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Abstract: The N deposition rate is notably increased in China, especially in the Qinghai-Tibetan
Plateau (QTP). How plants respond to the projected N deposition on the alpine steppe is still in
debate. In this study, to investigate the effects of N deposition on the plant community of the
alpine steppe, we simulated N deposition at six different N addition rate levels (0, 8, 24, 40, 56,
72 kg N ha−1 y−1) from 2015 to 2019. Species composition and diversity were investigated as the as-
sessment indices. The results showed that the importance value of grasses significantly increased with
the increase of the N addition rate, while that of forbs significantly decreased. A high N addition rate
(72 kg N ha−1 y−1) induced species composition change, making Leymus secalinus become the most
dominant species within the entire plant community. Compared with the control (without N addi-
tion), species richness, Shannon–Weiner diversity, Simpson dominance and Pielou Evenness were
significantly reduced under a high N addition rate. The changes of plant diversity in the alpine
steppe were closely correlated with dynamics of soil nutrients, especially total carbon (TC), total
phosphorus (TP) and ammonia nitrogen (NH4-N). Our findings suggested that a high N deposition
rate (72 kg N ha−1 y−1) could significantly change plant composition and reduce the diversity of the
alpine steppe, though they were less affected by low N deposition rates at present. With the increase
of the N deposition rate, plant composition and diversity of the alpine steppe may be negatively
affected in the future. In addition, Leymus secalinus is more competitive than other species with an N
deposition rate increase. Soil C, soil P and soil NH4-N variation induced by N deposition might play
a key role in regulating changes in plant composition and diversity in the alpine steppe. In addition,
longer term field investigation needs to be carried out to testify to this phenomenon with the increase
of N deposition in the future.

Keywords: N deposition; importance value; species diversity; soil nutrient

1. Introduction

In the 20th century, the input of N in the global terrestrial ecosystem has continued
to increase because of the large-scale burning of fossil fuels, deforestation, and the fre-
quent application of agricultural fertilizers [1,2]. Worldwide, N deposition was about
15 Tg N year−1 in 1860, but it jumped to 187 Tg N year−1 in 2005 [3]. It is estimated that
the global N deposition will reach 200 Tg N year−1 by the middle of the 21st century [4]. In
China, the total N deposition has increased significantly in the past few decades [5], and its
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average value was higher than in America and Europe. Although N is the main limiting
nutrient element in most terrestrial ecosystems, especially grassland ecosystems [6], in-
creasing N deposition can significantly change soil traits and plant properties, affecting the
ecosystem health [7,8]. Therefore, the consequence of increased N deposition has become
one of hot issues from the general views of the public, professionals and practitioners.

In recent years, due to the differences of study areas and test methods, the results
about the impacts of N deposition on the grassland ecosystem are often inconsistent. Some
studies showed that adequate N deposition was beneficial to ecosystems in N-constrained
environments [9–11]. Other studies indicated that excessive N deposition caused soil
acidification and nutrient imbalance, thus affecting the soil and plant health and causing
biodiversity loss [12–14]. It is important to clarify the responses of grassland plants and
soil to the long-term effects of increased N deposition. Species composition is an important
indicator to reflect changes in community structure, while plant diversity is an important
factor that affects the functional complexity and stability of communities [15]. For grassland
communities, numerous scholars have concluded that increased N deposition is one of the
important factors affecting species composition and diversity of plant community [16–21].
Individual species and functional groups may differ in their response to N deposition
because of the variations in N-use strategies and efficiency, causing changes of species
composition and losses of biodiversity of the plant community [18,22,23]. For the dom-
inant plant species, a few researchers found that N deposition was beneficial, allowing
them to gain more nutrients for rapid growth, thereby reducing the species richness of
the community through the loss of some rare species [24]. For the grassland soil, some
scholars reported that N deposition changed soil’s physical and chemical properties, thus
affecting the growth of individual plants, and composition as well as richness of the plant
community [25]. Therefore, it is of great importance to clarify the causes and impacts of
increased N deposition on the composition and diversity of plant communities and its
relations with soil properties in the grassland ecosystem.

The Qinghai-Tibetan Plateau (QTP), located in southwestern China, is well known
as “The Third Pole” of the earth [26]. The total area is 2.5 × 108 km2 and the average
altitude is more than 4000 m [8]. The alpine steppe is one of the key grassland ecosystems
on the QTP [27]. This unique alpine ecosystem in the QTP experiences a significant N
deposition of 7.55 kg N ha−1 yr−1 on average, with a minimum of 1.08 kg N ha−1 yr−1

and a maximum of 17.81 kg N ha−1 yr−1 [1,17], and will continuously experience increas-
ing N deposition in the future [4]. Despite numerous studies having indicated that N
deposition has a significant impact on plant diversity of the grassland ecosystems in other
ecoregions [18,28,29], knowledge regarding the response of the plant species composition
and diversity to N deposition remains limited in the alpine grassland on the QTP [27].
On this basis, we conducted this study to explore two issues: (1) the response of species
composition and diversity of plant community of the alpine steppe to N addition; (2) the
roles of soil factors affecting the plant diversity of the alpine steppe plant community. The
results of this study can provide a sound basis for sustainable protection and restoration of
the alpine grassland ecosystem on the QTP in the era of increasing N deposition.

2. Results
2.1. Effects of N Addition on Species Composition of the Plant Community

The NMDS analysis showed that increasing the N addition rate resulted in an ob-
vious shift in species composition along the first axis (Figure 1). The total plant species
number/m2 (Table S1) varied with different N addition rates. The total plant species cover
(Table S2) was significantly increased under the high N addition rates.
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Figure 1. Non-metric multidimensional scaling plot of species abundance between different N
addition rates. Dots of the same color come from the same group. Each small dot represents a plot
replication, and each large dot represents the mean value of three plot replications. Circles indicate
the 95% confidence of the mean value. The closer the distance between the two points or circles, the
smaller the difference between the two groups. Abbreviations: CK, NI, NII, NIII, NIV, and NV are 0, 8,
24, 40, 56, and 72 kg N ha−1·y−1, respectively; similarly for the following figures and tables.

The effects of the N addition rate on the importance values of component species in
the plant community are shown in Figure 2 and Table S3. The results indicated that the
high N addition rate significantly (p < 0.05) decreased the importance value of Aster alpinus
(forb plant). N addition had no significant effect on the importance value of Carex capillifolia
and Carex melanantha (sedge species). The importance value of Leymus secalinus (grass
species) significantly (p < 0.05) increased with the increase of the N addition rate. From the
perspective of functional groups, the importance value of grasses significantly increased
with the increase of N addition rate, while that of forbs significantly decreased (Figure 3a,b).
No significant relationships were found between N addition rate and the importance values
in sedges (Figure 3c).

2.2. Effects of N Addition on Species Diversity of Plant Community

The richness index, Shannon–Wiener diversity index, Simpson dominance index, and
Pielou evenness index significant decreased with the increase of N addition rate (Figure 4).
The effect of N addition rate on plant species diversity is shown in Figure S1. The richness
index variation under the NI level was insignificantly (p > 0.05) higher than that under the
control, while the NV level led to the lowest richness among all the levels (p < 0.05). Com-
pared with CK, the Shannon–Wiener diversity index was significantly (p < 0.05) lower than
under the NV level. The Simpson dominance index under the NV level was significantly
(p < 0.05) lower than that under other levels. The Pielou index was the lowest (p < 0.05)
under NV level.
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Figure 2. Species composition and importance values of plant communities of the alpine steppe
under different N addition rates.

Figure 3. Relationship between functional group importance values and N addition rates: (a) grass
functional group, (b) forb functional group, (c) sedge functional group.

Figure 4. Relationship of Richness index: (a), Shannon–Weiner index (b), Simpson index (c), Pielou
evenness index, (d) with N addition rate.
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2.3. Relationship between Species Diversity and Soil Nutrients in the Alpine Steppe

Table 1 shows Pearson’s correlations for richness, Shannon–Wiener, Simpson, Pielou,
and soil nutrients. Richness was significantly negatively correlated with soil TC (r =−0.471;
p < 0.05) and NH4-N (r = −0.573; p < 0.05). There was a strong negatively correlation
between Shannon–Wiener diversity and soil TC (r = −0.519; p < 0.05), TP (r = −0.532;
p < 0.05), and NH4-N (r = −0.614; p < 0.01). There was a strong negatively correlation
between Simpson dominance and soil TC (r = −0.591; p < 0.01), TP (r = −0.485; p < 0.05),
and NH4-N (r = −0.660; p < 0.01). Pielou evenness had a significantly (r = −0.678; p < 0.01)
negative relation with soil TP. There was no strong correlation (p > 0.05) between the plant
diversity index and other soil factors. No significant (p > 0.05) correlations were found
between soil pH and plant diversity index.

Table 1. Person’s correlation test between species diversity and soil nutrients.

Variables
Plant Diversity

R H D J

Soil

TN −0.217 −0.229 −0.338 −0.13
TC −0.471 * −0.519* −0.591 ** −0.427
TP −0.158 −0.532* −0.485 * −0.678 **
TK 0.066 −0.017 −0.017 −0.089

NO3-N −0.214 −0.275 −0.201 −0.242
NH4-N −0.573 * −0.614 ** −0.660 ** −0.435

AP 0.027 −0.14 −0.118 −0.257
AK 0.224 0.156 0.207 0.059
pH 0.133 −0.121 −0.1 −0.308
Ca −0.425 −0.33 −0.462 −0.04

Note: * Indicates the significance level p < 0.05; ** indicates the significance level p < 0.01. Abbreviations: R is
Richness Index; H is Shannon–Wiener diversity Index; D is Simpson dominance Index; J is Pielou evenness Index;
TN is total nitrogen content; TC is total carbon content; TP is total phosphorus content; TK is total potassium
content; NH4-N is ammonium nitrogen content; NO3-N is nitrate nitrogen content; AP is available phosphorus
content; AK is available potassium content; Ca is Calcium content; Mg is Magnesium content; S is sulfur content.

There were significant changes in soil NH4-N, TN, TC, TP, AP, AK, and Ca under N
addition (p < 0.05), while N addition had no significant effect on other soil properties such
as, soil NO3-N, pH, Mg, and S (Table S5).

3. Discussion
3.1. Responses of Plant Species Composition of Alpine Steppe to N Addition

In the present study, the species composition of the plant community of the alpine
steppe was altered significantly after 5-year N addition. N addition increased the im-
portance values of grasses. A similar phenomenon was also found in other grassland
ecosystems [18–20,30]. We also found that the importance value of forbs decreased with
increasing N addition rate. These can be explained by the beneficial effects of N addition
on the grass group due to their taller individuals and faster growth rate than those of the
forb group [19,20]. These responses imply that forbs species may have disadvantages other
than grass species in accessing nutrient resources. In other words, N addition improved
the growth of grasses species and suppresses the growth of forbs species. In this study,
Leymus secalinus became the most dominant species in the alpine steppe, suggesting that
Leymus secalinus was a strong competitor for N resource. Most grass species are nitrophilous
and have similar responses [31,32] under N addition. As one representative species of
grass, Leymus secalinus is a perennial herb with developed rhizomes and it is maybe a
kind of nitrophile, making it competitive under the high N load. This might be the good
explanation for the shift of plant composition of the alpine steppe into Leymus secalinus
dominated. All in all, different responses of plant species or functional groups to different
levels of N additions led to changes in plant community composition. This implies that the
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native plant community of the alpine steppe will shift towards another plant community
with the increasing N deposition on the QTP.

3.2. Responses of Plant Species Diversity of the Alpine Steppe to N Addition

For grassland ecosystems, increased N deposition poses a great threat to biodiver-
sity [17,24]. A large number of N addition experiments had shown that N addition re-
duced plant diversity in different types of grassland ecosystems, e.g., temperate grass-
land [29,33,34], acidic grasslands [19,35,36], saline mountain grasslands [28,37]. We found
in the present study that the low level of N addition has no effect on species diversity of the
alpine steppe, while a high level of N addition can significantly decrease plant diversity of
the alpine steppe. This means that the responses of plant species diversity in the grassland
ecosystems to N addition may be dependent on the level of N addition. Moreover, this
implies that high N addition has a greater impact on the diversity of alpine steppe ecosys-
tems, that is, the higher the N addition, the greater the loss of grassland ecosystem diversity.
Additionally, this indicates that N is a key limiting factor for plants growth in the alpine
steppe. Possible reasons for declined plant diversity under high-level N deposition might
be: (1) the N-preferred plants can be promoted to take more light and water resources via
strong competition in the community, e.g., the taller species shaded shorter species, and the
dwarf plants were restricted by light and excluded from the community, ultimately leading
to a decrease in species diversity [19,38]; (2) increased available N in the soil might acceler-
ate the growth of resource-obtaining species with the faster return on nutrient investment,
while it inhibits the growth of resource-conserving species, leading to the declined plant
diversity [39]; (3) increased N can promote the density of the litter, which may shade or
inhibit the growth of living plants, thereby reducing plant species diversity [18].

In summary, the mean annual N deposition is currently 7.55 kg N ha−1 yr−1 in
this study site [1,17], which has very little effect on plant diversity. However, with the
continuous projected increase of N deposition in alpine regions [4], the alpine grassland
ecosystem is facing the problem of plant diversity decline. Longer-term field investigation
is still needed to examine N deposition effects on grassland ecosystem in the future.

3.3. Soil Nutrients Affecting Plant Species Diversity of the Alpine Steppe under N Addition

Soil nutrients were the important impacting factors for the plant community composi-
tion and biodiversity [40,41]. The effects of soil nutrients on plant diversity were complex.
In this study, we found that the plant species diversity was negatively correlated with soil
NH4-N. Previous scholars [42–44] supported this finding by presenting similar results in
different research areas. Our previous studies verified that N: P was less than 14 under
different N addition treatments in the alpine steppe [17], implying N was still the main
limiting nutrient in the alpine steppe. Some studies showed that N deposition can reduce
soil N use efficiency by plants in N-limited alpine grasslands [8,41], resulting in the N
residue in the soil [45]. The retention of NH4-N in the topsoil but not of NO3-N may be
due to rapid plant uptake, mobility, and lability of any excess nitrate [13,19]. This is why
we found a significantly positive relationship between N addition and soil NH4-N content
in this study. N deposition can make a great deal of NH4

+ accumulation in soil, which
promotes some grasses to become dominant plants and restricts the growth of other species,
finally leading to the decrease of plant species diversity [19]. We argue that soil is diverse
in nature and its complexity makes its interrelationships with biodiversity a challenge for
future interpretation [43]. All in all, we found that soil nutrient under N deposition was
closely correlated with the species diversity, suggesting that the imbalance of soil nutrient
induced by N deposition could be the cause for the change in plant species composition
and structure, and the plant diversity as well.

Appropriate grassland management (e.g., mowing, grazing, and sod cutting) may
be an effective way to maintain plant biodiversity under the background of enhanced
atmospheric N deposition in the future [46–48].
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4. Materials and Methods
4.1. Study Sites

This study was conducted in Tiebujia Village, Gonghe County (99◦35′ N, 37◦02′ E,
3270 m a.s.l.), which is located at the west sides of Qinghai Lake in Qinghai Province,
China [26]. The study site has a typical plateau continental climate with long sunshine
hours. Over there, the mean annual temperature is −0.4~1.2 ◦C, the annual precipitation is
360~430 mm, and the annual evaporation is about 1550 mm [44]. The typical vegetation is
the alpine steppe with dominant plant species of Stipa capillata L. and Poa crymophila Keng.
The soil is mostly sandy loam [26].

4.2. Experimental Design

In May 2014, 18 plots (replicates) of 2 m × 5 m with 1 m the buffering area were
randomly placed in an alpine steppe in Tiebujia Village. The plots were randomly treated
by six levels of N deposition, 0 kg N ha−1·y−1 as the control (CK), 8 kg N ha−1·y−1 (NI),
24 kg N ha−1·y−1 (NII), 40 kg N ha−1·y−1 (NIII), 56 kg N ha−1·y−1 (NIV), 72 kg N ha−1·y−1

(NV), with three replicates for each N treatment (Figure S2). According to Zong et al.,
(2016) [49], 50 kg N ha−1·y−1 critical loads, the high N addition level mainly is intended
to simulate the N saturation state. All the treatments had similar topographic conditions
and land use histories. The N deposition was simulated with fertilization with granular
ammonium nitrate (NH4NO3) in early May and July every year since 2014. Until 2019, we
have fertilized for 5 years continuously.

4.3. Plant and Soil Sampling

In July 2019, we randomly placed one 1 m × 1 m quadrat in each plot for investigating
plant species composition including name, abundance, coverage, and frequency of each
species. Species abundance is the number of species in the community. Species coverage
refers to the percentage of the vertical projected area of the above-ground part of the species
to the surveyed area. Species frequency refers to the frequency of occurrence of the species
within the survey range. After recording the plant species composition, we collected the
soil samples at a depth of 0–20 cm depth soil cores from each plot. The collected soil
samples were sealed in Polyethylene bags and transported to the lab for analysis after being
air-dried, ground, and sieved (a 100 mesh sieve was used for soil nutrients measurement
and 18 mesh for pH measurement).

An elemental analyzer (Elementar, EA 3000, Langenselbold, Germany) was applied
to measure the total nitrogen (TN) and total carbon (TC) content of the soil. Ammonium
nitrogen (NH4-N) and nitrate nitrogen (NO3-N) were measured using a flow injection
auto-analyzer (Tianjin Zhongtong Technology Development, AACE, Berlin, Germany).
We used ICP-MS (SPECTRO ARCOS EOP, Germany) to measure the total phosphorus
(TP) according to the following procedures. Soil samples were first digested in sulfuric
acid and then quantified using the ICP Elemental Analyzer [17]. The concentrations
of available phosphorus (AP) were extracted from soil samples with calcium chloride
(CaCl2) solution, and the supernatant was collected with a pipette and stored at 6 ◦C until
analysis [17]. The concentrations of available potassium (AK) are measured similarly to the
available phosphorus (AP), but Ammonium Acetate solution is used to extract the available
potassium (AK) from soil samples. AP and AK were measured by ICP-MS (SPECTRO
ARCOS EOP, Kleve, Germany) [17]. Soil pH was measured with a pH meter using a 1:2.5
soil: water ratio [50]. Calcium (Ca), Magnesium (Mg), potassium (K), and sulfur (S) were
measured by atomic spectrometry (AA-610S; Shimadzu, Kyoto, Japan) [8].
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4.4. Statistical Analysis
4.4.1. Species Importance Value

We calculated the importance value (IV) of the plant species using the following
formula [31]:

IV = (relative frequency + relative coverage + relative abundance)/3 × 100% (1)

The relative frequency is the percentage of the frequency of individual species in the
sum of the frequencies of all species. The relative coverage is the percentage of the coverage
of individual species in the sum of coverage of all species. The relative abundance is the
percentage of the number of individuals species in a unit area to the number of all species
in a unit area.

4.4.2. Species Diversity Index

Plant species diversity was evaluated using the four-dimensional biodiversity indices,
i.e., richness index (R), Shannon–Weiner diversity index (H), Simpson dominance index (D),
Pielou Evenness index (J), which were calculated based on the following formulas [30,43,51]:

R = S (2)

where R represents richness index, S means the total number of species in the community.

H = −∑Pi lnPi (3)

where H represents Shannon–Weiner diversity index, Pi is the ratio of the number of
individuals belonging to species i to the total number of individuals in the community.

D = ∑Pi
2 (4)

where D represents Simpson dominance index, and Pi is the ratio of the number of individ-
uals belonging to species i to the total number of individuals in the community.

J = H/lnS (5)

where J represents Pielou Evenness index, H represents Shannon–Weiner index, S is the
total number of species in the community.

4.4.3. Statistical Analysis

Our data were presented as means ± standard error (SE) in figures and tables. The
‘vegan’ and ‘ggplot’ packages in R (4.1.2) were used for Nonmetric multidimensional scaling
(NMDS) of species abundance among different N addition levels. Duncan’s Multiple Range
Test in analysis of variance (ANOVA) was used to test the effects of different N addition
on the plant community composition, diversity indices, and soil nutrients in SPSS 23.0.
We employed the simple linear regression model to determine the relationship between
functional group importance value, plant diversity, and N addition rate. We used SPSS 23.0
to perform Normality Test and assessed the relationship between plant diversity and soil
nutrients by using Pearson‘s correlation. GraphPad Prism 8.0 was used for drawing.

5. Conclusions

From this 5-years N addition study, we found that importance values of differ-
ent functional groups and species responded differently to N addition. It is clear that
the importance value of the grass functional group significantly increased, while that
of forbs significantly decreased with the increase of N addition. Leymus secalinus was
the most adaptive species within the entire community. The high level of N addition
(72 kg N ha−1·y−1) has a greater impact on the diversity of alpine steppe ecosystems.
Additionally, under the continuous N addition for 5 years, the changes of plant diversity in
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the alpine steppe had a close relation with soil nutrients, especially total carbon (TC), total
phosphorus (TP), and ammonia nitrogen (NH4-N). Soil nutrients imbalance induced by
long term N addition may be the main cause that leads to the species diversity loss and
composition shift in alpine steppe.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants11070966/s1, Table S1; The changes of total plant
species number /m2 under different N, Table S2; The changes of total species cover under different N,
Table S3 The importance values of all species of alpine steppe under different N, Table S4 The changes
of soil physicochemical under different N, Figure S1. Richness index (a), Shannon-Weiner diversity
index (b), Simpson dominance index (c), Pielou Evenness index (d) of alpine steppe under different
N addition levels. Different lowercase letters indicate significant differences among levels (P < 0.05).
Error bars represent standard error (SE) (n = 3), Figure S2 The arrangement of experimental plots of
different N.
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