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Abstract: Stevia rebaudiana Bertoni is a valuable plant whose products are increasingly used in
medicine, pharmacy and the food industry. This necessitates the use of biotechnological approaches
for its mass propagation. Establishing optimal conditions for in vitro cultivation is essential for
obtaining high biomass and secondary metabolites production. A large number of articles considering
the role of plant growth regulators and other additives in the culture medium in the growth and
development of Stevia are available in the literature. However, there are no summarized data
about the use of nanoparticles in Stevia tissue cultures. Therefore, this review also includes the
research conducted so far on the effect of nanoparticles on Stevia micropropagation. Furthermore,
the influence of different elicitors on secondary metabolite production and antioxidant activity of
in vitro-cultivated Stevia plants have been discussed. By referring to the collected literature, we
concluded that biotechnological approaches applied to S. rebaudiana cultivation might improve the
agronomic traits of plants and steviol glycosides production.

Keywords: antioxidant activity; in vitro; nanoparticles; plant cell culture; plant growth regulators;
stevioside

1. Stevia rebaudiana (Bertoni)
1.1. Botanical Description

Stevia rebaudiana Bertoni is a herbaceous perennial plant of the Asteraceae family [1]. It
is native to South America, in particular Brazil and Paraguay [2]. The plant is approximately
60–75 cm tall, the leaf is sessile and oppositely arranged, the flower is white and the seed
is very small [3]. Dr Moises Santiago Bertoni first reported this plant in 1887 [3] when he
learned of its unique properties from the Paraguayan, Indians and Mestizos [4].

1.2. Applications

Stevia is a natural sweetener plant known as Sweet leaf, Sweet herbs and Honey
leaf [5–7]. The sweetness is due to the presence of more than 30 different steviol glycosides
(SGs) found mainly in the leaves [2,8]. SGs are diterpenoids whose chemical structure is
based on an aglycone core known as steviol (ent-13-hydroxyur-16-en-19-oic acid) to which
a different number and types of sugar molecules are attached [9]. The four abundant SGs
are stevioside, rebaudioside A, rebaudioside C and dulcoside A. The content of sweet
components varies between 4 and 20% in the dry leaves [10]. Pure steviosides are non-
caloric and 300 times sweeter than sucrose or cane sugar [3,11,12].

Stevia is used in many forms such as fresh and dried leaves, leaf powder, extracts
and liquid concentrates [2]. The powdered form of the leaves has hypoglycemic and body-
weight-reducing efficiency [13]. It has been recommended for diabetic and diet-conscious
patients [3,13,14]. Stevia has been used in a wide range of processed foods as a substitute
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for conventional sugars, or artificial dietetics [15]. It is approved by the Food and Drug
Administration (FDA) as a dietary supplement [14]. The plant is also a valuable source of
proteins, carbohydrates, dietary fibers, vitamins, minerals, essential amino acids, fatty acids,
and other health-favorable bioactive compounds such as non-glycosidic labdane diterpenes,
flavonoids, phenolic compounds, phytosterols, chlorogenic acids and triterpenes [2,16].
Stevia extract possesses various biological activities, including antihypertensive, antidia-
betic, antiobesity, antitumor, anticaries, antioxidant, anti-inflammatory, antimicrobial and
antifungal effects and is known to improve kidney function [2,17–20]. Nowadays, the plant
is cultivated in China, Taiwan, Thailand, Korea, Japan, India, Malaysia, Philippines, Hawaii
and South America for food and pharmaceutical products [7,17,21,22].

2. Propagation of Stevia rebaudiana (Bertoni)

Traditionally, Stevia can be propagated using seed or stem cutting. However, the
plant seeds show a very low germination percentage [23–25] due to inbreeding depression,
which causes the production of sterile seeds [26]. Propagation using the seed also causes
great variability in stevioside level and composition [27]. Vegetative propagation is limited
to a low number of individuals that may be obtained from a single plant and successfully
adapted to the soil [28,29]. For commercial purposes, when large-scale propagation is
necessary, the conventional method of production is not adequate to fulfil the required
demand. The tissue culture is the only alternative method for the mass propagation of
S. rebaudiana [3]. In recent years, plant tissue culture techniques have become of major
industrial importance in the area of plant propagation. Apart from their use as a tool for
mass plant propagation, plant tissue culture techniques have also found application in
the area of plant conservation, disease elimination, plant improvement and secondary
metabolite production [30].

3. Stevia Tissue Culture Techniques

Various kinds of plant tissue culture techniques such as in vitro propagation, genetic
engineering, suspension cultures, callus culture, adventitious root culture and elicitation
have been developed for mass propagation, biomass and secondary metabolite production
of S. rebaudiana [31]. The earliest study of Stevia tissue culture found in the literature is by
Handro et al. [32]. The authors established that discs from leaves and internodal segments
are able to produce vigorous calluses when cultured on synthetic media containing auxin
(indole-3-acetic acid—IAA or 2,4-dichlorophenoxyacetic acid—2,4-D) and cytokinin (6-
benzyl aminopurine—BAP, kinetin—Kn or zeatin—Z). The best results have been obtained
on media with 2,4-D (800 µg/L) and one cytokinin (BAP, Kn or Z, 200 µg/L). In the same
research, the addition of adenine was also tested, without any apparent effects. Yang
and Chang [33] reported the induction of multiple shoot formation on excised leaflets
with a minimum of callus formation in vitro on MS media supplemented with 2–10 mg/L
BAP with the following root induction on MS medium without hormones. Since then,
many researchers have investigated the role of nutrient media, plant growth regulators,
different additives and types of explants on the growth, development and steviol glycoside
content of Stevia [14,34–40]. Nowadays, various protocols for its mass propagation in vitro
have been established. Singh et al. [41] conducted a detailed review of the established
protocols for Stevia micropropagation. Generally, in vitro regeneration can be achieved by
somatic embryogenesis and organogenesis from different explants by manipulating the
ratio of cytokinin to auxin in the nutrient medium [42,43]. Bespalhok-Filho and Hattori [14]
obtained somatic embryogenesis from floret explants of S. rebaudiana cultured on the
Murashige and Skoog (MS) [44] medium supplemented with 2,4-D (9.05 and 18.10 µM) and
Kn (0 to 9.29 µM). On 9.05 µM of the 2,4-D supplemented medium, maximum embryogenic
callus formation occurred without Kn. On 18.10 µM of the 2,4-D supplemented medium,
the best treatment was with 2.32 µM Kn. The embryogenic callus started at the base of
the corolla and ovary. The organogenesis of Stevia can be achieved from callus [32,45]
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and suspension [46] cultures, shoot tip [36], axillary bud [47], nodal [34] and leaf [33,46,48]
explants, anthers [49] and flowers [50].

4. Callus and Suspension Cultures

The callus is referred to as a mass of nondifferentiated cells. A callus culture was
obtained by excising an explant from the parent plant and placing it onto a nutrient
medium supplemented with an appropriate combination of phytohormones [38,51]. Leaf
discs and nodal explants of Stevia are able to produce callus when cultured on MS media
supplemented with 2.0 mg/L BAP and 1.0 mg/L α-naphthalene acetic acid (NAA) [52].
Golkar et al. [40] obtained optimum callus growth on the MS medium containing 1 mg/L
NAA + 0.5 mg/L BAP. Das et al. [38] reported that Kn in combination with NAA and 2,4-D
exhibits better results for callus initiation, whereas the combined application of BAP and
NAA in a half-strength MS medium was optimal in maintaining callus. Khalil et al. [53]
reported the successful callus-mediated propagation of S. rebaudiana from leaf explants.
The authors achieved the best callus induction (84.6%) on the MS medium augmented
with BAP (2.0 mg/L) and 2,4-D (2.0 mg/L). The highest number of shoots per explant was
obtained on a medium containing BAP (1.5 mg/L) and gibberellic acid (GA3; 0.5 mg/L).
Suspension cultures are composed of isolated cells and cellular aggregates. Ferreira and
Handro [46] described a method for the production, maintenance and plant regeneration
of S. rebaudiana (Bert.) from cell suspension cultures. These cultures were obtained af-
ter 20–30 days by using friable callus as the initial inoculum in liquid media with BAP
(0.5 mg/L) + 2,4-D (1.0 mg/L) and periodic filtering (100–500 µm sieves) with a 6–7-day
interval between subcultures. Cultures derived from actively growing calli have been
primarily diploid (2n = 22), whereas those derived from senescent calli have shown a wide
variation in chromosome number (55–200). Stock cell suspensions that had been maintained
for 3 years were plated on the basal Linsmaier and Skoog (LS) [54] agar medium with BAP
(0.5 mg/L) + 2,4D (0.5 mg/L) to form callus. Calli originating from predominantly 2n cell
suspensions, when transferred to a medium with Kn (2.0 mg/L) + NAA (0.02 mg/L), were
able to form buds. Shoot elongation and further rooting of isolated shoots were better
on an LS medium devoid of growth regulators. Variation in rooting capacity, plant vigor,
morphological character and chromosome number was found amongst regenerated plants.
Mathur and Shekhawat [55] (2013) established cell suspension cultures of S. rebaudiana as a
strategy to obtain an in vitro stevioside producing cell line. The optimal biomass growth
was obtained in a full-strength MS liquid basal medium augmented with 2,4-D (0.27 µM),
BAP (0.27 µM) and ascorbic acid (0.06 µM). Callus tissues can sustain the power of cell
division for a longer period and are thus suitable for the production of desirable bioactive
compounds, germplasm conservation, gene manipulation and genetic engineering [31].

5. Direct Organogenesis

Yang et al. [34] (1981) obtained the highest axillary shoot proliferation by culturing
nodal explants of S. rebaudiana in an MS medium supplemented with BAP (2 mg/L), Kn
(10 mg/L) and N6-(2-isopentenyl)-adenine (iP; 10 mg/L). Hwang [56] reported the max-
imum induction of adventitious shoots from nodal explants on an MS medium supple-
mented with 2 mg/L IAA and 0.5 mg/L Kn. Ahmed et al. [7] obtained the maximum
axillary shoot proliferation from nodal explants cultured on the MS medium with 1.5 mg/L
BAP + 0.5 mg/L Kn. Thiyagarajan and Venkatachalam [57] cultivated Stevia nodal explants
on the MS basal medium fortified with different concentrations of BAP (0.5–3.0 mg/L)
and Kn (0.5–3.0 mg/L) individually for shoot bud induction. The maximum number of
shoots (123 shoots/explant) was noted on the MS medium supplemented with 1.0 mg/L
BAP after three subcultures on the same media composition. Khan et al. [58] proposed a
protocol for the in vitro multiplication of S. rebaudiana from nodal explants cultivated on the
MS medium fortified with 2 mg/L BAP, 1 mg/L NAA and 5 mg/L urea. Tamura et al. [36]
established clonal propagation of the plant species by culturing stem tips with a few
leaf primordia on the LS agar medium [54] supplemented with a high concentration
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(10 mg/L) of Kn. The number of shoots yielded from a single shoot tip after 80 days varied
from 50 to 100. Shoot primordia were induced from shoot tips on the Gamborg B5 [59]
medium containing BAP and NAA [60]. Stevia shoot tip, nodal and leaf explants can
regenerate shoots when cultured on an MS medium supplemented with BAP and IAA [37].
Das et al. [38] reported that shoot explants placed on MS media supplemented with Kn
(2 mg/L) promoted optimal in vitro micropropagation of S. rebaudiana. In a study per-
formed by Röck-Okuyucu et al. [39], the effect of different plant growth regulators (PGRs)
(BAP, Kn, thidiazuron—TDZ, IAA and NAA) on growth and steviol glycoside content was
determined. The authors conclude that a PGR-free medium provides the development of
healthy plants with the simultaneous formation of shoots and roots. High-performance
liquid chromatography (HPLC) showed higher stevioside and rebaudioside A content in
the leaves of Stevia grown on a PGR-free medium compared with the PGR(s)-containing
media. Akbari et al. [61] established a positive effect of the addition of inorganic nitro-
gen sources, i.e., NH4NO3 (1650 mg/L) and KNO3 (950 mg/L), to the MS medium on
some morphological traits of S. rebaudiana Bertoni derived from axillary nodes as explants.
Moreover, the presence of nitrogen sources increases both the shooting and rooting of the
plant. Rooting of the in vitro derived shoots could be achieved following subculture onto
an auxin-containing medium [37]. Tamura et al. [36] used a medium containing NAA
(0.1 mg/L) for root formation. A 96% frequency of rooting was achieved after cultivating
shoot tips (>2 cm) on a half-strength MS medium augmented with 0.4 mg/L NAA [57].
Khan et al. [58] reported root induction on MS media with NAA (4 mg/L). The rooted
plantlets could be successfully transferred into pots containing sand and soil in a ratio of
1:2 and subsequently cultivated in the greenhouse [57].

6. Genetic Variability

A major problem associated with in vitro culture is the possible occurrence of so-
maclonal variation among the subclones of parental lines [62] due to chromosomal rear-
rangements, DNA methylations and gene mutation [63,64]. The propagation of plants from
callus tissue may bring about frequent genetic variability in the regenerated plants [36,58].
In general, plant populations produced by direct organogenesis from shoot meristems,
nodal and leaf explants have been reported to be genetically uniform [58,60,65–68]. Further-
more, the clonal plants showed significantly smaller variations than the sexually propagated
plants; they were almost as homogeneous as the plants propagated by cuttings [66]. Ran-
domly amplified polymorphic DNA (RAPD) analysis of Stevia plants obtained by indirect
organogenesis from leaf explants indicated that some of the regenerated plants were 100%
similar to the mother plant and some were 71, 57 or 14% similar [69]. In another study,
inter simple sequence repeat (ISSR) analysis of Stevia plantlets obtained from callus culture
showed genetic variation during the period of culturing, whereas those from nodal seg-
ments did not [68]. Soliman et al. [70] used fourteen different ISSR primers to analyze the
genetic stability of eight subcultures of Stevia plantlets obtained through multiple shoot
regeneration from nodal explants and mother plants. Out of all the initially tested primers,
four ISSR primers generated clear, distinct and reproducible bands. All ISSR profiles from
the first to fifth subcultures of micropropagated plants have been monomorphic and similar
to mother plants, while low variation was induced in the next subculture [70]. In a study
conducted by Modi et al. [71], RAPD marker analysis of plants raised in vitro from axillary
nodes did not show any somaclonal variation. Ramírez-Mosqueda et al. [29] detected 89.6%
genetic similarity between S. rebaudiana plantlets micropropagated in temporary immersion
systems. All these results suggest that clonal propagation via stem-tip culture is an effective
method of obtaining a population of uniform plants [67].

7. Elicitation

Elicitation is a common treatment used in in vitro cultures for obtaining secondary
metabolites by using different elicitors [31,72]. A variety of microbial, physical and chemical
factors may be considered as elicitors. Some of these elicitors act as signalling molecules,
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which produce engineered stress conditions in plant cells and initiate the production of
reactive oxygen species (ROS), which directly or indirectly enhances the accumulation of
secondary metabolites [31]. Several research articles on the positive effects of different
elicitors on steviol glycosides biosynthesis in in vitro-cultivated S. rebaudiana are available
in the literature [31].

7.1. Physical Elicitors
7.1.1. Light

Light is one of the major elicitors that alters the morphogenetic and biochemical re-
sponses of plants [73]. Although S. rebaudiana is a short-day plant, it was reported that a
long-day (16 h) photoperiod induces vegetative growth, thereby significantly increasing
leaf biomass and SGs content [8]. In addition to photoperiod, light intensity is also an
important factor affecting plant growth and secondary metabolite production. Nakonech-
naya et al. [74] established that an LED (light-emitting diode) light with an intensity of
75 and 230 µmol/(m2s) provided maximal values of morphometric and mesostructural
parameters of Stevia plantlets raised in vitro. Several articles regarding the effect of dif-
ferent light spectra on in vitro cultivation of plant species are available in the literature.
Ahmad et al. [73] investigated the effect of various spectral lights on biomass accumulation
and secondary metabolite production in the callus culture of S. rebaudiana. Maximum
callogenesis (92.73%) was induced by white light followed by yellow (88.34%), blue (76.4%),
green (75.12%) and red (64.34%) lights. Callus fresh and dry weights decreased in the order
of white-, red-, yellow-, green- and blue-light treatments. Blue light induced the highest
phenol and flavonoid content and total antioxidant capacity, while treatment with red
and green lights led to the highest 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scaveng-
ing activity [73]. Another study performed with S. rebaudiana adventitious root cultures
showed that violet light had a stimulating effect on biomass accumulation, while red light
exhibited an inhibitory one. As in the above-mentioned study, the maximum accumulation
of phenolic compounds was observed after treatment with blue light [75]. The red–blue
spectrum treatment had an inhibitory effect on the shoot growth and led to the formation
of shortened internodes as compared with the control (fluorescent white lamps). However,
root formation increased under these conditions. Five days after returning the shoots
to the control treatment, elongation of the newly formed internodes was observed. In
response to monochromatic red LED light, shoots with elongated internodes were formed,
while under blue LED light, more compact microshoots were observed. However, the
multiplication rate was the same after both treatments. As regards the green LED and
white fluorescent (control) lights, there have been no significant differences in the shoot
height and multiplication coefficient [76].

7.1.2. Temperature

As an abiotic stress factor, temperature strongly influences plants’ growth and secondary
metabolism accumulation [77]. Tissue cultures are extremely sensitive to variations in tem-
peratures. The optimal temperatures for plant growth in vitro are species specific and usually
higher than those observed for the growth of intact plants [78]. The literature data on the
influence of temperature on growth and secondary metabolite production in Stevia cultivated
in vitro are scarce. Mubarak et al. [79] studied the effect of various degrees of temperature
(20, 25 and 30 ◦C) on the in vitro growth of the plant, as the highest number of shoots per
explant was observed at 25 ◦C. Yang et al. [80] performed a pot study of S. rebaudiana for the
evaluation of the influence of low (15 ◦C) and high (35 ◦C) temperatures on the transcript
levels of fifteen SGs biosynthesis pathway genes. All the genes were transcribed maximally at
25 ◦C, while both low and high temperatures restrained their transcription.

7.2. Chemical Elicitors

Summarized data about the effect of certain elicitors on Stevia growth and secondary
metabolite production are given in Table 1.
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7.2.1. Plant Growth Regulators

Salicylic acid (SA), methyl jasmonate (Me-JA) and gibberellic acid enhanced the stevio-
side content in S. rebaudiana grown in vitro [40,81–84] (Table 1). Golkar et al. [40] evaluated
the effect of different concentrations of salicylic acid (SA) (0.25, 0.5 and 0.75 mg/L) on
callus growth and SGs production in the callus culture of Stevia. The addition of SA at
a concentration of 0.75 mg/L resulted in the highest level of callus growth rate, callus
diameter and relative callus fresh weight. The addition of 0.25 mg/L of SA to the MS
medium led to the production of the highest amount of rebaudioside A (3.40 mg/g dry
weight callus). Adventitious roots cultured in media supplemented with gibberellic acid
(2 mg/L) accumulated SGs in high concentrations [85].

7.2.2. Complex Organic Extracts

Positive effects of certain growth additives such as alginate (ALG), casein hydrolysate
(CH), coconut water (CW), malt extract (ME), yeast extract (YE) and chitosan (CHI) on
plant growth and secondary metabolite production in S. rebaudiana cultured in vitro have
been reported [82,86] (Table 1). Casein hydrolysate is a complex organic extract and can be
a source of calcium, phosphate, several microelements, vitamins and, most importantly,
a mixture of up to 18 amino acids [87]. The addition of casein hydrolysate to the woody
plant medium (WPM) enhanced stevioside and rebaudioside A content in Stevia [82]. The
stevioside content increased 8.38-fold (13.05 mg/g DW) with the treatment of 0.5 g/L CH
compared to the control. Although a subsequent decrease in stevioside production was
observed with concentrations of 1.0 and 2.0 g/L, both provided higher metabolite content
than the control plants [82]. Casein hydrolysate was found to promote the accumulation
of stevioside and rebaudioside A in the callus culture of S. rebaudiana [88]. The molecular
structures of the active ingredients of YE are unknown, but it is known that they can elicit
plant defense responses [89,90]. ALG is a polysaccharide present in the cell walls of brown
algae. Bayraktar et al. [82] reported an increase in stevioside production from 1.56 mg/g
dry weight (DW) to 14.69 and 14.54 mg/g DW in the in vitro Stevia plantlets exposed
to 0.5 g/L ALG and 2.0 g/L YE, respectively. CW contains growth hormones, and its
addition to the nutrient media improved Stevia shoot growth. The optimal concentration
in which the maximum shoot length and the number of shoots were observed was 15%,
whereas higher concentrations (20%) led to the formation of callus at the cut ends with the
following decrease in the shoot multiplication rate [86]. ME is a source of carbohydrates,
auxins and gibberellins. Lower concentrations of ME (0.025%, 0.05%) induced Stevia shoot
bud initiation and multiplication, whereas higher doses (0.075%, 0.1%) reduced these
parameters [86]. CHI is a linear polysaccharide known to induce an increase in the lignin
biosynthesis and cell wall lignification of plants, resulting in better shoot growth and an
increase in weight [82]. It is the main structural component of the cell wall of plant pathogen
fungi, which mimics its effects and activates the biosynthesis of defense-related secondary
metabolites in plants [91–94]. SGs are similar to other secondary plant metabolites in that
they behave defensively by feeding deterrents or antimicrobial agents against specific
herbivores, pests or pathogens [95–97]. The stevioside content was seen to increase in the
shoots of S. rebaudiana grown in vitro in the presence of 50 and 100 µM CHI in the nutrient
media, reaching 7.02 mg/g DW (4.51-fold higher than the control plants) at 100 µM [82].
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Table 1. Effect of certain substances on S. rebaudiana Bertoni growth and accumulation of bioactive
compounds.

Type of Elicitors Used Effects References

Salicylic acid

Promotion of callus growth and accumulation of
rebaudioside A Golkar et al., 2019 [40]

Improvement of stevioside and rebaudioside A production
and KA13H, UGT74G1 genes expression Tahmasi et al., 2017 [81]

Methyl jasmonate Enhancement of stevioside production in shoot cultures Bayraktar et al., 2018 [83]

Gibberellic acid
Optimization of biomass production from adventitious root
culture and accumulation of polyphenolics and SGs Ahmad et al., 2020a [85]

Promotive role in enhancing stevioside content in calluses Hendawey and Abo El Fadl, 2014 [84]

Casein hydrolysate

An increase in stevioside and rebaudioside A content in
callus culture Hsing et al., 1983 [88]

Enhancement of in vitro shoot regeneration and
multiplication Sridhar et al., 2014 [86]

Chitosan Acceleration of shoot production and biomass
accumulation

Bayraktar et al., 2016; Bayraktar et al., 2018
[82,83]

Alginate High stevioside accumulation Bayraktar et al., 2016 [82]

Yeast extract Improvement of stevioside production Bayraktar et al., 2016 [82]

Coconut water Enhancement of shoot growth and development Sridhar et al., 2014 [86]

Malt extract Induction of shoots and multiplication Sridhar et al., 2014 [86]

Proline

Induction of callus growth and stevioside accumulation in
callus culture and decrease in malondialdehyde content Hendawey and Abo El Fadl, 2014 [84]

Improvement of biomass yield and SGs production in the
callus and suspension cultures Gupta et al., 2015 [98]

Glutamine

Induction of greenish, healthy nodular calli with
embryogenic potential. Das and Mandal, 2010 [99]

Increase in shoot biomass and chlorophyll content Thilakavathy and Jagadeesan, 2017 [100]

Effect on UGT74G1 and UGT76G1 gene expression and
steviol glycosides accumulation Esmaeili et al., 2018 [101]

Creatine lysinate Beneficial effects on growth parameters and phenol and
flavonoid accumulation in in vitro cultivated plants Miladinova-Georgieva et al., 2022 [102]

Glucose Enhancement of stevioside content in callus cultures Hendawey and Abo El Fadl, 2014 [84]

Polyethylene glycol Improvement of biomass yield and SGs production in the
callus and suspension cultures Gupta et al., 2015 [98]

NaCl and Na2CO3
Reduction in the growth and development of callus and
suspension cultures; Increase in the concentration of SGs Gupta et al., 2014 [103]

NaCl

Increase of antioxidant capacity, hydroxycinnamic acid and
total soluble sugar content in in vitro plantlets and
up-regulation of several genes (CMS, CMK, HDR and
UGT76G1) encoding key enzymes of the SGs biosynthetic
pathways

Lucho et al., 2019 [104]

7.2.3. Amino Acids

Glutamic acid and proline play a promotive role in enhancing callus growth and
stevioside content in Stevia callus culture and this was associated with a clear decrease in
malondialdehyde content, which is used as a biomarker to measure oxidative stress [84].
Enhanced production of steviol glycosides (SGs) was observed in the callus and suspen-
sion culture of S. rebaudiana treated with proline [98]. Das and Mandal [99] found that
the addition of glutamine (50 mg/L) to the nutrient medium produced greenish, healthy
nodular calli with more embryogenic potential and less necrotic lesion in comparison with
only the PGR-supplemented basal medium. In the same study, the effect of tryptophan
(50 and 100 mg/L) was also investigated, but no satisfactory effect was observed at all. Thi-
lakavathy and Jagadeesan [100] reported that the total biomass and chlorophyll content of
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S. rebaudiana increased by adding 100 mg/L glutamine in the culture medium. Furthermore,
the presence of glutamine in the medium favored an increase in the shoot bud number
per explant. Esmaeili et al. [101] have investigated the effect of different concentrations
of glutamine (10, 20, 30 and 40 g/L) on the expression of UGT74G1 and UGT76G1 genes
(genes that have important roles in the synthesis of stevioside and rebaudioside A) and
stevioside and rebaudioside A accumulation in the leaves of Stevia under in vitro conditions.
The highest level of expression for UGT74G1 was observed in plants grown on MS media
without glutamine, while for UGT76G1, the addition of glutamine at concentrations of
2, 3 and 4% has a stimulatory effect. The highest amount of stevioside was accumulated
in plants that were under the 3% glutamine treatment, while the highest rebaudioside
A accumulation was observed under the 2% glutamine treatment. The lowest accumu-
lation of stevioside and rebaudioside A was observed in plants grown on MS medium
without glutamine.

The addition of creatine lysinate to the nutrient medium has a beneficial effect on
the growth parameters and accumulation of phenols and flavonoids in in vitro-cultivated
S. rebaudiana Bertoni [102].

7.3. Other Organic Components

There are previous studies on the promotive role of glucose and 2-acetooxybenzoic acid
on callus growth and stevioside content in Stevia callus culture, and this effect has a been
associated with a decrease in the malondialdehyde content [84]. Another study presented
a positive effect of polyethylene glycol (PEG) on steviol glycoside (SG) production in the
callus and suspension culture of S. rebaudiana [98].

Sodium Compounds

Stevia plants growing in vitro have also been studied for their adaptability to certain
abiotic stress factors such as salinity or water stress [9]. The stress conditions created by
sodium compounds (NaCl and Na2CO3) inhibited the growth of callus and suspension
cultures, but significantly enhanced the accumulation of SGs [103]. The biomass growth
decreased from 113.60 mg in the control to 93.66 mg (in 0.10% NaCl treatment) and 99.93 mg
(in 0.025% Na2CO3 treatment). In callus, the quantity of SGs increased over five-fold from
0.27 (control) to 1.43 and 1.57% with 0.10% NaCl and 0.025% Na2CO3, respectively. In the
case of the suspension culture, the same concentrations of NaCl and Na2CO3 increased the
SG content from 1.36 (control) to 2.61 and 5.14%, respectively, on the 10th day. Treatment
with NaCl increased the antioxidant capacity (according to the ferric reducing/antioxidant
power—FRAP assay), hydroxycinnamic acid and total soluble sugar content of S. rebaudiana
in vitro plantlets and led to the up-regulation of several genes (CMS, CMK, HDR and
UGT76G1) encoding key enzymes of the steviol glycoside biosynthetic pathways [104].

8. Nanoparticles

Numerous reports indicate positive aspects of nanoparticle application in plant tis-
sue culture [105]. Because of their size (between 1 and 100 nm), nanoparticles (NPs)
exhibit unique physicochemical properties such as a large surface-area-to-volume ratio,
the ability to engineer electron exchanges, special electronic and optical attributes and
surface reactive capability [106–108]. Nanoparticles have been widely used to improve seed
germination, plant growth and yield, secondary metabolites production and plant protec-
tion [105,106,108–111]. Furthermore, they find applications as disinfectants, nutrients and
elicitors, as tools for genetic transformation, callus induction, organogenesis and somatic
embryogenesis [112,113]. Nanoparticles exert their action through various pathways, such
as their effects on ethylene, enzymes, nitrogen metabolism and light harvesting complex II
(LHC II). No toxicity on plant growth was detected if the permissive concentration was
considered [110] (Table 2).
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Table 2. Types and optimal concentrations of nanoparticles used for enhancement of the growth and
secondary metabolite production of Stevia grown in vitro.

Nanoparticles Optimal Concentration References

Fe3O4 NPs
CuO NPs
SiO2 NPs

Hendawey et al., 2015 [10]

Zn NPs 200 mg/L Desai et al., 2015 [114]

Mg NPs 1000 mg/L Desai et al., 2017 [115]

CuO NPs 10 mg/L Javed et al., 2017a [116]

ZnO NPs 1 mg/L Javed et al., 2017b [117]

AuCu NPs Ghazal et al., 2018 [118]

Ag NPs 45 mg/L Golkar et al., 2019 [40]

Ag NPs 100 mg/L; 200 mg/L Castro-González et al., 2019 [119]

Ag NPs 40 mM Ramezani et al., 2020 [120]

ZnO
CuONPs

2 mg/L
20 mg/L Ahmad et al., 2020b [121]

Fe NPs 45 µg/L Khan et al., 2020 [122]

A few studies on the effect of different nanoparticles on the growth and secondary
metabolite production of Stevia in vitro have been reported. Hendawey et al. [10] found
appropriate concentrations of Fe3O4NPs, CuONPs and SiO2NPs that positively affect an-
tioxidant enzymes (SOD and CAT) activity and stevioside production in the Stevia callus
culture. Ahmad et al. [121] investigated the influence of ZnO and CuONPs on in vitro
root formation, non-enzymatic antioxidant activities and the production of SGs in in vitro-
cultivated Stevia plants. The highest percentage of rooting, the greatest content of SGs
(rebaudioside A and stevioside) and the highest total flavonoid content, total phenolic
content and 2,2-diphenyl-1-picryl hydrazyl-free radical scavenging activity were observed
at 2 mg/L of ZnO and 20 mg/L of CuO NPs. Both ZnO and CuO NPs at 200 mg/L and
2000 mg/L concentrations induced adverse effects on plant biomass, antioxidant activities
and SG content. Hence, the biochemical and morphophysiological responses of Candyleaf
were elicited as a defense against CuO and ZnO NPs applied under the threshold limit [121].
Javed et al. [116,117] investigated the effects of different concentrations (0, 0.1, 1.0, 10, 100 or
1000 mg/L) of ZnO (34 nm in size) and CuO (with an average size of 47 nm) nanoparticles
on growth parameters, steviol glycosides (rebaudioside A and stevioside) production and
antioxidant activities in S. rebaudiana Bertoni grown in vitro. The highest percentage of shoot
formation, as well as a significant enhancement of steviol glycosides in micropropagated
shoots, was observed at 1 mg/L of ZnO and 10 mg/L CuO NPs. The oxidative stress
produced by CuO and ZnO nanoparticles on S. rebaudiana was affirmed by increased DPPH
scavenging activity, total antioxidant capacity, total reducing power, total flavonoid content
and total phenolic content, with increasing oxidative pressure and generation of ROS.
However, the antioxidant activities, formation of secondary metabolites and physiological
parameters showed a sudden decline after crossing the threshold of a 1 mg/L concentration
of ZnONPs and falling to a minimum at 1000 mg/L, elucidating the maximum phytotoxic
effect of ZnONPs at this concentration [117]. The highest amount of total phenolic content
(TPC) and total flavonoid content (TFC), as well as the total antioxidant capacity (TAC)
and DPPH free radical scavenging activity in callus culture of Stevia, have been obtained
at 100 mg/L of ZnONPs, whereas TPC, TAC, TRP (total reducing power) and DPPH free
radical scavenging activity achieved the highest values at a 10 mg/L concentration of
CuONPs. The highest TRP in the context of ZnO and the highest TFC regarding CuO
have been achieved at 50 and 100 mg/L, respectively [123]. Ghazal et al. [118] reported
that the addition of bimetallic alloys of gold and copper nanoparticles (AuCu NPs) to
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the liquid MS medium containing 0.5 mg/L NAA has a positive effect on the production
of biomass and secondary metabolites in adventitious root cultures of S. rebaudiana. The
maximum total phenolics content and total flavonoid content, as well as the maximum
DPPH free radical scavenging activity, were displayed using AuCu NPs at a ratio of 1:3.
A study by Khan et al. [122] indicated that lower concentrations of FeNPs (45 µg/L) had
a positive influence on the morphological growth parameters of the plant species. At a
higher dose (90 and 135 µg/L), FeNPs in culture media were found to be detrimental
to growth characteristics and development. Furthermore, the stress caused by FeNPs
at 135 µg/L in cultures produced higher levels of total phenolic content, total flavonoid
content and antioxidant activity. In addition, plants grown in the presence of FeNPs at
90 µg/L resulted in higher enzymatic antioxidant activities (SOD, POD, CAT and APX).
Furthermore, exposure to a low dose of FeNPs (45 µg/L) exhibited the maximum amount
of SGs (stevioside and rebaudioside A) as compared to high doses. The nodal explants of
Stevia were cultured in vitro on an MS medium where the normal source of Zn was replaced
with different concentrations of ZnNPs (50, 100, 200, 400 and 1000 mg/L) [114]. The ZnNPs
showed potential toxicity to the plant, which was reflected in both the morphological data
and the production of ROS scavenging enzymes under different treatment conditions. The
200 mg/L concentration of ZnNP showed lower toxicity symptoms. The phytotoxicity
severity increased at a concentration of 400 mg/L and above with the highest toxicity
at a 1000 mg/L concentration. The production of stevioside was significantly reduced
when exposed to ZnNP in a concentration-dependent manner. The study showed the
concentration-dependent phytotoxic effect of ZnNP on the physiology and stevioside pro-
duction in Stevia [114]. A similar study was performed by Desai et al. [115] with MgNPs.
Nodal explants of Stevia were cultured on the MS medium where the normal source of
Mg+ was replaced with MgNPs (at 125, 250, 500, 750 and 1000 mg/L). An MS medium
devoid of MgSO4.7H2O was used as a negative control. The authors revealed that Mg
NPs are able to replace their bulk counterparts and effectively eliminate Mg+ deficiency in
plants. The MgNPs improved the plant morphology (leaf length, leaf width, shoot length,
the number of nodes per explant, internodal space and number of shoots per explant) as
compared to the negative control. The activities of ROS scavenging enzymes (CAT, GPOX
and SOD) increased in a concentration-dependent manner upon MgNPs treatment, as these
activities were lower compared to plants grown on Mg+-deficient media and higher than
those reported with positive control (MS basal medium). An Mg+ deficiency leads to a
drastic reduction in stevioside content, whereas the application of MgNPs enhances it in a
concentration-dependent manner, with the maximum stevioside content at 1000 mg/L of
MgNPs [115]. In S. rebaudiana, high doses of AgNPs were reported to accumulate in plant
cells and tissues [124]. AgNPs were shown to be present in epidermal stem cells, within
vascular bundles and in intermembrane spaces [119]. In leaves, they were observed in ribs
and stomata. An increase in Ag content in tissues was observed as AgNPs concentrations
in the culture medium increased [119]. Castro-González et al. [119] conducted a study to
determine the response of S. rebaudiana B. to different concentrations of silver nanoparticles
(0, 12.5, 25, 50,100 and 200 mg/L AgNPs) added to the nutrient medium. The lowest AgNP
concentrations (12.5 mg/L) promoted the greatest shoot production and length per explant.
An increase in chlorophyll a, b and total contents was observed after all treatments with
AgNPs. The dry matter gradually increases from 25 mg/L of AgNPs, obtaining the highest
values with 100 and 200 mg/L AgNPs concentrations. Golkar et al. [40] evaluated the effect
of different concentrations of silver nanoparticles (AgNPs) (15, 30, 45 and 60 mg/L) on
callus growth and SGs production in the callus culture of Stevia. The addition of AgNPs at
a concentration of 45 mg/L led to the highest amount of stevioside (32.34 mg/g dry weight
callus). Ramezani et al. [120] studied the effect of AgNPs at various concentrations (0, 10,
20 and 40 mM) on the transcription of key gene levels in the biosynthesis of rebaudioside
and stevioside glycosides, including UGT85C2 (UDP-glycosyltransferases), KAH (Kau-
renoic acid-13 hydroxylase), UGT74G1 and UGT76G1 in Stevia using real-time PCR assays.
UGT85C2 demonstrated the highest transcriptional level changes in plants treated with
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silver nanoparticles. The plants treated with silver nanoparticles at concentrations of 10 and
20 mM showed a lower gene expression than the control plant, but the plant treated with
silver nanoparticles at a 40 mM concentration showed significantly higher gene expression
than the control samples. The results suggested that treatment with AgNPs at 40 mM leads
to similar positive effects on the transcription of all genes. HPLC results also revealed that
the plants treated with 40 mM AgNPs contain a higher glycosides content compared to the
control sample. Thus, this experiment suggests that AgNPs can act as a strong amplifier of
the transcriptional trigger for steviol glycoside biosynthesis pathway genes, which have
the potential to control the production of steviol glycosides positively [120].

Sichanova et al. [125] evaluated the impact of aminoacid nanofibers carriers of 1% and
2% colloidal silver (NF-1% Ag and NF-2% Ag) on in vitro cultivation and steviol glycoside
content of S. rebaudiana Bertoni. The research showed a hormetic effect of the nanofibers—at
low concentrations, from 1 to 50 mg/L, stimulation of plant growth was observed, while at
high concentrations (100 mg/L), they possessed a harmful effect. The highest stevioside
content was measured in plants treated with 100 mg/L NF-1% Ag.

9. Effect of Elicitors on Antioxidant Activity in S. rebaudiana

S. rebaudiana exhibits strong antioxidant potential due to the presence of various en-
zymatic and non-enzymatic molecules with antioxidant functions. The major enzymatic
components involved in protecting plant cells from oxidative stress are superoxide dis-
mutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), glutathione reductase (GR)
and ascorbate peroxidase (APX) [126]. The non-enzymatic antioxidants in which Stevia
is rich are phenolics, flavonoids, diterpene glycosides, tannins and anthocyanins [127].
The first evaluation of the antioxidant potential of Stevia in vitro was performed by Sad-
hana et al. [128] who worked with leaf and callus extracts. The total phenolic content was
25.18 mg/g DW (dry weight) for leaves and 35.86 mg/g DW for callus. The flavonoid
content was 21.73 and 31.99 mg/g in the leaf and callus, respectively. Total antioxidant
activity measured by the ferric-reducing/antioxidant power (FRAP) assay was equivalent
to 25.70 and 35.16 mg/g DW ascorbic acid in water and methanolic extract of the leaves, re-
spectively. In the case of callus, it was 25.11 mg/g DW for the water extract and 32.32 mg/g
DW for the methanolic extract. The percent inhibition of the DPPH radical with the water
extract of leaves and callus was 39.86% and 55.42%, respectively, whereas it was 33.17%
and 56.82% for the methanolic extract of leaves and callus, respectively. Comparing the
antioxidant capacity of the leaf extract of Stevia grown in vitro with that from field-adapted
ex vitro plants, Zayova et al. [129] established that the latter possess higher amounts of
water-soluble antioxidants, phenols and flavonoids, hence higher total antioxidant capacity
(expressed as a percentage inhibition of the free radical DPPH) was measured. This can be
explained by the greater variety of stress factors to which field-grown plants were exposed
in comparison with plants grown under controlled in vitro conditions. The antioxidant
activity of the in vitro-cultivated plants can be influenced by the modulation of culture
conditions and medium composition [130]. The amount of proline, an excellent stress indi-
cator, and the activity of antioxidant enzymes SOD, CAT and APX increased in Stevia callus
under fluoride-induced stress [131]. Radić et al. [130] evaluated the effect of different pH
levels (4.6, 5.8 and 7.4) of the culture medium on the accumulation of secondary metabolites
and free radical scavenging activity in S. rebaudiana. The maximum accumulation of total
phenols and total flavonoids, as well as the highest values of DPPH radical inhibition, were
recorded in the leaves and roots of the plants grown on a medium with a pH value of 4.6.

A study conducted by Miladinova-Georgieva et al. [102] shows a favorable effect of cre-
atine and creatine lysinate on the physiological processes of in vitro-cultivated
S. rebaudiana Bertoni. The activities of antioxidant enzymes CAT, APX and GPX decreased
after treatment with most of the studied concentrations of these amino acids, while SOD
activity and the content of lipid-soluble antioxidants increased gradually with increasing
concentrations of creatine and creatine lysinate (1, 5 and 10 mg/L). The number of water-
soluble antioxidants increased at the highest concentration of the amino acids (10 mg/L).
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The results obtained by the FRAP method led authors to assume that lysine in a higher
concentration suppresses the effect of creatine—creatine increases the antioxidant activity
measured by the FRAP method and lysine returns it closer to the control. The DPPH assay
showed that creatine alone and in combination with lysine as a salt did not alter the overall
antioxidant status of the plant.

10. Conclusions

Plant tissue culture techniques are increasingly used for the mass propagation of S.
rebaudiana Bert. Cooperative applications of both traditional and biotechnological tools
enable the generation of plants with desired agronomic traits such as disease resistance,
improved biomass and high glycoside content. In recent years, many efforts have been
made to clarify the role of nanoparticles as a novel elicitor for plants’ primary and secondary
metabolism. There are different and often conflicting reports on the effect of NPs on the
growth and development of various plant species. Many questions concerning the fate and
toxicity of NPs in plant cells remain unsolved.
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