 g/mol) Delphinidin (338.7 g/mol)

Plants 2022, 11, x FOR PEER REVIEW 19 of 36 
 

 

42 

 

43  

 

Cyanidin (287.2 g/mol) Petunidin (317.3 g/mol) 

44 

 
45    

Peonidin (301.3 g/mol) Delphinidin (338.7 g/mol) 

46 

 

O

OH

HO

OH

OH

+

 

47    

O

OH

HO

OH

O

OH

O

+

 

Pelargonidin (271.2 g/mol) Malvidin (331.3 g/mol) 

O

OH

HO

OH

OH

OH

Cyanidin Petunidin

O

OH

HO

OH

OH

OH

OCH3

Peonidin

O

OH

HO

OH

OH

OCH3

O

OH

HO

OH

OH

OH

OH

Delphinidin

Plants 2022, 11, x FOR PEER REVIEW 19 of 36 
 

 

42 

 

43  

 

Cyanidin (287.2 g/mol) Petunidin (317.3 g/mol) 

44 

 
45    

Peonidin (301.3 g/mol) Delphinidin (338.7 g/mol) 

46 

 

O

OH

HO

OH

OH

+

 

47    

O

OH

HO

OH

O

OH

O

+

 

Pelargonidin (271.2 g/mol) Malvidin (331.3 g/mol) 

O

OH

HO

OH

OH

OH

Cyanidin Petunidin

O

OH

HO

OH

OH

OH

OCH3

Peonidin

O

OH

HO

OH

OH

OCH3

O

OH

HO

OH

OH

OH

OH

Delphinidin

Pelargonidin (271.2 g/mol) Malvidin (331.3 g/mol)

Plants 2022, 11, x FOR PEER REVIEW 20 of 36 
 

 

48    49   

O

OH

HO

OH

O

O

O

OH OH

OH

OH

+

 

Delphinidin 3-glucoside (465.4 g/mol) Peonidin-3-glucoside (463.4 g/mol) 

50   

O

OH

HO

OH

OH

O

O

OH

OH

OH

OH

+

 

51    

Cyanidin 3-glucoside (484.8 g/mol) Pelargonidin 3-glucoside (433.4 g/mol) 

O

OH

HO

OH

OH

O

O

OH

OH

OH

OH

OH

+

O

OH

HO

OH

O

O

OH OH

OH

OH

+

Plants 2022, 11, x FOR PEER REVIEW 20 of 36 
 

 

48    49   

O

OH

HO

OH

O

O

O

OH OH

OH

OH

+

 

Delphinidin 3-glucoside (465.4 g/mol) Peonidin-3-glucoside (463.4 g/mol) 

50   

O

OH

HO

OH

OH

O

O

OH

OH

OH

OH

+

 

51    

Cyanidin 3-glucoside (484.8 g/mol) Pelargonidin 3-glucoside (433.4 g/mol) 

O

OH

HO

OH

OH

O

O

OH

OH

OH

OH

OH

+

O

OH

HO

OH

O

O

OH OH

OH

OH

+

Delphinidin 3-glucoside (465.4 g/mol) Peonidin-3-glucoside (463.4 g/mol)



Plants 2022, 11, 2796 17 of 30

Table 2. Cont.
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Cyanidin 3-O-rutinoside (595.5 g/mol)

(Authors 2022).

Plantagoside (flavanone), hesperetin 7-O-glucuronide (flavanonol), apigenin (flavone),
taxifolin (flavanone), and isorhamnetin 3-O-glucoside (flavonol) were other flavonoids
identified in the extracts of the studied fruits, both whole, dried, or lyophilized. Pulps,
commonly used in product development, were characterized by Garcia et al. [4] when eval-
uating cambuí accessions, Alves et al. [56] when studying gabiroba fruits, Dantas et al. [70]
when analyzing jabuticaba, and Sousa et al. [87] when studying jambolan, identifying
anthocyanins, catechins, procyanidins, kaempferol, diosmetin, and quercetin, among other
compounds.

2.2. Health Effects

Diets rich in industrialized, refined products, high in sugar, fat, and lacking in vegeta-
bles are one of the main risk factors for the populations’ health, since they are associated
with delicate health conditions, favoring cardiovascular diseases, diabetes, stroke, obesity,
and certain types of cancers, among others [92]. As such, scientific works have focused on
the study of the bioactive content of fruits and vegetables, to make them available as an
option for consumption and, also, to report their positive health effects, mainly associated
with the prevention of chronic non-communicable diseases (Table 3).
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Table 3. Synthesis of selected works with the main flavonoids identified in extracts and their positive
health effects.

References Experiment Health Effects

Araçá

[3]

Lyophilized araçá samples (250 mg) were stirred in 10 mL of ethanol (50 %) (1:40,
w/v). The extracted araçá samples (2.5 mg/mL) were added separately to the

lipase mixture. Absorbance was recorded in a microplate reader and compared
with that of the lipase mixture without any extract (control).

Beneficial for the treatment of
obesity

[42]

Adult male albino Wistar rats weighing 120–140 g body weight (b.wt) were
divided into experimental groups, as follows: (1) control group—received 0.5%

carboxy methyl cellulose, orally; (2) paracetamol group—rats were fasted for 18 h
and paracetamol was orally administered in a single dose of (600 mg/kg); (3)

silymarin (50 mg/kg b.wt) and paracetamol; (4–9) extract or formula and
paracetamol were pre-treated with the chloroform–methanol (80:20) extract of P.

guajava L. (PG) and P. cattleianum (PC) (250 and 500 mg/kg b.wt) and their
formulae PG and PC (500 mg/kg b.wt), two weeks before induction of hepatic

damage.

Antioxidant and
hepatoprotective activities

[93]

Forty-eight adults male Wistar rats were obtained and divided into experimental
groups, as follows: (1) control/vehicle; (2) control/P. cattleianum; (3)

dexamethasone/vehicle; (4) dexamethasone/P. cattleianum. Groups 1 and 3
received distilled water and groups 2 and 4 received 200 mg/kg/day P.

cattleianum.

Antioxidant,
antihyperglycemic, and
antidyslipidemic effects

[94]
For the evaluation of the anti-hyperglycaemic and antioxidant potential of fruit
extracts, in vitro assays were performed by applying spectrophotometrics. The
IC50 values were calculated using at least five concentrations for each extract.

Antihyperglycemic,
antioxidant properties, and
α-glucosidase inhibitors

Gabiroba

[5]

Rats were divided into groups of six animals, as follows: (1) bormal rats that
received 1% tween 80 solution in saline (0.5 mL/100 g bw); (2) hyperglycemic rats

that received glucose solution (4 g/kg; 8.9 M); (3)–(5) hyperglycemic rats that
received glucose solution plus C. xanthocarpa seeds extract solution (200, 400, or
800 mg/kg, respectively); (6) Hyperglycemic rats treated with glibenclamide (10

mg/kg) and glucose solution, by gavage.

Antidiabetic and
hypolipidemic potential

Jabuticaba

[37]

Cell lineages of prostate (DU-145) and breast cancers (MDA-MB-231) were plated
at a concentration of 9 × 104 cells per well (well trays = 96) and filled with 100 µL

of culture medium (with fetal bovine serum—FBS). The culture medium was
changed, and the cells were subjected to treatments with jabuticaba peel extracts at

concentrations of 2.5, 25, 50, and 250 µg.mL−1. Cells were treated with
doxorubicin and the extracts were diluted in culture medium without FBS, and the

final concentration of water/dimethylsulfoxide (DMSO) was at most 0.2% to
avoid harming cellular viability. Control groups consisted of cells cultivated in

culture medium with DMSO and without FBS.

Antiproliferative activity in
tumor cell lines

[95]

The aqueous and methanolic extracts of jabuticaba skin flour were previously
incubated with the venoms of Bothrops moojeni and Lachesis muta muta at the

proportions of 1:0.5; 1:1; 1:2.5, and 1:5 (venom:extract, w:w). Tubes containing
citrated plasma (200 µL) were kept in a 37 ◦C bath. Incubated samples were added

to the plasma and time was recorded until the formation of the clot. Controls
containing only the extracts were also carried out.

Potential antigenotoxic and
modulator of processes
related to hemostasis

[96]

Twenty-week-old female New Zealand rabbits (weighing
2.5–3.0 kg) were randomly assigned to five experimental groups (n = 6/group), as
follows: (1) naive (the rabbits received a placebo [distilled water] and were treated
with vehicle [filtered water]); (2) negative control (the rabbits received doxorubicin
and were treated with vehicle [filtered water]); (3) EEPC 75 (the rabbits received
doxorubicin and were treated with 75 mg/kg EEPC); (4) EEPC 150 (the rabbits

received doxorubicin and were treated with 150 mg/kg
EEPC); (5) ENAL 5 (the rabbits received doxorubicin and were treated with 5

mg/kg enalapril).

Cardioprotective effects

[97]

Stock solutions at 1 mg/mL of ethanolic extracts of leaves (EEL) and branches
(EEB) were prepared in MeOH and then diluted to concentrations between 1000
and 31.25 µg/mL. The measurements were obtained at 0–15 min intervals during
2 h of reaction, and the plate was incubated at 45 ◦C. The same was carried out for

positive controls, rutin and quercetin, and the negative control (vehicle).

Anti-inflammatory and
antioxidant properties
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Table 3. Cont.

References Experiment Health Effects

Jambolan

[98]

Male Wistar rats were used, at 60 days of age, and weighing 200–270 g.
They were divided into five groups, as follows: (1) normoglycemic controls

(CONT, n = 8); (2) diabetic controls (D-CONT, n = 8); (3) diabetics treated with a
crude hydroalcoholic extract of S. cumini leaves (D+EBH, n = 8); (4) trained

diabetics (D+TAC, n = 8) and (5) diabetics treated with the extract and trained
(D+EBH+TAC, n = 5).

Protection against DNA
damage

[99]
Healthy female Swiss mice (Mus musculus) 10–12 weeks of age and weighing

30–35 g were given myricetin at 25 mg/kg or 50 mg/kg or vehicle control for three
consecutive days through oral gavage.

Platelet thiol isomerase
inhibitors (PDI and ERp5)

activities

[100]
Physicochemical, ADMET (absorption, distribution, metabolism, excretion, and

toxicity), and druggability properties of myricetin—a key flavonoid compound in
S. cumini—have been evaluated.

Regulation of metabolic
inflammation

[101]

The porcine pancreatic lipase (7.5 mg/mL) and 0.2
mM 4-MUO were prepared in 0.1 M PBS. To determine the lipase activity, the
solution of anthocyanin-rich extract (5 µL) was mixed with 50 µL of 4-MUO

solution. Then, the enzyme solution (45 µL) was added to the mixture to initiate
the reaction. The mixture was immediately incubated before adding 100 µL of 0.1
M sodium citrate to stop the reaction. The absorbance of fluorescence was read at
the excitation wavelength of 355 nm and 460 nm. Orlistat in 1% DMSO was used

as a positive control.

Interference with the
absorption of lipids and

cholesterol

[102]
Ethanolic extract of S. cumini leaves (EE-SCL)/quercetin (also used as a positive

control) were diluted in ethanol at concentration of 30 mg mL-1 for IC50
assessment and phosphate buffer was used as negative control.

Potential against oxidation,
glycation, inflammation, and

digestive enzyme catalysis

[103]

The in vitro anti-inflammatory activities of S. cumini fruit extracts were evaluated
using membrane stabilization, egg albumin denaturation, and bovine serum

albumin denaturation assays. The in vivo anti-inflammatory activity was also
assessed, using murine models of carrageenan, formaldehyde, and PGE2 induced

paw edema.

Anti-inflammatory properties
in vivo and in vitro

[104]

Ethanolic extract of S. cumini at initial concentrations of 125, 250, 500, 750, and
1000 mg/mL, rivastigmine (100 mg/mL, positive control) or water (control) and
10 mL of acetylcholinesterase (1 U/mL) were pipetted in triplicate, in microplates

containing 5,5-dithiobis-2-nitrobenzoic acid (DTNB, 0.33 mM) in sodium
phosphate buffer and incubated. After that, 10 mL of acetylthiocholine iodide was

added to each sample with a multichannel pipette and the absorbance was
monitored at 412 nm for 20 min in a spectrophotometer.

In vitro inhibition of
acetylcholinesterase and

monoamine oxidase

[6]

Forty Swiss albino mice of both genders were divided into eight groups (five per
group), as follows: a control group that received normal saline), indomethacin

group (100 mg/kg), dichloromethane, methanol, and 50% methanol (treated with
100 and 200 mg/kg extract’s doses). After intraperitoneal administration of the

test sample, 250 µL of 2.5% formalin solution was injected into plantar
aponeurosis surface of the right hind paw of each mice and the licking responses
of the animals were observed at early neurogenic pain phase after 0–5 min and the

later anti-inflammatory pain stage after 20–25 min.

Antinociceptive effect and
anti-inflammatory potential

(Authors 2022).

Insulin resistance (IR) may be a risk factor for the development of cardiovascular
disease and steatosis, which is associated with abdominal obesity, type 2 diabetes, and
other syndromes. This pathology may contribute to increased oxidative stress and damage
to cell membranes and other functional components, such as proteins and lipids [93].

Due to these issues, Cardoso et al. [93] evaluated the effects of araçá extracts on
metabolic parameters and markers of hepatic oxidative stress in an animal model of
dexamethasone-induced insulin resistance. The authors observed that anthocyanins were
present in the evaluated extracts and that they had a preventive potential against hyper-
glycemia and hypertriglyceridemia caused by IR, with an antioxidant and protective effect
on the formation of reactive oxygen species.

In addition to the properties of araçá, Vinholes et al. [94] concluded that extracts from
the genotypes of yellow and red araçás are excellent sources of bioactive compounds,
especially anthocyanins, which show promising inhibition of α-glucosidase and help to
lower blood glucose in patients with type 2 diabetes mellitus. In turn, Pereira et al. [3]
quantified the bioactive compounds present in different parts of the araçá fruit, and evalu-
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ated their antioxidant activity and lipase inhibition properties; according to the authors,
araçá fruit extracts can be beneficial for the treatment of obesity. Saber et al. [42] verified the
efficacy of P. guajava and P. cattleianum leaf extracts and their nano-liposomes in improving
paracetamol-induced hepatotoxicity in rats.

Regginato et al. [5] evaluated gabiroba seed extract, in which it was possible to identify
the compound 5,7-dimethoxyflavone, one of the main flavones with biological activities,
which include anti-diabetes, anti-obesity, and hypolipidemic activity. According to Arcari
et al. [56], gabiroba fruits showed antidiabetic and antioxidant effect properties and can
potentially be adopted as part of dietary strategies in the management of the early stages of
type 2 diabetes and associated complications.

The antigenotoxic potential of jabuticaba peel extracts was investigated in the work
by Marques et al. [95] as inhibitors of phospholipases A2 and proteases. These enzymes
are present in snake venom and can act on various components of blood clotting. Results
showed aqueous and methanolic extracts were able to modulate the enzymatic activity of
snake venom, inhibiting phospholipases and proteases (mainly of the thrombin type). This
is due to the presence of phenolic compounds, capable of interacting with catalytic sites of
enzymes, leading to a decrease or inhibition of their activities.

Hydroalcoholic extracts of jabuticaba peels were also evaluated in the work by Romão
et al. [96]. The authors studied the possible cardioprotective effects of the material in rabbits
in the doxorubicin-induced heart failure model. It can be verified that the treatment with
P. cauliflora extracts induced a cardiorenal protective response, preventing hemodynamic,
functional, and remodeling changes. Paula et al. [97] investigated the antioxidant and
anti-inflammatory potential of leaves and branches of this same plant and highlighted the
great biological activity of these plant material, which are often underutilized and little
reported in the literature.

Anthocyanin-rich fractions extracted from jambolan were evaluated in work by Cham-
nansilpa et al. [101]. The results of this study showed interference of these flavonoids
in digestion steps and the absorption of lipids, with inhibition of pancreatic lipase and
cholesterol esterase. Additionally, it was found that all extracts could bind primary and
secondary bile acids and reduce cholesterol solubility in artificial micelles.

Anti-inflammatory and antinociceptive properties were demonstrated by Qamar
et al. [103] and Qamar et al. [6] when evaluating extracts from jambolan fruits in in vivo
assays using mice. Anti-inflammatory activity is credited due to synergistic effects of
anthocyanins, phenolic acids, and other flavonoids, identified and quantified in S. cumini
fruit extracts employing HPLC.

The same flavonoid compound may be present in different parts of the plant, as is
the case of myricetin, identified in the jambolan fruit in work by Soorya et al. [100] and
in its leaves in the studies by Baldissera et al. [98] and Gaspar et al. [99]. Myricetin was
associated with potential antiplatelet effects, revealing a new therapeutic perspective for
the treatment of thrombotic diseases [99]

Baldissera et al. [98] evaluated functional capacity, phytochemical parameters, oxida-
tive stress, and DNA damage using a crude hydroalcoholic extract of jambolan leaves in
diabetic rats. The authors observed that, due to the presence of myricetin glucosides, the
extract showed potential hypolipidemic, hypoglycemic, and protective activities against
oxidative stress and DNA damage. Still evaluating jambolan leaves, Franco et al. [102]
and Borba et al. [104] demonstrated that the antioxidant actions of extracts made with this
constituent fraction were associated with the prevention of oxidative processes, glycation,
and other inflammatory processes.

2.3. Product Development and Flavonoid Preservation

Fruit production is one of the most prominent activities in the Brazilian market, espe-
cially when considering the development of new products resulting from the processing
of these raw materials [105], as Brazil is currently the third largest producer of fruit in the
world, with an average annual production of 45 million metric tons [106].
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Fruit growing activity can generate a multiplier effect, with the possibility of mov-
ing the economy and promoting the development of stagnant places with few viable
resources [107]. Fruit processing aims to minimize seasonality issues and the high perisha-
bility of these raw materials, seeking to increase widespread consumption in regions of low
production and to improve the conservation conditions of these foods [108].

Linked to these conditions and aiming at the production of sensorially accepted
foods with added nutritional value, scientific research promotes the development of juices,
purees, jams, ice creams and/or other dairy desserts, and fermented, protein, or isotonic
drinks, aiming at the addition of natural ingredients and, consequently, the incorporation
of bioactive compounds, such as flavonoids [106,108–111].

Table 4 summarizes the data referring to the selected articles that had an approach
focused on the development and characterization of food products made with the respective
fruits researched by this integrative review. There were no articles found approaching this
theme for the gabiroba fruit.

Table 4. Synthesis of selected works with the main flavonoids identified in extracts and their positive
health effects.

Fruit Products Flavonoids References

Araçá Purees Catechin [106]

Cambuí
Juice

Anthocyanins [109]Jams
Fermented drink

Jabuticaba

Microcapsule Anthocyanins [112]
Ice cream Anthocyanins [110]

Protein drink Anthocyanins [113]
Isotonic drink Anthocyanins [114]

Purees Cyanidin hexoside, kaempferol hexoside, and quercetin
derivatives [106]

Juice
Cyanidin-3-glucoside,

quercetin derivatives, rutin, kaempferol, and
quercimerithrin

[108]

Wine Anthocyanins [115]
Flakes Anthocyanins [116]

Fermented drink Anthocyanins [111]

Liqueur Peonidin-3-glucoside and
cyanidin-3-glucoside [117]

Jambolan

Wine
Anthocyanins, delphidin-3-glucoside,

petunidin-3,5-diglucoside, delphinidin-3,5-diglucoside,
peonidin 3,5-diglucoside, and cyanidin-3,5-diglucoside

[118,119]

Juice

Delphinidin-3,5-diglucoside, cyanidin-3,5-diglucoside,
petunidin-3,5-diglucoside, peonidin-3,5-diglucoside,
malvidin-3,5-diglucoside, delphinidin-3-glucoside,
cyanidin-3- glucoside, and malvidin-3-glucoside

[120]

Tea Anthocyanins [121]
Dairy dessert Anthocyanins [122]

(Authors 2022).

Preparation of juices was proposed in the work of Rybka et al. [109] when using
cambuí, in Geraldi et al. [108] when using jabuticaba, and in Carvalho et al. [120] when using
jambolan. Eight anthocyanins were detected in jambolan juice, namely delphinidin-3,5-
diglucoside, cyanidin-3,5-diglucoside, petunidin-3,5-diglucoside, peonidin-3,5-diglucoside,
malvidin-3,5-diglucoside, delphinidin-3-glucoside, cyanidin-3-glucoside, and malvidin-3-
glucoside.

Anthocyanins were also present in cambuí juice, being quantified (311.7 mg) and
expressed in mg of malvidin-3-glucoside per 100 mL of product [109]. In jabuticaba juice,



Plants 2022, 11, 2796 23 of 30

in addition to the presence of anthocyanins, other flavonoids were identified, such as
quercetin derivatives, rutin, quercimerithrin, and kaempferol [108].

Ice cream and dairy desserts are products much appreciated by the population, mainly
due to their sensory and nutritional characteristics, since they appeal to a diverse audi-
ence and because of the presence in their formula of several nutrients, such as proteins,
carbohydrates, lipids, calcium, phosphorus, and other minerals [110,123].

Considering this fact, Böger et al. [110] quantified the content of anthocyanins in ice
cream, resulting in 10.75 mg of cyanidin-3-glucoside in 100 g of product added with 15% of
jabuticaba peel extract. Lino et al. [122], when evaluating the effect of thermosonication on
the concentrations of manomeric anthocyanins in dairy desserts developed with jambolan,
observed that the process had no significant effect on the content of these constituents.

According to Neves et al. [117], alcoholic beverages comprise the most popular and
accepted processed products by the population. Knowledge of the chemical profile, an-
tioxidant capacity, and levels of amino acids and organic acids contribute to intensifying
the popularity of these beverages and, therefore, the flavonoids which compose them.
Anthocyanins were the group of flavonoids identified in wines [115,118,119], liqueurs [117]
and other alcoholic beverages [109], mainly by their glycosidic derivatives. Anthocyanins
were also quantified in protein drinks (average of 1.6 mg/100 g) and in isotonic drinks
(average of 2.61 mg of cyanidin-3-glucoside in 100 mL) [113,114].

Frozen fruit purees are products widely used in the preparation of other foods, due to
their nutritional and functional characteristics, since they are rich in phenolic compounds,
especially flavonoids [106]. Stafussa et al. [106] evaluated the phenolic content and bio-
logical properties of 10 commercial frozen fruit purees, including araçá and jabuticaba.
Flavonoids, such as cyanidin, kaempferol, and quercetin rhamnoside and quercetin were
found in jabuticaba purees, while catechin was found in araçá products.

Tea, in general, is one of the most consumed beverages in the world, being a rich
source of flavonoids, mainly due to the use of different parts of the plant in the product
development, whether including leaves, stems, rhizomes or fruits [124]. Sari et al. [121]
proposed the elaboration of teas, produced from jambolan peel, and evaluated the antioxi-
dant and sensory properties of this beverage. It was observed that the product prepared
at 50 ◦C showed high concentrations of anthocyanins and good preference for the color
attribute, a parameter associated with the presence of these natural pigments.

Cambuí and jabuticaba processing by-products were used by Rybka et al. [109] and
Rodrigues et al. [112] for the development of jellies and microcapsules, respectively, with
the microcapsules applied in gelatin, evaluating the color stability of the product and its
sensory acceptance. The main flavonoids quantified in these materials were anthocyanins,
as well as in flaked jabuticaba, obtained by rotating cylinder drying in the work by Nunes
et al. [116].

3. Methodology

This integrative review consists of a study based on the collection and analysis of
scientific works related to the theme “Flavonoids in plants of the Myrtaceae family”,
elaborated from the reading of online journals. The study presented the following steps:
(1) formulation of the guiding question; (2) definition of search methods; (3) selection
of scientific works; (4) analysis and evaluation of the studies included in the review;
(5) presentation of the synthesis of the knowledge produced and published.

A guiding question was proposed while conducting this study, namely “What are the
main flavonoids found in certain plants of the Myrtaceae family?”. Data collection took
place during the months of February and May 2022 in the following databases: Science
Direct, Google Scholar, and Scielo. Basic descriptors used in the research process were as
follows: Flavonoid AND Myrtaceae, in addition to specific terms for each plant species, as
shown in Table 5. For the Scielo database, the terms Flavonoid AND Myrtaceae were not
employed due to greatly restricting the number of results. The same issue occurred with
the term Myrtaceae for searches in the Science Direct database.
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Table 5. Synthesis of selected works with the main flavonoids identified in extracts and their positive
health effects.

Database Search Strategy Number of Works

Google Scholar

Class of flavonoid AND Myrtaceae family AND Jambolão OR Syzygium cumini
Class of flavonoid AND Myrtaceae family AND Jabuticaba OR Plinia cauliflora

Class of flavonoid AND Myrtaceae family AND Cambuí OR Myrciaria floribunda
Class of flavonoid AND Myrtaceae family AND Araçá OR Psidium cattleianum
Class of flavonoid AND Myrtaceae family AND Gabiroba OR Campomanesia

xanthocarpa

1751

Scielo

(Jambolão) OR (Syzygium cumini)
(Jabuticaba) OR (Plinia cauliflora)

(Cambuí) OR (Myrciaria floribunda)
(Araçá) OR (Psidium cattleianum)

(Gabiroba) OR (Campomanesia xanthocarpa)

121

Science
Direct

Jambolão OR Syzygium cumini AND flavonoids
Jabuticaba OR Plinia cauliflora AND flavonoids

Cambuí OR Myrciaria floribunda AND flavonoids
Araçá OR Psidium cattleianum AND flavonoids

Gabiroba OR Campomanesia xanthocarpa AND flavonoids

644

(Authors 2022).

The following inclusion criteria were defined: studies published in the databases, in
the period between 2016 to 2022, presented in full text, in English, Portuguese, or Spanish,
and whose title and/or abstract referred to the topic of flavonoids in plants of the Myrtaceae
family, such as Araçá (P. cattleianum), Cambuí (M. floribunda), Gabiroba (C. xanthocarpa),
Jabuticaba (P. cauliflora), and Jambolan (S. cumini).

Initially, a critical and reflective reading of the titles and abstracts was performed,
selecting those that met the defined inclusion criteria. The second stage of the study
comprised a complete reading of the selected articles, extracting from them the evidence
related to flavonoids in each species studied. In this phase, for better organization of the
analysis through the exploratory reading of each article, those that presented elements of
interest were identified; however, at this step of the process, some scientific review works
were also excluded. The selection of scientific studies over the years in relation to the
evaluated fruits were graphically represented by a bubble chart developed in Microsoft
PowerPoint (2013).

4. Conclusions

It was, therefore, possible to observe the importance of plants in the Myrtaceae family
in terms of their phytochemical composition in relation to flavonoids, positive health effects,
and the possibilities for their use in product development. A more significant number of
scientific works associated with jambolan and jabuticaba were selected, with in vivo and
in vitro experiments demonstrating these raw materials’ bioactive potential. This way, an
association was possible with specific health benefits, such as antioxidant, cardioprotective,
antidiabetic, and anti-inflammatory activities.

The preservation of flavonoids in jams, juices, wines, and other foods can also be
observed, with anthocyanins being the predominant chemical class. Additionally, the inte-
grative review employment as a methodology for this study proved relevant for achieving
the objective. It guides the research practice and encompasses several scientific works on a
subject.
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