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Abstract: Plant functional traits (PFTs) can reflect the response of plants to environment, objectively
expressing the adaptability of plants to the external environment. In previous studies, various
relationships between various abiotic factors and PFTs have been reported. However, how these
factors work together to influence PFTs is not clear. This study attempted to quantify the effects
of topographic conditions, soil factors and vegetation structure on PFTs. Four categories of vari-
ables were represented using 29 variables collected from 171 herb plots of 57 sites (from different
topographic and various herb types) in Xindian SWDP. The partial least squares structural equation
modeling showed that the topographic conditions and soil properties also have a direct effect on
plant functional traits. Among the topographic conditions, slope (SLO) has the biggest weight of
0.629, indicating that SLO contributed the most to plant functional traits and vegetation structure.
Among soil properties, maximum water capacity (MWC) contributes the most and is followed by
soil water content (SWC), weighted at 0.588 and 0.416, respectively. In a word, the research provides
new points into the quantification of the correlation between different drivers that may be impor-
tant for understanding the mechanisms of resource utilization, competition and adaptation to the
environment during plant recovery.

Keywords: plant functional traits; plants diversity; soil properties; random forest algorithm; PLS-SEM

1. Introduction

The Soil and Water Conservation Demonstration Park (SWDP) is a major innovation
of soil and water conservation in China. The ecosystem functions of SWDP include soil
and water loss prevention, climate improvement, resource protection, etc., however, with
the progress of the times, the goal of SWDP is not only limited to the improvement of park
ecology through planting vegetation and construction projects but also plant restoration
should become the focus of research. In order to better understand the role of vegetation
in soil and water conservation projects, the changes of plant functional traits should not
be ignored. The construction of Xindian SWDP can be traced back to 1952. After 68 years
of continuous management, the vegetation coverage of the park has recovered from 5%
to the current 75% and great changes have taken place in the ecology of the park during
the 68 years of continuous management. Therefore, the study of plant functional traits
reflecting the ecosystem change strategy is very important for soil and water conservation
and restoration development.

As the largest terrestrial ecosystem, grassland ecosystem mainly distributes in ecologi-
cally fragile areas due to their special functional traits and strategies [1]. Functional traits
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are biological attributes that directly or indirectly affect species fitness and endow plants
with high adaptability to environmental changes [2,3]. Functional trait variability allows
plants to minimize their building costs and maximize functional efficiency. Therefore, to
ascertain plant functioning and their ecological strategies in soil and water conservation
measures, it is critical to explore how functional traits vary across different measures [4],
especially relevant under the ongoing climatic change scenario. For instance, Scots pine
(Pinus sylvestris L.) has the ability to adjust its leaf/sapwood area ratio, leaf-specific hy-
draulic conductivity and total leaf area in response to drought [5].

The functional traits of grassland communities vary greatly due to latent influencing
factors, such as topographic conditions, soil properties and plant diversity [6]. On the one
hand, habitat heterogeneity, due to changes in environmental factors and topography, will
lead to the differences in grassland composition [7]. For example, temperature, humidity
and altitude will affect grassland vegetation population and change functional traits [8].
On the other hand, there is a complex relationship between soil properties and plant. Soil
which controls water and nutrients is the most critical condition for plant growth [9,10].
Soil water content is also considered to be the main factor in determining the composition
of grassland vegetation [11]. Lush plants also feed back to soil nutrients and avoid soil
erosion through their leaves and roots [12,13]. In addition, high vegetation coverage will
create a microclimate through changes to the environment temperature and humidity and
then affect soil properties [14]. In recent years, correlation or causation was explained
among plant functional traits and the influencing factors. However, how these factors work
together to influence plant functional traits and how they interact with each other remains
unclear [15]. Hence, to resolve this major problem, the research should quantify the factors
that impact on plant functional traits.

Four categories of variables were represented using 29 different observational variables
collected from 171 plots of 57 sites in Xindian National Soil and Water Conservation
Demonstration Park. We used random forest (RF) algorithm to identify critical indicators
of plant functional traits. The RF is a machine learning classification method that has been
demonstrated as an efficient algorithm to obtain key factors [16]. Moreover, structural
equation modeling (SEM) was used to quantify the influence of these factors on plant
functional traits [17]. In this research, we employed the partial least squares structural
equation modeling (PLS-SEM). By applying these methods, the main objectives of this
study were as follows: (a) Select and quantify appropriate plant functional traits in the
study area; (b) Discuss the interaction between topographic conditions, soil properties
and plant diversity affecting plant functional traits; (c) Evaluate the effects of topographic
conditions and diversity indexes on plant functional traits. The study on the above issues
is helpful to understand the status quo and change rules of plant functional traits in the
special ecosystem of Xindian National Soil and Water Conservation Demonstration Park;
it is of great significance to understand the mechanism of plant community construction
under the interaction of different factors.

2. Materials and Methods
2.1. Study Area

Xindian Soil and WATER Conservation Demonstration Park, located on the left bank
of the middle reaches of Wuding River, was built in 1952. It covers an area of 1.44 km2

and is all composed of hills. The terrain is very broken, with 31 gullies that are 200 m long
and cultivated land above 25 degrees accounting for 49% of the total cultivated land area
(Figure S1). According to the observed data in 1952, the annual average soil loss amount
was 19,900 t. Since 1952, 24 silt DAMS have been built in the demonstration park. At
present, the control degree (through engineering measures and vegetation engineering) of
the demonstration park has reached 80%, the forest and grass coverage rate has promoted
from 5% to 75% and the sand blocking rate has reached 98%.

The soil texture is sandy loam with dense gullies, which has typical loess hilly and
gully landform (Figure 1). It is a temperate continental semi-arid climate, with a monthly
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mean temperature, ranging from −7.5◦ in January to 24◦ in July, mean annual temperature
is 8.3◦ and the mean annual precipitation is 486 mm from 2010 to 2020, most of which
occurs in the form of rainstorms from July to September [18].Plants 2022, 11, 2891 4 of 17

Figure 1. Research area. Figure 1. Research area.

The study area is dominated by grassland and accounts for more than 80% of the total
vegetation area. Our research plots are located at an altitude of 850 m to 1287 m, with a
slope range from 3 ◦C to 40 ◦C.

2.2. Plot Survey, Sample Collection and Analysis

There were one hundred and seventy-one herb plots (1 m × 1 m) from fifty-seven
sampling sites in the study area (Figure 2). On each plot, we recorded the names, number,
coverage, proportion of all herb species and plant height of each herb. The vegetation
coverage was captured by Canon fisheye lens camera and processed using ArcGIS 10.6
to get the total coverage and dominant species coverage. After the investigation, ten
well-lit and developed leaves were collected from dominant species for measuring the leaf
thickness, area, and dry leaf weight of the species (Table S1). The remaining leaves were
taken back to the laboratory for chemical element determination after drying.

Soil samples from the fifty-seven sites were also obtained at 11:00 a.m. to 15:00 p.m.
from 29 July to 31 July 2020. Seven points were selected along an S-shape line in each plot
(Figure 2). The sampling was collected from 0–30 cm and mixed. Then, the soil samples
were required to pass a 2 mm sieve to remove impurities, the samples were taken back
to the laboratory for subsequent analysis. Soil bulk density and soil water content were
obtained from three samples along the diagonal in each grassland plot, using a cylindrical
metal sampler (100 mm2) [19].
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The measurement of leaf traits was mainly carried out according to the literature [20,21].
A scanner was used to obtain the leaf area (10 replicates) and a vernier card was used to
measure and record the leaf thickness. Then, the measured leaves were put into envelopes
and the dry matter content of the leaves was obtained by drying method. The soil bulk
density was determined by soil–core method. The SWC was calculated as the ratio of
soil water mass to oven-dry weight [22,23]. The organic matter was assayed by dichromic
oxidation method. The total nitrogen content was measured by Kjeldahl method using a
FOSS Kjeltec 8400 Analyzer Unit (FOSS, Hillerod, Denmark) [24]. The total phosphorus
was digested by H2SO4-HCIO4 and measured by spectrophotometer [25]. Total carbon
was measured from 1 mm screened samples using Liaui TOC II analyzer (ELMENTAR,
Langenselbold, Germany).
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2.3. Variables

The SEM analysis method is a comprehensive technique that uses covariance matrix to
analyze the relationships in multivariate data and identify the causality between observed
variables and latent variables. In this study, we explained the relationships between the
various influencing factors that pertain to plant functional traits by using latent variables
and observational variables. The PLS-SEM was constructed by selecting three explanatory
latent variables (topographic conditions, soil properties and vegetation structure) and one
latent dependent variable (plant functional traits). Six explanatory observation variables
were used to represent the latent variable characteristics of soil, namely soil organic matter
content (SOM), soil water content (SWC), soil bulk density (BD), maximum soil water
content (MWC), soil total phosphorus content (TP) and soil total nitrogen content (TN).
Four topographic variables, namely altitude, slope, slope position and aspect, were chosen
due to their effect on the hydrothermal conditions of sampling sites. In order to ensure the
integrity of the vegetation diversity information, research needs of the integration of multi-
ple levels and multiple diversity indexes [26]. We selected five different vegetation diversity
indexes and two features as latent variables to illustrate vegetation structure, including
the total number of plants (N), plants species index (S), Shannon–Wiener index (SHA),
Simpson index (SIM), Margalef index (MAR) and Gleason index (GLE). Finally, 12 indexes,
including leaf thickness, leaf dry weight, organic matter of leaves, total nitrogen content, to-
tal phosphorus content, nitrogen-to-phosphorus ratio, leaf tissue density, leaf area, specific
leaf area, vegetation coverage, average plant height and ratio of dominant species were
used to represent the observed variables of plant functional traits (Tables S2 and S3).

2.4. Calculation of Variables

The calculation and treatment of some specific variables were as follows:

(1) Margalef species richness index (MAR)

MAR =
S − 1
ln N
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where S is the total number of species in the community and N is the total number of
individuals of all observed species.

(2) Shannon diversity index (SHA)

SHA = −∑ pi ln pi and pi =
Ni

N
where pi is the proportion of the number of species i to the total number.

(3) Simpson diversity index (SIM)

SIM = 1 − ∑ pi
2 and pi =

Ni

N
where pi is the proportion of the number of species i to the total number.

(4) Pielou’s evenness index (PIE)

PIE =
N(N − 1)

∑ Ni(Ni − 1)

where Ni is the number of individuals of species i and N is the sum of individuals of all
species in the community.

(5) Gleason richness index (GLE)

GLE =
S

ln A
where A is the total area investigated and S is the total number of species in the community.

(6) Community weighted means (CWM)

The functional characteristics of plant communities were characterized by community
weighting method [27]. CWM was calculated based on the plant functional traits of each
species in the plots. In addition, the relative above-ground biomass (AGB) of each species
in the plot was weighted. Additionally, the CWM mainly reflects the attribute and strategy
of dominant species in the community [28,29]. The CWM units are the same as functional
traits units involved in the calculation. The formula is as follows:

CWM =
n

∑
i=1

traiti × Pi

where traiti is the plant functional trait value of species i, Pi is the relative AGB of species i
in the plot, and n is the number of species in the plot.

2.5. Selection of Variables

In the research, RF algorithm was used to filter important dependent variables to
reduce the latent redundancy of dependent variables [30]. RF is an ensemble algorithm that
classifies by voting on multiple unbiased classifier decision trees [31,32]. The algorithm was
based on the Boruta package in R 4.1.2. The Boruta feature selection, providing important
values to indicate whether features are important or not, which are obtained by mixing
original attribute values between objects [33].

Plant functional traits can be reflected by multiple indices with different correlations
with explanatory observed variables. Therefore, we used a random forest algorithm to
screen for the indices of plant functional traits that were more correlated with explanatory
observed variables. The important values of 12 plant functional traits indexes were calcu-
lated using 17 explanatory observational variables. All the plant functional traits indexes
were used to classify the explanatory observed variables and an important classification
value was obtained. The results for each important value were summarized and the func-
tional trait indicators that showed statistical significance in a classification were voted on.
Such voting was conducted to select more relevant and key functional traits. Random forest
and voting results were used as input parameters to support latent dependent variables in
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the PLS-SEM model. In our research, confidence levels and maximum runs of RF algorithm
were set as 0.01 and 100, respectively [19].

2.6. Establish of Preliminary Model and Paths Determination

Structural equation model (SEM) is a method to establish, estimate and test causality
models, which contain both observable variables and latent variables that cannot be directly
observed [34]. It is mainly used in PLS-SEM and structural equation modeling based on
covariance. Compared with CB-PLS, which focuses on parameter evaluation, PLS-SEM
has a more accurate prediction accuracy [35]. In exploratory research, we should focus on
PLS-SEM when the relationship between variables is complex and unclear [36]. In addition,
according to the research, when the sample number is limited and does not follow the
normal distribution, PLS has a wider tolerance than CB [37,38]. Therefore, PLS-SEM was
chosen in the research.

There were three causal hypothesis to establish the preliminary model: (a) The vari-
ables of topographic conditions, soil properties and vegetation structure directly influenced
dependent variables of plant functional traits; (b) The latent variables of topographic con-
ditions indirectly impacted the latent variables of plant functional traits by influencing
hydrothermal conditions, species distribution and ecological processes; (c) Vegetation and
soil influence each other. The latent variables of vegetation structure indirectly impacted
the latent variables of plant functional traits by influencing the latent variables of soil
properties, and the latent variable of soil properties can also affect the functional character
of vegetation by improving the vegetation structure (Figure 3).
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Figure 3. A PLS-SEM model was established to show the relationship between latent variables. The
arrow represents the influence of the weight of the latent variable or observed variable on the latent
variable. The ovals represent the latent variables; the rectangles represent the observed variables.
SLO, slope; ALT, altitude; ASP, aspect; SP, slope position; MAR, Margalef species richness index; SHA,
Shannon diversity index; SIM, Simpson diversity index; PIE, Pielou’s evenness index; GLE, Gleason
richness index; N, Total number of shrubs; S, Total shrub species; SOM, Soil organic matter; BD, Soil
bulk density; MWC, Maximum water capacity; TP, Total phosphorus content; TN, Total nitrogen
content; SWC, Soil water content; LT, Blade thickness; LD, Leaf dry weight; LOM, Organic matter of
leaves; LTN, Total nitrogen content; LTP, Total nitrogen content; NP, Nitrogen-to-phosphorus ratio;
LTD, Leaf tissue density; LA, Leaf area; SLA, Specific leaf area; CO, Vegetation coverage; PH, Plant
height; RDS, Ratio of dominant species.
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To improve the reliability of model, correlation tests were carried out on different latent
variables. We used CCA analysis to correlate each set of variables. Seventeen explanatory
observed variables were divided into three groups of latent variables. Then, six pairs of
CCA were calculated for each variable in pairs. The secondary PLS-SEM is determined by
analyzing the significance of six sets of data and eliminating non-significant paths in the
model. The CCA was carried out using the R package, Vegan.

2.7. Evaluation of PLS-SEM

We carried out factor analysis and path analysis in PLS-SEM after obtaining the results
of RF and CCA analysis. In the final structural equation model, compound reliability values
(CR) and average variance extraction values (AVE) are used to evaluate the structural
reliability and internal model validity of SEM. The CR value > 0.7 indicates good internal
consistency and reliability of the model [39]. The AVE value > 0.5 indicates that the
model fits well and converges effectively. The identification validity should be evaluated
with a matrix, according to the Fornell–Larcker criterion. The square root of the AVE
should be greater than the relevant value of other variables [40]. We performed a variance
inflation factor (VIF) analysis to avoid multicollinearity, among observing variables [41].
To avoid model misjudgment, standardized root means square residual (SRMR) was used
as a fitting measure. Bootstrap programs were used to obtain T-statistics for significance
tests of structural paths in PLS-SEM [42]. The path coefficient is significant when the
p-value < 0.05 [36]. In this work, the maximum number of iterations of the PLS algorithm
was set to 5000. The threshold value, which determines the maximum of the difference of
the external weight, is set to 10−7. In addition, the number of guide sub-samples was set as
10,000 and the significance level of guide was set as 0.05 to ensure reliability. Smart PLS 3
was used for all PLS-SEM statistical analyses.

3. Results

Fifty-one species and 10,899 individuals of herbs were observed in 171 plots from 57 sites.
Lespedeza davurica was the most common herb observed at 57 sites, followed by Setaria
viridis (L.) Beauv at 25 sites. The twelve dependent observed variables used to explain
plant functional traits were as follows: LT:0.085–0.412; LH:5.74–60.261; LOM:404.453–516.743;
LTN:18.981–71.337; LTP:1.296–6.457; NP:8.078–33.559; LTD:2.423–21.617; LV:0.0655–11.479;
SLA:2.994–21.071; CO:0.477–0.977; PH:10.15–55; PDS:0.4–0.975.

3.1. Observed Variables of Plant Functional Traits

Seventeen explanatory observation variables among soil properties, vegetation struc-
ture and topographic conditions were used to classify 12 causal observation variables by RF,
considering the contribution of dependent variables to explanatory variables as important
values. Based on the regression analyses, we obtained 17 important values (Figure 4). The
importance values of N and SOM groups showed the best results, and only four values were
rejected in the group. CO was rejected by both N and SOM groups, and their importance
values were −3.20 and −1.44. The importance values in MAR all indicate low importance,
and all variables in this group are rejected. Eleven, fourteen and sixteen importance values
are derived from topographic conditions, soil properties and diversity, respectively.

We ranked the 12 dependent variables by the 42 importance values obtained. In
descending order, the results are as follows: PH (eight votes) < LTD and LTN (seven votes
each) < PDS (six votes) < LOSM and SLA (five votes each) < LTP (three votes) < LT (one
vote) < LD, NP, LA and CO (zero votes). PH received the highest number of votes, which
were based on soil properties. LTN received four votes from soil properties, three votes
from diversity, and zero votes from topographic conditions; LOM received four votes from
diversity and one vote from topographic conditions; and SLA received zero votes from
diversity. PH, RDS and LTD obtained votes from three latent variables, respectively, while
LD, NP, LA and CO did not obtain any votes. According to the total number of votes for
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each dependent variable, six variables—PH, PDS, LTN, LTD, LOM and SLA—were chosen
as observed variables of plant functional traits in PLS-SEM.
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3.2. Possible Path and Model

CCA analysis showed that the relationship between topographic conditions and soil
properties was not statistically significant. This may be because topographic conditions
have little direct effect on the underlying variables of soil properties. The relations between
vegetation structure and plant functional traits were highly statistically significant, which
was consistent with the interaction between vegetation structure and functional traits. In
addition, CCA results showed significant correlation between vegetation structure vs. soil
properties, topographic conditions vs. vegetation structure, topographic conditions vs.
plant functional traits and soil properties vs. plant functional traits. These results show the
interaction among the vegetation structure, soil properties, topographic conditions and
plant functional traits (Table 1).

Table 1. The significance of paths between latent variables.

Latent Variables Group Canonical
Correlations 1 Eigenvalue p-Value Wilk’s DF

Vegetation structure vs. Soil properties 0.660 0.771 0.028 * 0.285 42

Topographic conditions vs. Vegetation structure 0.651 0.737 0.042 * 0.430 28

Topographic conditions vs. Soil properties 0.551 0.435 0.101 0.518 24

Vegetation structure vs. Functional character of vegetation 0.612 0.600 0.002 ** 0.226 42

Topographic conditions vs. Functional character of vegetation 0.592 0.540 0.024 * 0.457 24

Soil properties vs. Functional character of vegetation 0.668 0.808 0.012 * 0.309 36

* indicates p < 0.05; ** indicates p < 0.01.



Plants 2022, 11, 2891 9 of 16

If CCA results between the two sets of variables are not significant, we conclude there
is no latent path between the two pairs in model. Therefore, we preliminarily determined
the path of the PLS-SEM based on CCA results of different variable groups by eliminating
a path from topographic conditions to soil properties. The following figure describes the
optimized secondary structure equation model (Figure 5).
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3.3. Model Fit

The optimal model diagram is shown below (Figure 6). In this model, the CR value
is 0.795, indicating that the model has good precision and interpretability. The AVE
(value = 0.660) shows that the SEM finally obtained has good fitting convergence. Identifi-
cation validity was assessed through the Fornell–Larcker standard matrix. AVE square root
of plant functional traits was 0.812 in the matrix, which is greater than its correlation with
other variables. VIF values of all variables were less than three. The SRMR value of 0.093 is
acceptable in PLS-SEM.
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3.4. Evaluation of Influencing Factors of Plant Functional Traits

In the final PLS-SEM, the results indicate the weight of each observed variable among
potential variables. The weights of PH and SLA were 0.465 and 0.621, indicating that they
contributed 94.9% to latent variables of plant functional traits. For latent variables of plant
species diversity, the weights of SIM and GLE were 0.849 and 0.774, respectively. SLO
had the highest contribution value of latent quality variable, which was 0.629. ASP has
the lowest contribution value of −0.094. The contribution rates of SOM, TP, SWC and
MWC to soil properties were 0.343, 0.396, 0.416 and 0.588, respectively; they have similar
contribution rates.

The bootstrapping results demonstrated an acceptable t-test and p-value, which im-
plies that the four total effects of the final model are significant. The effects of topographic
conditions on plant functional traits (t = 3.245, p < 0.01), topographic conditions on plant
diversity (t = 5.324, p < 0.001), plant diversity on soil properties (t = 2.214, p < 0.05) and
soil properties on plant functional traits (t = 3.593, p < 0.001) were 0. 408, −0.544, −0.333
and 0.471, respectively. In addition, the indirect effect of latent variables of plant diversity
on latent variables of plant functional traits (t = 1.967, p < 0.05) was −0.157, which was
acceptable according to the bootstrapping results. Finally, the remaining paths (from soil
properties to vegetation structure) in the prediction model (Figure 5) were deleted because
their p > 0.05 and would affect the overall effect of the model.

4. Discussion
4.1. Results of Screening Plant Functional Traits by RF

According to the results of RF, there are finally five indicators that get high votes, they
are LTN, LOM, LTD, PH and SLA. PH received the most votes, which was mostly from soil
properties. Soil is the most important factor affecting plant growth, and TP is the highest
score among the four votes obtained through soil properties. The reason is that phosphorus
is an indispensable factor for plant growth, which can promote the rapid growth of roots
and aboveground parts and improve the ability of plants to adapt to external environmental
conditions [43]. Secondly, LTN and LTD both obtained the majority of seven votes from soil
properties and vegetation structure. Soil can provide nutrients for plants, and reasonable
vegetation structure can provide good hydrothermal conditions for plants, LOM and SLA
get higher votes for the same reason. Finally, LT received only one vote from vegetation
structure, LT did not get the topographical status vote because the study area was located
in SWDP, and many engineering measures changed the small topographical area of the
watershed, resulting in a low impact of topography on LT. The reason for not obtaining soil
voting is that the change of soil properties has limited influence on LT. As an important leaf
shape component, LT is mainly affected by environmental factors, especially light intensity,
which is the reason why LT can obtain vegetation structure voting.

4.2. Direct Effects of Topographic Conditions on Vegetation Structure and Plant Functional Traits

In the research, the direct effects of topographic conditions on plant diversity and plant
functional traits [36] were evaluated. The results showed that the effects of topographic
conditions on plant diversity and functional traits were mainly reflected by the differences
in altitude (ALT), slope aspect (ASP) and slope position (SP), as well as the different water,
heat, and light conditions, thus, leading to the formation of life strategies with different
combinations of functional traits in plants. Some scholars also confirmed the same problem,
the study showed that topographic factors strongly influenced the pattern of community,
ecosystem, and landscape, thus, affecting plant diversity (some studies pointed out that
topographic factors were the main factor, limiting the change of vegetation distribution in
the loess hilly region) [44].

According to the results of PLS-SEM, topographic conditions have a negative impact on
vegetation structure. SLO index had the greatest negative impact on vegetation structure.
Perhaps the main reason is that with the increase in slope, due to the special natural
geographical conditions of the Loess Plateau gully region, the soil required to form surface
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runoff when the rainfall intensity is beyond a certain range cannot effectively replenish
groundwater, and thus cannot form a soil dry layer of a certain depth, eventually affecting
the plant growth and reducing the plant community diversity. In the model, SP and ALT
have similar contributions to vegetation structure, The main reason is that they share a
similar principle: water and heat change with height, which ultimately affects the structure
of the vegetation [45,46]. Finally, slope aspect had the least impact on plant diversity.
Slope aspect mainly affected the light received by plants, but in the Loess Plateau region,
regardless of the slope aspect, the plant received sufficient light, which resulted in a small
impact of slope aspect factors on plant diversity [47].

According to the results of our research in the SWDP, the variation of SLO degree
significantly affects plant functional characteristics [48]. The possible reason is that the
plant growth is mainly restricted by water condition, and the change of the slope degree
affects the slope surface runoff and soil erosion intensity and indirectly leads to differences
in soil nutrient and moisture [49]. A study from Chinese scholars also showed that the
changes of certain functional traits in plants were mainly determined by slope changes and
plant functional traits gradually changed with the increase in slope value [50]. Altitude
is another major variable in determining the functional traits of vegetation, which affects
the temperature, water and carbon dioxide required for plant growth [51]. In addition, our
results suggested that slope position is also critical to the latent variable, affecting plant
functional traits. These results are consistent with the report, which showed that slope
position has a significant impact on the vegetation at microtopography [52]. The main
reason for this result is that the poor water and fertilizer retention ability of the upper slope
position causes a large amount of water to accumulate at the bottom of the slope, resulting
in significant differences in water and fertilizer conditions at different slope positions [53].
At the same time, the temperature at the bottom of the slope was higher than that at the
top due to the geographical advantage, and the water and heat were locally redistributed
due to the microtopography, which ultimately led to the differences in plant diversity and
functional traits [54]. In this study, slope aspect contributed very little to plant functional
traits (especially LTN), which was inconsistent with the results of Bennie et al. [55]. This
may be because the slope aspect has little influence on soil moisture and heat in the Loess
Plateau due to the low slopes and extreme drought [56].

4.3. Direct Effects of Soil Properties on Plant Functional Traits

Based on the results of model, in addition to topographic conditions, soil properties
also directly affect the plant functional traits [57]. Some scholars also reported similar
results, pointing out the availability of underground nutrients plays a key role in plant
growth [58].

For target variables, our results indicate MWC and SWC are the main factors affecting
plant functional traits. The biggest contribution of MWC and SWC is mainly because area
is located in the Loess Plateau, where soil water retention is poor, precipitation is low
and soil erosion is serious, so water is the main factor limiting plant functional traits [59].
There are other studies [60] reported that changes in plant functional traits are mainly
influenced by MWC and SWC. In addition, our study showed that TN is also critical to
latent variables of plant functional traits, which is consistent with Chinese scholars findings
that phosphorus is an important factor, affecting plant traits in arid regions [61]. In this
study, SOM contribution is 0.343. Organic matter is one of the main sources of plant
nutrition, which can promote plant growth and have a great impact on plant functional
traits [62]. According to the study along nutrient gradients on a provincial scale, SOM is
proportional to SLA LTN, LTP, etc. [63].

4.4. Indirect Effect of Vegetation Structure on Plant Functional Traits

The model shows that vegetation structure (SIM and GLE) directly affect soil properties
and indirectly affect plant functional traits (through soil properties), which showed there is
no evidence for a direct causal correlation of species diversity and plant functional traits.
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Vegetation structure has a direct negative impact on soil properties, which may be due
to sub-standard soil in the Loess Plateau due to low soil moisture and nutrient content;
the lack of soil nutrient accumulation and recruitment was due to excessive uptake of
soil nutrients in species-rich plots. Additionally, the study area will have heavy rain that
produces surface runoff and leaching from July to September, which further affects soil
properties. SIM index has a great influence on soil properties. The important reason is that
SIM index is an index indicating species dominance. Different species require different
nutrients. Plots with high dominance indicate that the proportion of a certain species in
the area is too high, which may lead to excessive consumption of certain elements in the
soil and eventually have a negative impact on soil properties. For example, studies have
shown that cropland (a single type of land) reduces soil organic matter content by 40%
and has the worst soil structure, compared to forest and grassland [64]. Second, the GLE
index of species richness based on plot area also had a negative impact on soil properties.
When the plot area is fixed, there is fierce competition among vegetation in the plot with
the increase in SIM index. Soil moisture is the biggest limiting factor for vegetation growth
in the loess hilly–gully region. The competition between vegetation will accelerate the
consumption of soil water and eventually affect soil properties. For example, the influence
of vegetation structure on the spatial variation of soil’s physical and chemical properties
is sometimes even more significant than that of climate factors [65]. Finally, there are two
main reasons why other vegetation diversity is not used in the model. On the one hand, RF
results showed that PIE, MAR and SHA had low correlations with selected plant functional
traits. On the other hand, N and S indexes have collinearity with SIM and GLE in PLS-SEM.
Therefore, the SIM and GLE indices were finally selected.

According to our results, plant functional traits were significantly affected by the
composition and distribution of herbaceous layers [66]. Vegetation structure have a direct
impact on soil properties, and the vegetation structure index can also indirectly reflect the
strength of inter-vegetation competitiveness [67]. For the target variables, the model results
showed that the SLA index of plant functional traits was indirect impacted by vegetation
structure. SLA is a functional trait that represents the interaction between plants and the
environment [68]. In the same community, the specific leaf area of plants was larger when
light was decreased. When the species diversity is high, the competition among plants
will lead to the lack of light for some plants, thus, affecting SLA index [69]. The change
of species diversity also had a significant impact on PH, mainly because of the high light
intensity and hot climate in the Loess Plateau region, but the shortage of water resources
and soil nutrients. The competition among species is mainly through the root system to
compete for soil water and nutrients, while the aboveground part mainly uses conservative
strategies to reduce light exposure. For example, dwarf plants are more conducive to
growth in the Loess Plateau. The research of scholars has also proved this point. Vegetation
on the Loess Plateau generally has developed roots to obtain soil water and nutrients, while
the aboveground parts are generally short [70]. In addition, changes in species diversity
had a certain impact on LTN and LOM indices, and the lack of soil nutrient accumulation
and recruitment was due to the excessive uptake of soil nutrients in species-rich plots.
Additionally, the study area will have heavy rains that produce surface runoff and leaching
from July to September, leading to a decrease in soil nutrient content, and ultimately a
comprehensive impact on LTN and LOM indicators [71]. Finally, the results of PLS-SEM
showed that the change of species diversity would affect the LTD; in order to adapt to the
harsh living environment, plants will put more dry matter synthesized by plants into the
structure of leaves (LTD increases) and improve the resistance to drought environment by
increasing the distance of internal water diffusion to leaves [72].

5. Conclusions

Quantitative description of the relationship between the factors that may affect plant
functional traits is very important for understanding the heterogeneity of vegetation habi-
tats in Xindian National Soil and Water Conservation Demonstration Park, which can
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provide new insights for vegetation management and restoration in soil and water con-
servation area. For example, we should pay attention to vegetation structure in the future
measures; reasonable vegetation structure can play a greater role in the same terrain and
soil conditions. In the research, PLS-SEM was built to quantify the influence between
influencing drivers on grassland vegetation functional traits, and the results showed that:
(1) Topographic conditions and plant diversity were the main factors affecting plant func-
tional traits. (2) The effect of topographic conditions on latent variables of soil properties
was limited, although some topographic conditions variables were strongly correlated
with it. (3) Species diversity indirectly affects latent variables of plant functional traits
by influencing soil properties. In general, our results show that topographic conditions
and soil properties are still the most important influencing factors, although other factors
will also have an impact on the functional characteristics of vegetation; in the future, park
management should continue to adhere to the policy of engineering measures in the main,
with vegetation measures as the auxiliary. Finally, the results of the model are relatively rea-
sonable for the short-term mechanism, but the time scale of the existence of the ecosystem
is longer. In the future, we can continue to study SWDP to obtain the long-term mechanism
and causal relationship between the components of the ecosystem in SWDP.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11212891/s1, Figure S1: Slope aspect map, slope map
and elevation map of the study area; Table S1: Dominant species information; Table S2: Details of
variables used in the research; Table S3: The data details.
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