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Abstract: Photosynthesis is a key process in plants that can be strongly affected by the actions of
environmental stressors. The stressor-induced photosynthetic responses are based on numerous and
interacted processes that can restrict their experimental investigation. The development of mathemat-
ical models of photosynthetic processes is an important way of investigating these responses. Our
work was devoted to the development of a two-dimensional model of photosynthesis in plant leaves
that was based on the Farquhar–von Caemmerer–Berry model of CO2 assimilation and descriptions
of other processes including the stomatal and transmembrane CO2 fluxes, lateral CO2 and HCO3

−

fluxes, transmembrane and lateral transport of H+ and K+, interaction of these ions with buffers in
the apoplast and cytoplasm, light-dependent regulation of H+-ATPase in the plasma membrane, etc.
Verification of the model showed that the simulated light dependences of the CO2 assimilation rate
were similar to the experimental ones and dependences of the CO2 assimilation rate of an average
leaf CO2 conductance were also similar to the experimental dependences. An analysis of the model
showed that a spatial heterogeneity of the CO2 assimilation rate on a leaf surface should be stimulated
under an increase in light intensity and a decrease in the stomatal CO2 conductance or quantity of the
open stomata; this prediction was supported by the experimental verification. Results of the work
can be the basis of the development of new methods of the remote sensing of the influence of abiotic
stressors (at least, excess light and drought) on plants.

Keywords: CO2 assimilation; excess light; spatial heterogeneity; leaf CO2 conductance; two-dimensional
photosynthetic model; drought

1. Introduction

Photosynthesis is a key process in the life of green plants and the basis of their produc-
tivity. It is a complex process [1,2] that can be strongly affected by numerous abiotic stres-
sors, including excess light [3–5] and fluctuations in light intensity [6–9], drought [10–12],
decrease [13] and increase [14–16] in temperatures, and others.

Changes in the photosynthetic processes induced by the action of stressors include
both the damage of photosynthetic machinery and numerous protective responses. The
stressor-induced damages include photodamage under excess light [3–5], increase in pro-
ton leakage across the thylakoid membrane under heating [14], damage of photosyn-
thetic complexes through the stimulation of the production of reactive oxygen species
induced by the decrease in photosynthetic dark reactions under the action of various stres-
sors [17], and others. The protective responses include the induction of a non-photochemical
quenching [3,4,18,19], stimulation of a cyclic electron flow around photosystem I [7,19,20],
translocation of Ferredoxin-NADP+ Reductase [21,22], activation of photorespiration [23],
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changes in the positions of chloroplasts [24–26], and others. These processes can strongly in-
teract, e.g., the stimulation of the cyclic electron flow increases the acidification of the lumen
in chloroplasts and can increase an energy-dependent component of the non-photochemical
quenching caused by this acidification [19,27,28] through the interacted protonation of PsbS
proteins [3,4,29] and the synthesis of zeaxanthin and antheraxanthin from violaxanthin in
the xanthophyll cycle [30].

The complexity of the photosynthetic stress responses is a reason for the active devel-
opment of mathematical models of photosynthetic processes [31], because these models can
be effective tools for the prediction of changes in photosynthesis under the action of adverse
factors. There are models simulating processes on different levels of the organization of
photosynthesis [31]: models of the ways of energy utilization in the reaction centers of
photosystem II [32–34], models focusing on the description of photosynthetic light reactions
and their regulation by stressors [5,35–40], models focusing on the description of photosyn-
thetic dark reactions and CO2 fluxes [41–44], complex models of plant productivity [45,46],
and global photosynthetic models [47,48].

The photosynthetic model by Farquhar, von Caemmerer, and Berry (FvCB model) [42,49–51]
is a widely-used model of C3 photosynthesis that can describe the photosynthetic processes
in mesophyll cells, leaves, plant canopies, and ecosystems [31]. This model is based on a
stationary description of a photosynthetic CO2 assimilation rate (Ahv) that is dependent on
the slowest process of three processes that can limit the dark reactions of photosynthesis [50]:
CO2 fixation by Rubisco, linear electron flow (LEF) in the electron transport chain of
thylakoids, and triose flux from the stroma of chloroplasts. Particularly, the FvCB model
can be used for the description of the heterogeneity of the photosynthetic processes in the
leaves and canopies of plants [52–56]; analysis of this heterogeneity has great importance
for revealing new factors that can regulate photosynthetic processes (e.g., the influence of
changes in the intensity and spectrum of light caused by an increase in the distance from
the leaf surface during photosynthetic processes or the influence of 3-D microstructures of
leaf tissues and chloroplast movements on photosynthesis).

However, the simulation of photosynthetic processes in the scale of a leaf surface that
can also be based on the FvCB model is weakly developed. A model of photosynthetic
processes in the scale of a leaf surface is a potential tool for the theoretical investigation of
the spatial heterogeneity of photosynthetic parameters on this surface, including revealing
possible modifications of the heterogeneity under the action of stressors. There are several
reasons supporting the importance of the development of the leaf photosynthesis model
and its theoretical analysis.

First, revealing stressor-induced changes in the photosynthetic heterogeneity can
provide an additional indicator of the action of adverse factors on plants. It can be used
for the development of new methods for remote sensing plant stress changes. Particularly,
these methods can be based on the measurements of the spatial heterogeneity of the
distribution of a photochemical reflectance index (PRI), which is calculated based on
reflectance at 531 and 570 nm [57–60] and is strongly related to photosynthetic parameters
(the non-photochemical quenching of fluorescence, effective quantum yield of photosystem
II, light-use efficiency, and photosynthetic CO2 assimilation rate) [61–67].

Second, the development of the leaf photosynthesis model and revealing stressor-
induced changes in the spatial photosynthetic heterogeneity can be an important step
for further investigation into new mechanisms influencing plant tolerance to stressors.
Particularly, it was theoretically shown that the spatial heterogeneity in the physiological
parameters of two-dimensional models of living cells can modify their responses to the
actions of external factors through a diversity-induced resonance [68–70], e.g., this effect
was shown for excitable plant cells under cooling [70,71]. It cannot be excluded that the
spatial heterogeneity in photosynthetic processes can also influence the plant response to
stressors. Potentially, the leaf photosynthesis model can also be used as an analysis tool for
this influence.
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Thus, there were three main purposes of our work: (i) The development and verifi-
cation of the two-dimensional model of C3 photosynthesis in the plant leaf, which was
based on the FvCB model. (ii) The model-based analysis of the induction of the spatial
heterogeneity of the CO2 assimilation rate under excess light conditions and a decrease in
leaf CO2 conductance (gS) (this gS decrease imitated the action of a short-term drought).
(iii) Additional experimental verification of the results of this analysis.

2. Description of the Two-Dimensional Model of C3 Photosynthesis in Plant Leaves

The two-dimensional model of C3 photosynthesis in the plant leaf was based on
the round system of elements (Figure 1a). Each element included descriptions of the
photosynthetic cell and the apoplast; some elements (central elements in 3 × 3 elements
squares or in 5 × 5 elements squares) additionally included stomata. Figure 1b shows the
main processes considered in the model. Equations and parameters of the two-dimensional
model of C3 photosynthesis in the plant leaf are described in File S1 “Equations and
parameters of the two-dimensional photosynthetic model” in detail.

Briefly, the simplified FvCB model, which described only two limiting stages (the CO2
fixation by Rubisco and the linear electron flow in the electron transport chain of thylakoids
in accordance with [51]), was used as the basis for the simulation of the photosynthetic
CO2 assimilation in mesophyll cells (in accordance with standard Equation (1) [50,51]):

Ahv = min
(
Wc, Wj

) [CO2]str − Γ∗

[CO2]str
(1)

where Wc and Wj are carboxylation rates at the Rubisco-limited CO2 assimilation and
electron transport-limited CO2 assimilation conditions, respectively (both values were
calculated based on standard Equations (S2) and (S3) in accordance with [50]), [CO2]str
is the concentration of CO2 in the stroma of chloroplasts, Γ* is the photosynthetic CO2
compensation point in the absence of mitochondrial respiration. It should be noted that
Equation (1) was used for the estimation of the measured photosynthetic CO2 assimilation
and for comparison with the experimental results. The photosynthetic consumption of CO2
in the stroma was described as min(Wc, Wj); i.e., the correction relating to photorespiration
was not used in this case. Photorespiration was separately described as the CO2 source in
the cytoplasm in accordance with Equation (2) based on Equation (1):

Vphr =
AhvΓ∗

[CO2]str
(2)

A dark respiration was described as another CO2 source in the cytoplasm. In accor-
dance with von Caemmerer et al. [1], it was assumed that the rate of the dark respiration
(Rd) was constant.

Carbon fluxes between cells and compartments were described based on Fick’s
law [72–74]. CO2 fluxes across the stomata (jS), plasma membrane (jPM), and envelopes of
chloroplasts (jChl), which depended on the CO2 conductance [74,75], were analyzed in the
model (Equations (3)–(5)):

jS = gS
0
(
[CO2]out − [CO2]ap

)
(3)

jPM = gPM

(
[CO2]ap − [CO2]cyt

)
(4)

jChl = gChl

(
[CO2]cyt − [CO2]str

)
(5)

where [CO2]out, [CO2]ap, and [CO2]cyt are concentrations of CO2 in the air, apoplast and
cytoplasm, respectively; gS

0, gPM, and gChl are CO2 conductance for the stomata, plasma
membrane, and chloroplast envelopes (jChl), respectively.
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Figure 1. A general scheme of the developed two-dimensional model (a) and main processes
described by the model on the cell level (b). Model elements (squares) include both mesophyll
cells and stomata or only mesophyll cells (without stomata). Small arrows in the general scheme
show transport of carbon dioxide, H+, and K+ between apoplastic volumes of neighboring cells and
across the plasma membrane. PAR is the photosynthetic active radiation. pHap, pHcyt, and pHstr

are pH in the apoplast, cytoplasm, and stroma of chloroplasts, respectively. Bcyt
− and BcytH are the

free and proton-bound cytoplasmic buffers. Bap
−, BapH, and BapK are the free, proton-bound, and

potassium-bound apoplastic buffers. Em is the difference of electrical potentials across the plasma
membrane. FvCB model is the Farquhar–von Caemmerer–Berry model. The main systems of ion
transport at rest, including H+-ATP-ases, H+/K+-antiporters, inwardly rectifying K+ channels, and
outwardly rectifying K+ channels, are described in the two-dimensional photosynthetic model.
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Similar HCO3
− fluxes were assumed to be absent, because charged HCO3

− should
weakly diffuse across biological membranes [75].

The lateral fluxes of both neutral CO2 and charged HCO3
− in the apoplast were con-

sidered in the model [73] and were described by Equations (S12) and (S13). In accordance
with our previous work [70], it was assumed that each cell had its section of apoplast. The
lateral fluxes were described between nearest sections (four lateral fluxes for each apoplast
section, Figure 1a).

The ratios between the concentrations of CO2 and HCO3
− were dependent on pH in

the apoplast, cytoplasm, and stroma of chloroplasts [75]. It was assumed that the transitions
between CO2 and HCO3

− were fast; this meant that the stationary distribution between
these molecules could be used. Equation (6) described the portion of CO2 in the total
content of CO2 and HCO3

−:

PCO2 =
1

1 + 10pH−pK (6)

where pK is the negative logarithm of the equilibrium constant in the reaction of the
transition between CO2 and HCO3

−.
The stromal pH was assumed to be constant; the pH in the apoplast and cytoplasm was

described based on our early model of ion transport and electrogenesis in plant cells [76].
The description of H+ and K+ fluxes across the plasma membrane was based on our

previous model [70,76], which was simplified. Only H+-ATPase, inwardly and outwardly
rectifying K+ channels, and K+/H+-antiporters were described, because the interaction of
these systems could support stationary H+ concentrations in the cytoplasm and the apoplast:
the H+-ATPase provided the primary transport of H+ across the plasma membrane; the K+

channels provided the K+ transport, which electrically compensated the charge transfer
related to the proton transport through H+-ATPase; the K+/H+-antiporter prevented the
non-physiological increase in cytoplasmic pH and K+ concentration and the decrease in
apoplastic pH and K+ concentration.

The buffer properties of the cytoplasm (for H+) (Equation (S37)) and the apoplast (for K+

and H+) (Equations (S38) and (S39)) were described in accordance with Sukhova et al. [70].
H+-ATPase was described based on the “two-state model” [77] (Equation (S18)); a regula-
tion of its activity by blue light and ATP concentration in the cytoplasm [78] was included
in the model using the Hill Equation (Equations (S19) and (S20)). We used a stationary
description of this ATP concentration (Equation (S40)), which was based on the ATP synthe-
sis dependent on the dark respiration (constant) and the CO2 assimilation rate (the FvCB
model) and the ATP hydrolysis with the assumed velocity constant.

K+ fluxes through inwardly and outwardly rectifying K+ channels were described
based on the Goldman–Hodgkin–Katz Equation [76,79] (Equations (S21) and (S22)); the
regulation of activities of these channels by the electrical potential across the plasma
membrane of mesophyll cells was described based on the stationary solution of the Equation
for the open probability for these channels [70] (Equations (S23) and (S24)).

H+ and K+ fluxes through the K+/H+-antiporter were described in accordance with
our previous works [70,76] (Equation (S25)); this description was based on the simple
Equation of the chemical kinetics. The K+/H+-antiporter was described as the electroneutral
transporter because the transport of charges was compensated in this system.

The lateral fluxes of H+ and K+ were described based on Fick’s law in accordance with
Sukhov et al. [80], (Equations (S31) and (S32)). The electrical potential across the plasma
membrane was described as the stationary value in accordance with Sukhov et al. [80],
(Equation (S26)); it was assumed that the electrical conductance between cells was zero.

The developed model included numerous parameters that made it difficult for the
direct experimental parameterization of a specific plant object. Considering this point,
we mainly used standard parameters from the FvCB model [50] and from our previous
model of ion transport and electrogenesis in plant cells [70] (Table S1 in File S1); other data
from the literature were also used for the parameterization. As a result, this model could
rather show the qualitive properties of forming spatial heterogeneity in the photosynthetic
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parameters in the leaf surface. In contrast, this model (with the current parameters) was not
optimal for the quantitative predictions of the specific plant object. It should be additionally
noted that using standard parameters, which provided good descriptions of investigated
processes in earlier works, minimized the probability of qualitive errors in the results of the
simulation. In contrast, the broad experimental search of parameters in specific species of
plants could, potentially, induce these errors (strong experimental errors in the estimation
of even one of numerous parameters can disrupt the results of a simulation).

The developed model was numerically analyzed using the forward Euler method. The
special computer program (Microsoft Visual C++ 2019, Microsoft Corporation, Redmond,
WA, USA) was developed for the numerical analysis of the model. Equation (1) was used
for the calculation of the Ahv simulated by the developed model.

The action of excess light and drought on the spatial heterogeneity was analyzed in our
work. The excess light action was provided by using the high values of the Photosynthetic
Active Radiation (PAR) in Equation (S5). It was assumed that the drought action on
plants was mainly related to the stomatal closure. At the model analysis, this action was
imitated by using the decreased stomatal CO2 conductance (the decreased parameter
gS

0 in Equation (3), the quantity of open stomata per leaf area was not changed) or the
decreased quantity of open stomata per leaf area (from one stomata per 3 × 3 elements
square to one stomata per 5 × 5 elements square, the stomatal CO2 conductance was not
changed). The average leaf CO2 conductance (gS) was decreased from 0.064 mol m−2s−1 to
0.023 mol m−2s−1 in both cases of the model analysis.

3. Results
3.1. Verification of the Developed Model on the Basis of Light Curves of Simulated and
Experimental Photosynthetic CO2 Assimilation Rate

The first question of the current analysis was: could the developed model simulate the
experimental light curve of the photosynthetic CO2 assimilation rate? We used the average
photosynthetic CO2 assimilation rates in pea plant leaves under the actinic light with
different intensities and these assimilation rates at different average leaf CO2 conductance
for this verification. Experimental and simulated results were compared in a quality manner
by using the standard parameters of the FvCB model [50], which were not adapted for pea
plants. The details of the experimental procedures are described in Section 5 “Materials
and Methods”.

It is shown (Figure 2a) that the simulated dependence of average Ahv on the intensity
of the actinic light at the basic gS (0.064 mol m−2s−1) included two parts: the increase
in the CO2 assimilation rate with increasing intensity of illumination (low and moderate
light intensities) and the light saturation of this assimilation rate (high light intensities).
This effect was also observed at the decreased average gS (0.023 mol m−2s−1), which was
imitated by using the decreased stomatal CO2 conductance; however, the maximal Ahv at
gS = 0.064 mol m−2s−1 was higher than one at gS = 0.023 mol m−2s−1. Additionally, the
minimal light intensity for the Ahv saturation at gS = 0.064 mol m−2s−1 was higher than
one at gS = 0.023 mol m−2s−1.

Experimental plants were ranged in accordance with their gS and were divided into
two groups with high and low CO2 conductance (average gS in leaves was 0.069 ± 0.004
and 0.027 ± 0.007 mol m−2s−1, respectively, see Section 5.1). It is shown (Figure 2b) that
experimental Ahv dependences on light intensity were similar to simulated ones: (i) there
were stages of increase in the photosynthetic CO2 assimilation rate and stage of Ahv light
saturation, (ii) the maximal Ahv was increased with increasing gS, and (iii) the minimal light
intensity for the Ahv saturation was increased with increasing stomatal CO2 conductance. It
should be additionally noted that the values of the maximal Ahv differed in the experimental
and the simulated results. This moderate quantitative difference could be caused by the
used standard values of the model parameters, which were not adapted for pea seedlings
(see Section 2).
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Figure 2. Simulated (a) and experimental (b) dependences of the average photosynthetic CO2 assimi-
lation rate (Ahv) on the intensity of the photosynthetic active radiation (PAR) at the varied average leaf
CO2 conductance (gS). Simulated dependences were calculated at average gS = 0.064 mol m−2s−1

(the basic gS) and gS = 0.023 mol m−2s−1 (the decreased gS). Each stomata in the model was located
in the center of square (3 × 3 elements); the average gS was calculated as the CO2 conductance in the
element with stomata divided by 9. In order to obtain experimental dependences, all experimental
records in this series were ranged and divided into two groups with the low (gS < 0.04 mol m−2s−1,
n = 5) and high (gS > 0.04 mol m−2s−1, n = 9) CO2 conductance (see Section 5.1). A combination of
Dual-PAM-300 and GFS-3000 was used in the experimental measurements of pea seedlings.

Simulated (Figure 3a) and experimental (Figure 3b) dependences of Ahv on gS at the
high light intensity (758 µmol m−2s−1) were analyzed in the next stage of our work. It is
shown that both dependences were qualitatively similar and could be described by loga-
rithmic Equations with similar coefficients. Quantitative differences between dependences
were probably caused by the absence of adaptation of parameters for pea plants.

Thus, these results showed that the developed model based on the two-dimensional
system of photosynthetic cells could qualitatively describe important characteristics of Ahv,
including the shape of the light dependence of the photosynthetic CO2 assimilation rate and
changes in this shape and maximal Ahv during changes in the stomatal CO2 conductance.
As a result, the developed model could be used for further analysis in our current work.

3.2. Analysis of Simulated and Experimental Spatial Heterogeneities in the Photosynthetic CO2
Assimilation Rate under Various Light Intensity and Stomatal CO2 Conductance

The spatial heterogeneity of Ahv simulated by the developed model was analyzed in
the next stage of investigation. First, the standard deviation of Ahv (SD(Ahv)), which was
calculated based on the values of Ahv in all elements of the two-dimensional model of the
leaf, was analyzed. It is shown (Figure 4a) that SD(Ahv) was increased with the increase
in light intensity at all variants of the average leaf CO2 conductance. A decrease in the
average gS (from 0.064 to 0.023 mol m−2s−1) caused by the decrease in the stomatal CO2
conductance strongly decreased SD(Ahv). In contrast, the similar decrease in the average gS
caused by the decrease in the quantity of stomata per area unit weakly influenced SD(Ahv).
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Figure 3. Simulated (a) and experimental (b) scatter plots between the average photosynthetic
CO2 assimilation rate (Ahv) and the average leaf CO2 conductance (gS) under high intensity of the
photosynthetic active radiation (758 µmol m−2s−1). Simulated Ahv were calculated at the average gS

equaling 0.007, 0.012, 0.023, 0.064, and 0.096 mol m−2s−1. Each stomata in the model was located in
the center of square (3 × 3 elements); the average gS was calculated as the CO2 conductance in the
element with stomata divided by 9. Pea seedlings were experimentally investigated; all gS and Ahv

(under the 758 µmol m−2s−1 PAR intensity) were used (n = 14). R2 is the determination coefficient.

However, SD(Ahv) should be strongly related to the absolute value of Ahv; thus, all
revealed changes could be related to changes in this value. We analyzed the coefficient of
variation (CV(Ahv)) to eliminate the influence of the absolute value of Ahv on the estimation
of the spatial heterogeneity, because the variation coefficient was calculated as the standard
deviation divided by the average value. It is shown (Figure 4b) that CV(Ahv) was also
strongly increased with increasing light intensity in all analyzed variants. The decrease
in the average gS caused by the decrease in the quantity of stomata per area unit strongly
increased CV(Ahv). The decrease in the average gS caused by the decrease in the stomatal
CO2 conductance weakly influenced CV(Ahv); however, CV(Ahv) in this variant was higher
than CV(Ahv) at the control average gS (0.064 mol m−2s−1) under low and moderate light
intensities.

We analyzed a ratio between SD(Ahv) at the control average gS and at the decreased
average gS, which was caused by the decrease in the stomatal CO2 conductance (with no
change in the quantity of stomata), and the analogical ratio between CV(Ahv) to additionally
estimate the last effect. It is shown (Figure 4c) that these ratios were increased under the
low light intensity and the ratio of CV(Ahv) was also increased under the moderate light
intensity.

Thus, the results of the simulation show that the increase in light intensity and the
decrease in leaf CO2 conductance could increase the spatial heterogeneity of the photosyn-
thetic CO2 assimilation rate. After that, we experimentally analyzed this heterogeneity to
check the revealed results. The direct experimental analysis of Ahv was not possible. How-
ever, the FvCB model [42,49–51] predicted that the linear relation between Ahv and LEF
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could be probable at the limitation of photosynthesis by the linear electron flow. Figure 5a
shows that the average Ahv and LEF were strongly linearly related with increasing LEF
(with increasing intensity of the actinic light) to about 60 µmol m−2s−1; this linear relation
was disrupted at higher values of LEF (75 µmol m−2s−1 LEF at the 758 µmol m−2s−1

light intensity). Analysis of individual Ahv and LEF (excluding LEF at 758 µmol m−2s−1

light intensity) showed a similar linear relation at LEF equaling 6.5–66.2 µmol m−2s−1

(Figure 5b). Thus, linear regression Ahv = 0.1 LEF was used for the calculation of Ahv based
on the measured LEF at LEF ≤ 66 µmol m−2s−1.
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Figure 4. Dependences of parameters of the simulated spatial heterogeneity of the photosynthetic CO2

assimilation rate (Ahv) on the intensity of the photosynthetic active radiation (PAR). (a) Dependence
of the standard deviation of Ahv (SD(Ahv)) on the PAR intensity. There were three variants of
parameters. (i) The average gS of the leaf was 0.064 mol m−2s−1, each stomata was located in the
center of the 3 × 3 elements square. This variant was assumed as the control. (ii) The average gS

of the leaf was decreased to 0.023 mol m−2s−1. The CO2 conductance in individual stomata was
decreased; each stomata was located in the center of the 3 × 3 elements square. (iii) The average gS

of the leaf was decreased to 0.023 mol m−2s−1. The CO2 conductance in individual stomata was
not changed; each stomata was located in the center of the 5 × 5 elements square. (b) Dependence
of the coefficient of variation of Ahv (CV(Ahv)) on the PAR intensity. (c) Dependence of the ratio of
the SD(Ahv) at gS = 0.023 mol m−2s−1 (3 × 3 elements) to the SD(Ahv) at gS = 0.064 mol m−2s−1

(3 × 3 elements) on the PAR intensity and the analogical dependence for CV(Ahv).
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Figure 5. The dependence of average photosynthetic CO2 assimilation rate (Ahv) on the average
linear electron flow (LEF) at 34, 108, 239, 425, and 758 µmol m−2s−1 intensities of actinic light
(n = 5–7) and the linear calibration Equation (a), the dependence of individual Ahv on individual LEF
at 34, 108, 239, and 425 µmol m−2s−1 light intensities (n = 25) and the linear calibration Equation
(b), dependences of LEF and Ahv (calculated) on the PAR intensity (n = 6) (c), and dependences
of parameters of the spatial heterogeneity of Ahv (calculated) (SD(Ahv) and CV(Ahv)) on the PAR
intensity (n = 6) (d). R2 is the determination coefficient. Ahv (calculated) was calculated based on
LEF and the calibration Equation. A combination of Dual-PAM-300 and GFS-3000 was used for
development of the calibration Equation. IMAGING-PAM M-Series MINI Version was used for
analysis of the spatial heterogeneity of Ahv. Pea seedlings were used in all variants of experiments.
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It is shown that the increase in light intensity increased the linear electron flow and
calculated Ahv (Figure 5c). The experimental SD(Ahv) and CV(Ahv), which showed the
spatial heterogeneity of the photosynthetic CO2 assimilation rate in leaves, were also
increased with increasing light intensity (Figure 5d). This result was in good accordance
with the results of the simulation and supported the induction of the photosynthetic spatial
heterogeneity under excess light conditions.

Finally, we experimentally checked the increase in CV(Ahv) at the decreased average
gS that was predicted by the developed model. It is shown that the short-term drought
(1 day) decreased the gS in pea leaves (Figure 6a), which was probably related to the stomata
closing. CV(Ahv), calculated based on the variation coefficient of LEF, was significantly
increased during the short-term drought (Figure 6b). This result experimentally supported
the increase in photosynthetic spatial heterogeneity due to the stomata closing.
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Figure 6. Influence of the short-term drought (1 day) on the leaf CO2 conductance (gS) (a) and the
coefficient of variation of Ahv (CV(Ahv)) showing the relative spatial heterogeneity of this parameter
in the leaf (b) (n = 6). GFS-3000 was used for the gS measurement (averaged in the investigated
area of the leaf) and IMAGING-PAM M-Series MINI Version was used for the analysis of the spatial
heterogeneity of Ahv (based on the spatial heterogeneity of LEF and the calibration Equation). The
moderate light intensity (249 µmol m−2s−1) was used in this experiment. Pea seedlings were irrigated
in the control and were not irrigated under drought conditions. *, difference with the control was
significant.

4. Discussion

Photosynthesis is a complex process [1,2] that can be strongly affected by numerous
abiotic stressors [3,4,15,16]. The simulation of photosynthetic processes is an effective
prediction tool of photosynthetic changes under the action of stressors [31]. There are pho-
tosynthetic models focusing on descriptions of the primary light absorption [32–34], photo-
synthetic light reactions [5,35–40], photosynthetic dark reactions, and CO2 fluxes [41–44],
etc. However, mathematical models of photosynthetic processes in the scale of the leaf
surface, which can be used for revealing the spatial heterogeneity of the distribution of pho-
tosynthetic parameters on this surface, are weakly developed. Our current work—devoted
to the solution of this problem—shows two important results.

First, the developed two-dimensional model of C3 photosynthesis in the leaf, which is
based on the FvCB model [42,49–51], descriptions of stomatal and transmembrane fluxes of
CO2 and lateral fluxes of CO2 and HCO3

− [73–75], and the simplified model of the H+ and
K+ transport [70,76,77,80] can qualitatively simulate the experimental results, including the
shape of dependence of the average Ahv in the leaf on the light intensity and the influence
of the average gS on the photosynthetic CO2 assimilation rate (see Figures 2 and 3). It
is important that this accordance between the experimental and the simulated results
does not require additional adaptation of parameters of the photosynthetic description
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in the developed model because standard parameters of the FvCB model [50] are used
(Table S1 in File S1). This result verifies the efficiency of the developed model for the
simulation of the average Ahv. Furthermore, considering that this model can also describe
the spatial heterogeneity of the Ahv distribution on the leaf surface, it is a potential tool for
the investigation of the influence of stressors on this heterogeneity.

Second, the developed model predicts the increase in the Ahv spatial heterogeneity
on the leaf surface with increasing light intensity (Figure 4). This effect is related to the
stomatal CO2 conductance and the quantity of open stomata supporting the CO2 flux into
the leaf, because the decrease in this conductance or the quantity of open stomata per leaf
area increases the simulated photosynthetic spatial heterogeneity (especially at the weak
and moderate light intensities). The results of analysis of the developed model are in good
accordance with works showing the relations of the spatial heterogeneity and the dynamics
of the stomata opening to the distribution of photosynthetic parameters in leaves [81–83].
Additionally, there are works [83–86] showing an increase in the spatial heterogeneity of
photosynthetic parameters under drought conditions. The participation of the stomata
closing due to this effect is a discussion question [85,86]; however, considering the influence
of drought on stomata [87,88], this participation cannot be excluded.

Our experimental results support the prediction of the developed model: an increase
in light intensity increases the variation coefficient of the photosynthetic CO2 assimilation
rate in pea leaves (Figure 5d) and a decrease in leaf CO2 conductance, induced by the
short-term drought, also increases this coefficient (Figure 6). These results, which are in
good accordance with the noted experimental works by other authors showing the positive
drought influence on the photosynthetic spatial heterogeneity in leaves [83–86] additionally
verify the developed model.

A potential mechanism of the revealed light-induced increase in the Ahv spatial
heterogeneity can be related to the heterogeneity of the stromal CO2 concentration in
the different cells. In accordance with the FvCB model [42,49–51], this concentration can
strongly influence Ahv in cells. On the other hand, CO2 is propagated from stomata
through lateral diffusion [89,90] and is consumed by photosynthetic processes, which can
be dependent on the light intensity. It means that an increase in this intensity and the
stimulation of photosynthesis should increase the variability of the CO2 concentration
in different cells; i.e., the light intensity should influence the spatial heterogeneity of the
stromal CO2 concentration. The additional model analysis of the variation coefficient of
this concentration shows that this coefficient is strongly increased by changes in the light
intensity from 42 µmol m−2s−1 to 221 µmol m−2s−1 (from 0.013 to 0.100, respectively);
thus, this mechanism can participate in an increase in the Ahv spatial heterogeneity under
the excess light.

A decrease in the quantity of open stomata per leaf area should stimulate this effect by
increasing the distance of the CO2 diffusion. This supposition is supported by an increase in
the variation coefficient of the simulated stromal CO2 concentration from 0.100 to 0.180 by
decreasing this quantity from one stomata per 9 cells to one stomata per 25 cells under the
221 µmol m−2s−1 light intensity. In contrast, a decrease in the stomatal CO2 conductance
(without changes in the open stomata quantity) weakly influences this coefficient (data not
shown). The last result shows that there are additional induction mechanisms of the Ahv
spatial heterogeneity in the leaf. It cannot be excluded that these additional mechanisms
also participate in influencing the light intensity on the Ahv heterogeneity.

The revealed stimulation of the Ahv spatial heterogeneity under excess light conditions
and/or under the decreased leaf CO2 conductance (imitation of the drought) can poten-
tially modify the non-photochemical quenching of the chlorophyll fluorescence, including
photodamage, state-transition in the light-harvesting complex, and energy-dependent
quenching [3,4,18,19], because low Ahv in some parts of a leaf can strongly limit photosyn-
thetic light reactions and can contribute to the induction of these processes. It means that
this spatial heterogeneity can potentially modify the plant tolerance to the actions of the
excess light. Particularly, cells with low CO2 concentration in the stroma and weak activity



Plants 2022, 11, 3285 13 of 20

of the photosynthetic CO2 assimilation should have a low threshold for both photodamage
and induction of protective changes in the photosynthetic machinery. It can be expected
that these cells can influence damage and tolerance of whole leaves under the action of
stressors (e.g., through the production and propagation of reactive oxygen species [71]);
however, this supposition requires further development of the model (e.g., a description of
the damage of photosynthetic machinery in the model can be included in the model) and
the model-based investigations.

Additionally, the increased Ahv spatial heterogeneity and related changes in photosyn-
thetic light reactions can be used for the development of methods of remote sensing plant
stress changes under excess light or drought conditions. Particularly, it can be expected that
these stressors should increase the heterogeneity of the spatial distribution of PRI because
this reflectance index is strongly related to photosynthetic parameters [61,62,64,66,67]. Po-
tentially, this effect can be used for the development of methods of remote sensing the
actions of excess light and drought on plants (based on the measurements of the spatial
heterogeneity of PRI); however, this possible stimulation of PRI under the action of stressors
requires future model-based and experimental investigations.

Figure 7 summarizes the results of our work and their potential importance for un-
derstanding the ways of plant damage and tolerance under the action of stressors and
the development of methods for plant remote sensing. It should be additionally noted
that the developed model can be used for future analysis of the influence of the stochastic
spatial heterogeneity of its parameters on photosynthetic processes; e.g., the influence of
the stochastic heterogeneity of the activity of H+-ATPases in the plasma membrane [31],
which is related to the CO2 flux into mesophyll cells [71], or the influence of the stochastic
heterogeneity of the CO2 conductance of individual stomata can be investigated. It is
known that the stochastic spatial heterogeneity of biological objects (including plants) can
influence their systemic parameters (e.g., through “diversity-induced resonance” or similar
effects, [31,68,69]); thus, the analysis of this problem based on the developed model can be
an important task.

Other interesting perspectives of the model development can be: description of stom-
ata regulation mechanisms by light intensity and drought (and potential interactions
between these mechanisms), description of the light damage to photosynthetic machinery
(and relation of this damage with stomata opening, the plasma membrane and chloroplast
envelope CO2 conductance, and activity of the CO2 carboxylation), and description of the
influence of photosynthetic processes to leaf reflectance (this description can be important
for the development of methods of remote sensing). Finally, the parameterization of the
model for specific plant species (e.g., plant species that are widely used in agriculture) can
be an additional important task for the future development of the model.



Plants 2022, 11, 3285 14 of 20Plants 2022, 11, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 7. A scheme of potential ways the excess light and drought influencing the heterogeneity of 

the spatial distribution of photosynthetic parameters and the hypothetical importance of this heter-

ogeneity for the plant tolerance and remote sensing of plant stress changes. The scheme is based on 

analysis of the developed model and experimental results (see Section 4 for details). 

Therefore, we could not expect a quantitative accordance between the simulated and 

the experimental photosynthetic parameters at verification. As a result, we analyzed the 

qualitive accordance between the results of the simulation and the results of the experi-

mental investigation of the pea plant. Pea plants were selected based on our numerous 

early works, which investigated photosynthesis and its regulation in this plant object (e.g., 

[5,66,67,91]). 

Thus, 2–3-week-old pea seedlings (Pisum sativum L., cultivar “Albumen”) were used 

for verification of the two-dimensional model of C3 photosynthesis in plant leaves. The 

plants were cultivated in a sand substrate in a Binder KBW 240, with irrigation by the 50% 

Hoagland–Arnon medium (about 50 mL) performed every two days. Luminescent lamps 

FSL YZ18RR (Foshan Electrical And Lighting Co., Ltd., Foshan, China) were used for il-

lumination (about 100 µmol m−2s−1). The weak water deficit (the short-term drought) was 

induced by an absence of irrigation of the experimental seedlings for 1 day. 

A combination of a PAM-fluorometer Dual-PAM-100 and an infrared gas analyzer 

GFS-3000 (Heinz Walz GmbH, Effeltrich, Germany) was used for the investigation of the 

average photosynthetic parameters in the second mature leaves of the pea plant. Ahv was 

Figure 7. A scheme of potential ways the excess light and drought influencing the heterogeneity
of the spatial distribution of photosynthetic parameters and the hypothetical importance of this
heterogeneity for the plant tolerance and remote sensing of plant stress changes. The scheme is based
on analysis of the developed model and experimental results (see Section 4 for details).

5. Materials and Methods
5.1. Experimental Procedure of Verification of Two-Dimensional Model of the C3 Photosynthesis in
Plant Leaves

We did not parameterize the two-dimensional model of C3 photosynthesis in leaves
for the specific plant, because using the standard parameters from earlier models, which
were included in the current model, simplified parameterization and minimized potential
errors in parameter values that were probable at the broad experimental search and could
disrupt the model analysis.

Therefore, we could not expect a quantitative accordance between the simulated and
the experimental photosynthetic parameters at verification. As a result, we analyzed the
qualitive accordance between the results of the simulation and the results of the experi-
mental investigation of the pea plant. Pea plants were selected based on our numerous
early works, which investigated photosynthesis and its regulation in this plant object
(e.g., [5,66,67,91]).

Thus, 2–3-week-old pea seedlings (Pisum sativum L., cultivar “Albumen”) were used
for verification of the two-dimensional model of C3 photosynthesis in plant leaves. The
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plants were cultivated in a sand substrate in a Binder KBW 240, with irrigation by the
50% Hoagland–Arnon medium (about 50 mL) performed every two days. Luminescent
lamps FSL YZ18RR (Foshan Electrical And Lighting Co., Ltd., Foshan, China) were used
for illumination (about 100 µmol m−2s−1). The weak water deficit (the short-term drought)
was induced by an absence of irrigation of the experimental seedlings for 1 day.

A combination of a PAM-fluorometer Dual-PAM-100 and an infrared gas analyzer
GFS-3000 (Heinz Walz GmbH, Effeltrich, Germany) was used for the investigation of the
average photosynthetic parameters in the second mature leaves of the pea plant. Ahv was
measured as the difference between the CO2 assimilation rate after 10 min under the actinic
blue light (Dual-PAM-100 was used as the source of this light) and this assimilation rate
under dark conditions. The current CO2 assimilation rate was measured by the gas analyzer
GFS-3000. The leaf CO2 conductance was calculated based on the leaf water conductance,
which was measured by GFS-3000, in accordance with Cabrera et al. [92]. The GFS-3000
was also used for supporting the 360 ppm concentration of CO2 and the 70% relative air
humidity in the measuring cuvette.

A photosynthetic linear electron flow (LEF) was calculated based on the effective
quantum yield of the photosystem II (ΦPSII), the intensity of the actinic light (PAR), the
fraction of absorbed light distributed to the photosystem II (dII = 0.42), and the fraction of
PAR absorbed by the leaves (p = 0.88) in accordance with Equation (7) [91]:

LEF = p·dII·ΦPSII·PAR (7)

ΦPSII was estimated after 10 min under the actinic light. This parameter was automati-
cally calculated by the Dual-PAM-100 software based on the current levels of fluorescence
(F) and the maximal fluorescence level after the preliminary illumination (F′m), which were
measured before initiation and before termination of the saturation pulse (300 ms, red
light, 10,000 µmol m−2s−1), respectively, in accordance with the standard procedure of
measurement by the PAM fluorometer. Equation (8) was used for the ΦPSII calculation [93]:

ΦPSII =
F′m − F

F′m
(8)

The blue light from the standard source of Dual-PAM-100 was used as the actinic light;
its intensity was varied.

There were two variants of experiments combining the Dual-PAM-100 and the GFS-
3000. First, we preliminary experimentally estimated the basic gS that was used for the
calculation of the stomatal CO2 conductance in the model (gS0 = gS·9 because one stomata
per nine elements was used as the control variant in the model, Table S1 in File S1).
Experiments were performed for 1 day; light curves were not analyzed. It was shown
that gS = 0.064 ± 0.04 mol m−2s−1 (n = 6). As a result, gS = 0.064 mol m−2s−1 (and
gS0 = 0.576 mol m−2s−1) was used as the basic leaf CO2 conductance. In the model, the
decreased gS was provided by the decreased gS

0 or the decreased quantity of stomata per
leaf area (from one stomata per 3 × 3 elements square to one stomata per 5 × 5 elements
square, see Section 2); both decreased gS should be the same when compared. Thus, the
decreased gS was calculated as the multiplication between the basic gS and 9/25 (the
decreased gS0 was similarly calculated, Table S1 in File S1).

Second, we analyzed the experimental light curves, which were investigated for the
long-time experimental series (about 2 weeks). In this case, the experimental gS was more
varied than the gS in the first case (gS = 0.058 ± 0.11 mol m−2s−1, n = 14). This variability
was used for the additional verification of the model; all experimental records in this
series were ranged and divided into two groups with the low (gS < threshold value) and
high (gS > threshold value) CO2 conductance. We found that using the 0.04 mol m−2s−1

threshold value provided an average gS which was similar to the leaf CO2 conductance in
the model: 0.069 ± 0.004 mol m−2s−1 (n = 9) and 0.027 ± 0.007 mol m−2s−1 (n = 5). After
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that, we separately statistically analyzed the light dependences in these two groups (with
the low and high CO2 conductance) to verify the developed model.

A system of PAM imaging IMAGING-PAM M-Series MINI Version (Heinz Walz
GmbH, Effeltrich, Germany) was used for the measurements of the spatial distribution of
photosynthetic parameters. The blue light from the standard source of this system was
used as the actinic light; its intensity was varied. ΦPSII was estimated at the saturation
pulse (in accordance with Equation (8)) after 10 min under the actinic light.

The analysis of the spatial distributions of LEF was based on the analysis of grayscale
images of the spatial distribution of the quantum yield of photosystem II, which were
created by software of the IMAGING-PAM M-Series MINI Version. These grayscale images
were analyzed using ImageJ 1.46r. The analysis showed the average value and the standard
deviation of ΦPSII in the standard round ROI in the center of the leaf. The coefficient of
variation was calculated as the ratio of the standard deviation of the average value. The
parameters of LEF (the average value, standard deviation, and coefficient of variation) were
calculated based on Equation (7) as the simple proportion. These parameters were used
for the estimation of the parameters of Ahv (the average value, standard deviation, and
coefficient of variation) based on the calibration curve (see Section 3.2).

5.2. Statistics

Means and standard errors were used in the statistical analysis and Student’s t-test
was used for the estimation of significance. The spatial heterogeneity was estimated
based on the standard deviation of Ahv (SD(Ahv)) and the coefficient of variation of this
photosynthetic parameter (CV(Ahv)). Numbers of repetitions were shown in figures.

6. Conclusions

The work was devoted to the development of a two-dimensional model of C3 photo-
synthesis in the plant leaf and further analysis of the induction of the spatial heterogeneity
of the CO2 assimilation rate under the excess light and a decrease in the leaf CO2 conduc-
tance; this gS decrease imitated the action of a short-term drought. First, it was shown
that the developed two-dimensional model of C3 photosynthesis in the leaf (based on the
FvCB model, the descriptions of the fluxes of CO2 and HCO3

−, and the simplified model
of the H+ and K+ transport) qualitatively simulated the experimental results. Second, the
analysis of the developed model showed that the increase in the light intensity and the
decrease in the average leaf CO2 conductance should increase the spatial heterogeneity
of the photosynthetic CO2 assimilation rate on the leaf surface. Experimental investiga-
tions supported these theoretical results. Thus, the developed model can be used as a
tool for theoretical investigations of the influence of environmental factors on the spatial
heterogeneity of the distribution of photosynthetic parameters in the leaf. Finally, there
are some potential ways to further develop the model, including its parameterization for
specific plant species, additional description of stomata regulation by light and drought,
description of light damage to photosynthetic machinery, description of relations between
photosynthesis and leaf reflectance, analysis of influence of stochastic heterogeneity in
photosynthetic and stomata parameters, and others.
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