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Abstract: The carbon sequestration and oxygen release of landscape plants are dominant ecological
service functions, which can play an important role in reducing greenhouse gases, improving the
urban heat island effect and achieving carbon peaking and carbon neutrality. In the present study, we
are choosing Lonicera japonica Thunb. as a model plant to show the effects of Cd stress on growth,
photosynthesis, carbon sequestration and oxygen release characteristics. Under 5 mg kg−1 of Cd
treatment, the dry weight of roots and shoots biomass and the net photosynthetic rate (PN) in
L. japonica had a significant increase, and with the increase in Cd treatment concentration, the
dry weight of roots and shoots biomass and PN in the plant began to decrease. When the Cd
treatment concentration was up to 125 mg kg−1, the dry weight of root and shoots biomass and PN

in the plant decreased by 5.29%, 1.94% and 2.06%, and they had no significant decrease compared
with the control, indicating that the plant still had a good ability for growth and photoenergy
utilization even under high concentrations of Cd stress. The carbon sequestration and oxygen release
functions in terms of diurnal assimilation amounts (P), carbon sequestration per unit leaf area (WCO2 ),
oxygen release per unit leaf area (WO2 ), carbon sequestration per unit land area (PCO2 ) and oxygen
release per unit land area (PO2 ) in L. japonica had a similar change trend with the photosynthesis
responses under different concentrations of Cd treatments, which indicated that L. japonica as a
landscaping Cd-hyperaccumulator, has a good ability for carbon sequestration and oxygen release
even under high concentrations of Cd stress. The present study will provide a useful guideline for
effectively developing the ecological service functions of landscaping hyperaccumulators under urban
Cd-contaminated environment.

Keywords: heavy metal; Lonicera japonica Thunb.; carbon sequestration; oxygen release

1. Introduction

Environmental pollution, including heavy metals and greenhouse gas, is gradually
intensified as population growth and industrial agglomeration continue to expand [1–3].
A long-term excess of heavy metals such as cadmium (Cd) and greenhouse gases such
as carbon dioxide (CO2) has been released into the environment, which has seriously
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threatened human health and survival as well as urban sustainable development [4–7].
This has also virtually increased the pressure on the developing countries in the world
to practice carbon peaking and carbon neutrality. Therefore, these environmental issues
have attracted widespread attention from countries around the world [8–10]. Landscape
plants are an important foundation for urban greening construction and play a significant
role in improving the urban environment. Several studies reported that hazardous heavy
metals in urban soil can be adsorbed and removed by ornamental plants [11–20]. It was
shown that the carbon sequestration and oxygen release of landscape plants are dominant
ecological service functions, which play an irreplaceable role in reducing concentrations of
atmospheric CO2 through the conversion process of inorganic carbon to organic compounds
using plant organs [21,22].

It is known that among heavy metals, Cd is one of the most hazardous pollutants
because of its high water solubility and strong cancerogenic effects, which can not only lead
to leaf chlorosis, growth inhibition and photosynthetic rates decrease but can also be easily
transferred into the food chain and threaten human health [23–25]. Currently, most research
focuses on the accumulation ability, photosynthetic capacity and antioxidant enzyme
activity of crops and mining plants under Cd stress [26–35]. However, little information
is available on the carbon fixation and oxygen release characteristics in landscape plants,
especially ornamental woody plants.

Lonicera japonica Thunb., as a popular ornamental woody plant, has become established
in temperate and tropical regions worldwide in the past 150 years [36]. It is widely used
in urban greening because of its high biomass, easy cultivation and strong resistance to
environmental stress, as well as its development in the pharmaceutical field [37]. In our
previous studies, it was found that L. japonica is a new woody Cd-hyperaccumulator and
had a good phytoremediation ability for Cd-contaminated soil [11,38–42]. As a typical
landscaping plant, L. japonica has a good function of carbon sequestration and oxygen
release. Therefore, in the present study, we are choosing L. japonica as a model plant to show
the response characteristics of growth, photosynthesis, carbon sequestration and oxygen
release functions in the plant under different concentrations of Cd stress. It will be helpful
to effectively develop the ecological service functions of landscape plants under the urban
Cd-contaminated environment and expand the application value of hyperaccumulators.

2. Materials and Methods
2.1. Plant Culture and Cd Treatments

The soil in the experiment was collected from the topsoil at Shenyang Agricultural
University (41◦44′ N and 123◦27′ E, 44.7 m a.s.l.). The type of the tested soil is meadow,
and its physical and chemical properties include a pH of 7.26 ± 0.03, organic matter (OM)
content of 20.53± 0.05 g kg−1 and cation exchange capacity (CEC) of 18.95± 0.06 cmol kg−1.
The mean concentration of extractable Cd in the tested soil was 0.15 ± 0.01.

The air-dried tested soil was sieved through a 3 mm mesh sieve and placed into a
plastic pot that measured 30 cm across. Then, the tested soil in each plastic pot was mixed
uniformly with different concentrations of a Cd2+ solution derived from CdCl2·2.5H2O
(Kermel Chemical Reagent Co., Ltd., Shanghai, China, >99%). Three 6-month-old seedlings
with consistent growth were planted in each plastic pot. These plants were cultivated in a
greenhouse with 75% relative humidity, 23± 2 ◦C temperature and 800–1000 µmol m−2 s−1

PPFD (16/8 h light/dark). The experiment set had four Cd treatment levels, which con-
tained 0 (CK), 5, 25 and 125 mg kg−1, respectively. Each Cd treatment experiment consisted
of four replicates. The soil water content was measured in each pot using time domain
reflectometry. After a 90 d Cd treatment, the plants were harvested for analysis.

2.2. Detection of Plant Biomass and Photosynthetic Parameters

The harvested plants were washed with tap water and then washed with deionized
water. The plants were separated into leaves and roots. These plant tissues were dried
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at 105 ◦C for 20 min, then at 70 ◦C until the weight was constant. Subsequently, the dry
weight (g) of roots and shoots biomass was obtained.

The net photosynthetic rate (PN) of the plant is one of the most important photosyn-
thetic parameters, which was determined using a portable LI-6400 photosynthesis system
(Lincoln, NE, USA) under different Cd stress. During different Cd treatments, the param-
eters (light level, CO2 concentration and leaf temperature) inside the leaf chamber were
maintained stable at 1000 µmol m−2 s−1 PPFD, 25 ± 0.3 ◦C and 380 ± 5 µmol CO2 mol−1.

2.3. Assays of Carbon Sequestration and Oxygen Release Functions

The determination of carbon sequestration and oxygen release functions were refer-
enced in the relative study [34]. The carbon sequestration and oxygen release values of
the plant were derived from diurnal assimilation amounts (P), which could be represented
with the following Equation (1):

P =
j

∑
i=1

[(pi+1 + pi)÷ 2× (ti+1 − ti)× 3600÷ 1000] (1)

where P is diurnal assimilation amounts (mmol m−2 s−1), pi is instantaneous photosynthetic
rate at the initial measurement point (µmol m−2 s−1), pi+1 is instantaneous photosynthetic
rate of the next measurement point (µmol m−2 s−1), ti is instantaneous time of initial
measurement point (h), ti is instantaneous time of the next measurement point (h), j is test
times, 3600 refers to 3600 s per hour and 1000 refers to 1000 µmol per mmol.

Carbon sequestration per unit leaf area (WCO2 ) and oxygen release per unit leaf area
(WO2 ) of the plant could be represented with the following Equations (2) and (3):

WCO2 = P × 44/1000 (2)

WO2 = P × 32/1000 (3)

where WCO2 is carbon sequestration per unit leaf area (g m−2 d−1), 44 is the molar mass of
CO2; WO2 is oxygen release per unit leaf area (g m−2 d−1) and 32 is the molar mass of O2.

Carbon sequestration per unit land area (PCO2 ) and oxygen release per unit land area
(PO2 ) of the plant could be represented with the following Equations (4) and (5):

PCO2 = WCO2 × E (4)

PO2 = WO2 × E (5)

where PCO2 is carbon sequestration per unit land area (g m−2 d−1), PO2 is oxygen release
per unit land area (g m−2 d−1) and E is leaf area index.

2.4. Statistical Analyses

The data analyses in the study were performed as the means ± SD. The statistical
analysis of the data was applied using SPSS 22.0 and Microsoft Office Excel 2020. The level
of significant difference was presented at p < 0.05 or p < 0.01.

3. Results and Discussion
3.1. Effects of Different Cd Treatments on Plant Growth

It is reported that the changes in plant biomass are an important susceptible parameter
when the plants are subjected to heavy metals or other environmental stress [43–45]. After
a 90 d Cd treatment, the growth responses in terms of the dry weight of roots and shoots
biomass in L. japonica under Cd different treatments are shown in Figure 1. The dry weight
of roots and shoots biomass represented similar change trends with the increase in Cd
treatment concentration. Under 5 mg kg−1 of Cd treatment, the dry weight of roots and
shoots biomass showed a significant increase compared with the control, which indicated that
a low concentration of Cd treatment could stimulate plant growth. A similar phenomenon
has been found in several studies when plants were exposed to a low Cd concentration in the
medium, which is described as hormesis, and potentially displayed the “overcompensation”
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behavior when the homeostasis of an organism was disrupted [46–51]. The present result
is consistent with our previous studies. With the increase in Cd treatment concentration,
the dry weight of roots and shoots biomass in L. japonica all began to decrease. When Cd
treatment concentration was up to 125 mg kg−1, the dry weight of roots and shoots biomass
in L. japonica decreased, respectively, by 5.29% and 1.94%. Its differential change may be
due to the first direct contact of plant roots with Cd2+ in soil; however, the dry weight of
roots and shoots biomass had no significant decrease compared with the control, which is
in agreement with no obvious injury symptoms in L. japonica.
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Figure 1. Effects of different Cd treatments on dry weight of roots and shoots biomass in L. japonica.
Values represent mean ± SD. Different letters represent significant differences at the 5% level according
to the LSD test.

3.2. Effect of Different Cd Treatments on Photosynthetic Parameters

As already known, photosynthesis is a highly susceptible indicator of Cd stress [52,53].
The net photosynthesis rate (PN) is often used to represent the potential of plant photoen-
ergy utilization [54]. The effects of different Cd treatments on PN in L. japonica are shown in
Figure 2. Several studies reported that Cd2+ had negative effects on PN in some plants [53,55–57].
However, it was shown that photosynthesis in Brassica juncea had no obvious change when the
plant was exposed to 25 mmol L−1 of Cd2+ stress [58]. Mustard (Brassica juncea L. Czern and
Coss.) cvs. Varuna also showed an increased PN when the plant was subjected to 200 mg kg−1

of Cd in soil [59]. In the present study, PN in L. japonica has a significant increase of 23.21%
compared with the control when the plant was exposed to 5 mg kg−1 of Cd treatment, which
may result from a priming effect by hormesis. The significant increase in PN may demonstrate
improved growth in a short period of time, which corresponds to the growth responses in terms
of the dry weight of roots and shoots biomass in L. japonica under 5 mg kg−1 of Cd treatment.
With the increase in Cd treatment concentration, PN in L. japonica began to decrease. When Cd
treatment concentration was up to 125 mg kg−1, PN in L. japonica decreased by 2.06% and had no
significant decrease compared with the control, indicating that the plant still had a good ability
of photoenergy utilization even under high concentrations of Cd stress. A similar phenomenon
was also shown in photosynthesis responses in rice and maize under Cd stress [60].
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3.3. Effect of Different Cd Treatments on Carbon Sequestration and Oxygen Release Functions

Carbon sequestration and oxygen release functions are regarded as critical parameters
to assess photosynthetic ability, which can provide a useful guideline for the ecological
service function of landscape plants [61,62]. The carbon sequestration and oxygen release
functions of L. japonica exposed to different Cd treatments are shown in Table 1. In the
present study, diurnal assimilation amounts (P), carbon sequestration per unit leaf area
(WCO2 ), oxygen release per unit leaf area (WO2 ), carbon sequestration per unit land area
(PCO2 ) and oxygen release per unit land area (PO2 ) of L. japonica has significant increases,
going up to 271.63 ± 6.92 mmol m−2 s−1, 12.30 ± 0.32 g m−2 d−1, 8.95 ± 0.10 g m−2 d−1,
25.59± 0.65 g m−2 d−1 and 18.61± 0.37 g m−2 d−1, respectively, when the plant is exposed
to 5 mg kg−1 Cd treatment. The significant increase in carbon sequestration and oxygen
release values of L. japonica may stem from the effect of hormesis, which is highly relevant
to the value of PN. The present study is in accordance with the report by [63,64], which
proposed that landscape plants with functional carbon sequestration and oxygen release
can exchange more CO2 and O2 with the external environment, then transform more
solar energy into organic matter stored in plants. It is known that all the principal biotic
components of carbon sequestration and oxygen release stem from the photosynthetic
process of plants [21,65]. With the increase in Cd treatment concentration, P, WCO2 , WO2 ,
PCO2 and PO2 in L. japonica began to decrease; however, when Cd treatment concentration
was up to 125 mg kg−1, P, WCO2 , WO2 , PCO2 and PO2 in L. japonica had no significant
decrease compared with the control, which indicated a good photosynthetic ability of the
plant even under high concentrations of Cd treatment.

Table 1. The carbon sequestration and oxygen release functions of L. japonica.

Different Cd
Treatments
(mg kg−1)

Diurnal
Assimilation

Amounts
(P, mmol m−2 s−1)

Carbon
Sequestration per

Unit Leaf Area
(WCO2 , g m−2 d−1)

Oxygen Release
per Unit Leaf Area
(WO2 , g m−2 d−1)

Carbon
Sequestration per

Unit Land Area
(PCO2 , g m−2 d−1)

Oxygen Release
per Unit

Land Area
(PO2 , g m−2 d−1)

0 232.58 ± 4.86 10.23 ± 0.19 7.44 ± 0.12 16.89 ± 0.23 12.28 ± 0.45
5 271.63 ± 6.92 12.30 ± 0.32 8.95 ± 0.10 25.59 ± 0.65 18.61 ± 0.37

25 258.31 ± 5.37 11.37 ± 0.25 8.27 ± 0.13 20.80 ± 0.71 15.13 ± 0.62
125 220.92 ± 6.15 9.72 ± 0.11 7.07 ± 0.09 15.26 ± 0.29 11.10 ± 0.18

Data are means ± SD.
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4. Conclusions

In our previous studies, it was shown that Lonicera japonica Thunb. is not only a
popular landscape plant to decorate the environment, but it also has a good remediation
ability to remove toxic heavy metals. In the present study, the carbon sequestration and
oxygen release functions in terms of P, WCO2 , WO2 , PCO2 and PO2 in L. japonica have a
similar change trend with the photosynthesis responses under different concentrations
of Cd treatments, which may result from all the principal biotic components of carbon
sequestration and oxygen release provided by the photosynthetic process of plants. As a
new woody Cd-hyperaccumulator, L. japonica is observed to have a good ability for carbon
sequestration and oxygen release even under high concentrations of Cd stress. The present
study will provide a useful guideline for the ecological service function of L. japonica in
urban landscaping construction, showing that the rational application of the plant can not
only phytoremediate urban Cd-contaminated soil, but it can also play an important role
in reducing the greenhouse gases, improving the urban heat island effect and achieving
carbon peaking and carbon neutrality. In future work, it is necessary to delve into the
correlation between carbon sequestration capacity and physiological mechanisms.
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