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Abstract: Soybeans are the main source of oils and protein for humans and animals; however, cold
stress jeopardizes their growth and limits the soybean planting area. Aldehyde dehydrogenases
(ALDH) are conserved enzymes that catalyze aldehyde oxidation for detoxification in response
to stress. Additionally, transgenic breeding is an efficient method for producing stress-resistant
germplasms. In this study, the peanut ALDH gene AhALDH2B6 was heterologously expressed
in soybean, and its function was tested. We performed RNA-seq using transgenic and wild-type
soybeans with and without cold treatment to investigate the potential mechanism. Transgenic
soybeans developed stronger cold tolerance, with longer roots and taller stems than P3 soybeans.
Biochemically, the transgenic soybeans exhibited a decrease in malondialdehyde activity and an
increase in peroxidase and catalase content, both of which are indicative of stress alleviation. They
also possessed higher levels of ALDH enzyme activity. Two phenylpropanoid-related pathways
were specifically enriched in up-regulated differentially expressed genes (DEGs), including the
phenylpropanoid metabolic process and phenylpropanoid biosynthetic process. Our findings suggest
that AhALDH2B6 specifically up-regulates genes involved in oxidoreductase-related functions such
as peroxidase, oxidoreductase, monooxygenase, and antioxidant activity, which is partially consistent
with our biochemical data. These findings established the function of AhALDH2B6, especially its
role in cold stress processes, and provided a foundation for molecular plant breeding, especially
plant-stress-resistance breeding.

Keywords: soybean; transgenic breeding; ALDH; cold stress; RNA-seq

1. Introduction

Soybean (Glycine max) is an important cash crop that provides humans with edible
oils and proteins. Furthermore, by fixing atmospheric nitrogen, soybeans can serve as a
great protein source for animal feed and improve soil fertility [1]. Soybean is a thermophilic
crop that is cultivated widely [2], with rising demand having led to rapidly increased
planting areas in cold regions, such as northeast China, in recent years. However, global
climate change is increasing the frequency of extreme climate events, such as drought and
low temperatures [3]. Low temperature can lead to changes in cell membrane function,
resulting in an imbalance of water metabolism and reduced photosynthesis. This can cause
plants to wither or even die, leading to a decrease in crop yield [4,5]. Soybean is susceptible
to low temperatures, which cause soybean ripening to be delayed, resulting in shorter
plants and smaller leaves, reducing the number of soybean pods and ultimately resulting in
a lower soybean yield [6]. Low temperatures may exert negative effects on soybeans at all
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developmental stages by interfering with membrane integrity in the seed imbibition process,
preventing the seed from germinating and emerging, damaging the green stems and leaves
affecting the early survival and growth of soybean seedlings [2,7,8], delaying flowering
and seed abortion in the pod [9,10], and shrinking seed size and delaying maturity in the
reproductive stage [10]. Identifying genes responsible for low-temperature tolerance to
mitigate low-temperature-mediated damage is critical for long-term soybean breeding.

Under low temperatures, chloroplasts overproduce reactive oxygen species (ROS),
leading to excessive ROS accumulation inside the cell [11]. High levels of ROS are often
accompanied by increased membrane lipid peroxidation [12]. Malondialdehyde (MDA),
a three-carbon aldehyde, is a toxic byproduct of lipid oxidation. Owing to their chemical
reactivity and toxicity, endogenous aldehydes interfere with cellular metabolism, causing
DNA damage and cell death [13–15]. Under low temperatures, crops have evolved mecha-
nisms to improve their tolerance to low temperatures [16]. Peanut is an important oil and
cash crop, which can maintain normal plant development by removing excess aldehydes
through aldehyde dehydrogenase (ALDH) [17]. ALDH is an aldehyde scavenger that can
protect plant membranes from stress-induced ROS damage [14,15]. ALDH uses NAD+ or
NADP+ as cofactors to catalyze the oxidation of a wide range of endogenous and exoge-
nous aldehydes to their corresponding non-toxic carboxylic acids, generating NADH or
NADPH to maintain redox homeostasis [14,15]. Moreover, ALDH is involved in secondary
metabolism, especially in the synthesis of amino and retinoic acids and osmoprotectant
production, such as glycine betaine [18–20].

We have previously described and annotated the entire ALDH gene superfamily in
Arachis hypogaea Linn [17]. However, the function and application of the ALDH2 family in
preventing plant damage under low-temperature stress requires further investigation. In
this study, the expression pattern of the ALDH2 family at lower temperatures was analyzed
in Arachis hypogaea in cold-tolerant TF15 and cold-sensitive FH25 varieties using RT-qPCR.
We then determined the function of the peanut ALDH gene AhALDH2B6 in preventing
plant damage due to low-temperature stress in soybean by heterologous expression. Finally,
we performed RNA-seq to elucidate the regulatory mechanism of AhALDH2B6. The aim of
this study was to breed new soybean cultivars with tolerance for low temperatures.

2. Results
2.1. Expression of AhALDH2 Genes in Peanut Plants under Low-Temperature Stress

Based on our previous findings [17], we selected 20 AhALDH2 genes for further in-
vestigation. To determine the expression pattern of AhALDH2 family genes under lower
temperature treatment, one cold-tolerant variety, TF15, and cold-sensitive variety, FH25,
peanut plants were stored at 6 ◦C in a chamber for 9 d (Figure 1A). Under 9 d of con-
tinuous low-temperature stress, AhALDH2B2, AhALDH2B3, AhALDH2B4, AhALDH2B6,
AhALDH2B7, AhALDH2C1, and AhALDH2C3 exhibited significant up-regulation in the
roots of both peanut cultivars (Figure 1B). Furthermore, ALDH enzyme activity in TF15
was higher compared to that in FH15 (Figure 1C).

To further confirm the function of ALDH2 genes in low-temperature tolerance, we
employed a yeast expression vector [21]. The up-regulated genes were cloned into the
pYES2 vector and transformed into yeast. An empty pYES2 vector was used as a control.
There were no significant differences between all expression vectors and the empty vector
yeast under normal culture conditions (Supplemental Figure S1). Under low temperatures,
the survival rate of yeast cells expressing AhALDH2B6 was significantly higher than that of
the control and other yeast cells (Supplemental Figure S2). Additionally, the expression
level of AhALDH2B6 in TF15 cells was significantly higher than that of FH15. To further
characterize AhALDH2B6, we also used qPCR to examine its expression level in different
tissues. We found that AhALDH2B6 was mainly expressed in the roots, stems, nodules, and
flowers, followed by the leaves and seeds, and it is rarely expressed in pods (Figure 1D).
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Figure 1. Analysis of the expression pattern of the ALDH2 gene family and measurement of ALDH
enzyme activity. (A) Phenotypes of FH15 and TH25 peanuts at low and normal temperatures.
(B) Relative expression levels of the ALDH2 gene family in FH15 and TH25 peanuts treated at low
temperatures (<1 represents down-regulated gene expression, and >1 represents up-regulated gene
expression). (C) ALDH enzyme activity of FH15 and TH25 peanuts at low and normal temperatures.
** p < 0.01, t test. (D) Expression pattern of ALDH2 gene under low-temperature treatment.

2.2. Soybean Transformation and Positive Line Identification

To explore the stress resistance of AhALDH2B6 further, we overexpressed AhALDH2B6
in soybean via Agrobacterium-mediated transformation. The AhALDH2B6 coding sequence
was driven by the 35S promoter (Figure 2A). Fifteen transgenic soybean plants were
obtained in T0, all of which were confirmed by PCR to have the expected size of the
selection marker, bar gene (422 bp), and target gene, AhALDH2B6 (1272 bp) (Figure 2B,C).
After three generations of propagation, three homozygous overexpression lines were
obtained, named line 1-1, line 2-2, and line 4-1. After 9 d of low-temperature treatment,
AhALDH2B6 was found to be highly expressed in lines 1-1, 2-2, and 4-1 (Figure 2D).

2.3. AhALDH2B6 Increases Soybean Low-Temperature Tolerance

To evaluate AhALDH2B6’s function in soybean, we separately assessed the low-
temperature tolerance in transgenic and P3 soybean during the germination and emergence
stages. After cold-temperature treatment, the transgenic soybean root was significantly
longer than that of the P3 plants (Figure 3A,B). The height of transgenic plants ranged
from 10.40 ± 0.91 cm to 11.27 ± 1.366 cm, significantly higher than that of P3 plants
(9.50 ± 1.127 cm) (Figure 3C,D).
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Figure 2. AhALDH2B6 overexpressed in soybean plants. (A) Process of genetic transformation of
soybean with pCAMBIA3301-AhALDH2B6 vector. (B,C) T0 Positive transgenic soybean was verified
using PCR: bar 422 bp, AhALDH2B6 1272 bp. (D) Expression levels of AhALDH2B6 transgenic
soybean between different lines at low temperatures.
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Figure 3. Low-temperature stress phenotypes of transgenic soybean. (A,B) Phenotype and root
length of transgenic soybean and P3 under low-temperature treatment at the germination stage.
(C,D) Phenotype and plant height of transgenic soybean and P3 under low-temperature treatment at
the emergence stage * p < 0.05, ** p < 0.01, **** p < 0.0001.
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2.4. Overexpression of AhALDH2B6 Reduced Lipid Peroxidation and Increased Protective
Enzyme Activity

MDA content reflects the degree of lipid peroxidation damage in plant membranes.
The ALDH enzyme activity and MDA content of transgenic lines and P3 were measured
under regular growth and low-temperature conditions to see how AhALDH2B6 overex-
pression affects soybean biochemically. Under normal growth conditions, ALDH enzyme
activity and MDA content did not differ between transgenic lines and P3 (Figure 4A,B).
Under low-temperature stress, ALDH enzyme activity increased in transgenic soybean and
P3 plants with a much higher elevation in transgenic soybean. Moreover, low temperatures
led to an increase in MDA content in P3 plants, which was higher than in transgenic lines
(Figure 4B). Plants accumulate protective enzymes, such as POD and CAT, in response to
stress, which can lower cellular ROS levels. Figure 4C,D show that transgenic soybean had
higher protective enzyme activity than P3 under low-temperature stress.
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temperature stress. (A). ALDH activities (B) MDA activities. (C) POD activities. (D) CAT activities
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2.5. RNA-Seq Analysis of Transgenic Lines and P3 Soybeans

After a low-temperature treatment for 9 days, radicles from transgenic soybean and
recipient soybean P3 were sampled and, respectively, named B9 and B11 hereafter. As a
control, the same plants were mock-treated at 25 ◦C and were named C2 and C5, respec-
tively. Two RNA libraries were constructed per sample as biological replications. Clean
sequencing data for each sample were compared to the Williams 82 reference genome. We
detected 2850 DEGs in transgenic soybean treated under cold stress, compared to growth
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at 25 ◦C, including 1533 up-regulated and 1317 down-regulated DEGs (Figure 5A). We
found 1624 DEGs in P3 soybean after cold treatment compared to plants grown at 25 ◦C,
including 498 up-regulated and 1126 down-regulated DEGs (Figure 5B). The transgenic
and P3 soybeans shared 58 up-regulated DEGs, while transgenic soybean had 1480 specific
DEGs, and P3 plants had 445 specific DEGs (Figure 5C, Table S2). Transgenic and P3 soy-
bean shared 87 down-regulated DEGs, while transgenic soybean had 1230 specific DEGs,
and P3 plants had 1039 specific DEGs (Figure 5D, Table S2).
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2.6. Gene Ontology and KEGG Enrichment Analysis of Differentially Expressed Genes

We performed a GO analysis of DEGs to investigate their functions, focusing on
the specific 1480 up-regulated and 1230 down-regulated genes in transgenic soybean.
Significant GO terms were enriched in response to stimulus (GO:0050896), response to
chemical (GO:0042221) for 1480 up-regulated DEGs in terms of biological process (BP),
followed by response to organic substance (GO:0010033), response to endogenous stimulus
(GO:0009719) and response to oxygen-containing compound (GO:1901700) (Figure 6A).
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For molecular function, significant GO terms were enriched in oxidoreductase activity
(GO:0016491) and transcription regulator activity (GO:0140110) (Figure 6B).
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For down-regulated DEGs in biological processes, significant GO terms were enriched
in response to stimulus (GO:0050896), response to chemical (GO:0042221), and response
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to biotic stimulus (GO: GO:0002831) (Figure 6C). In addition, for molecular function,
significant GO terms were enriched for transcription regulator activity (GO:0140110),
DNA-binding transcription regulator activity (GO:0003700), and sequence-specific DNA
binding (GO:0043565) (Figure 6D). Notably, two phenylpropanoid-related pathways were
specifically enriched in up-regulated DEGs, including the phenylpropanoid metabolic
process and phenylpropanoid biosynthetic process (Figure 6D). For molecular function,
multiple oxidoreductase-related functions were specifically found in up-regulated DEGs,
including peroxidase, oxidoreductase, monooxygenase, and antioxidant activity.

KEGG analysis was performed on the specifically up-regulated and down-regulated
DEGs to further analyze the pathways involved in improving cold tolerance in trans-
genic soybean. The up-regulated DEGs were enriched in the biosynthesis of secondary
metabolites (gmx01110), followed by plant hormone signal transduction (gmx04075) and
phenylpropanoid biosynthesis (gmx00940) (Figure 6E). The down-regulated genes were
enriched in plant hormone signal transduction (gmx04075), starch and sucrose metabolism
(gmx00500), and protein processing in endoplasmic reticulum (gmx04141) (Figure 6F).
Of note, the plant–pathogen interaction was found in down-regulated DEGs, which is
consistent with our GO analysis response to biotic stimulus (GO: GO:0002831).

3. Discussion

The importance of the ALDH2 gene family in multiple plant species and under stress
conditions has been studied [17]. The essential function of ALDH2 is useful for various
applications and transgenic breeding and has become popular in recent years. Many
plant studies have revealed that ALDH upregulation and ROS reduction are common
features of the activation of stress response pathways [22]. In this study, we heterologously
overexpressed a peanut ALDH gene, AhALDH2B6, in soybeans. Our transcriptome findings
suggest that genes enriched in response to abiotic stimuli were up-regulated, which partially
helps explain the increased cold tolerance of transgenic soybean. The research indicates
that the up-regulated genes are mainly involved in oxidoreductase-related function and
phenylpropanoid metabolic process, while the down-regulated genes are associated with
starch and sucrose metabolism as well as plant hormone signal transduction.

In this study, AhALDH2B6 overexpression resulted in less MDA, which improved cold
tolerance. OsALDH2a, another rice ALDH orthologous gene, was found to be involved in
submerged conditions [23]. An anaerobic environment strongly induces its mRNA levels.
A higher concentration of ALDH could partially explain why rice plant has a stronger
submergence tolerance than other plant species. ALDH gene stress responses have been
investigated in other plant species. ALDH2C4 mutation in Nicotiana benthamiana and
Solanum tuberosum caused susceptibility to low temperatures and accumulated ROS
and MDA [24]. Plant drought stress tolerance was conferred by ectopic expression of the
Arabidopsis gene AtALDH2B7 [25]. The consistent expression of maize ALDH22A1 in
tobacco led to improved stress tolerance and reduced MDA [26].

Similarly, other studies have reported similar results. For example, one proteomic anal-
ysis in Citrus junos revealed that the proteins in starch and sucrose metabolism, secondary
metabolites biosynthesis, and phenylpropanoid biosynthesis are differentially abundant,
which is consistent with our research [27]. Another de novo transcriptome sequencing in
Elymus nutans found that cold stress is related to secondary metabolism pathways, which
is consistent with the up-regulated pathways in this study [28]. The specific up-regulated
genes which were involved in oxidoreductase-related function have also been reported
by others. Oxidoreductase activity and transcription regulator activity pathway genes
were found to be differently expressed in Alfalfa by RNA-seq analysis in response to cold
stress [29]. Another study in rice found that a higher number of genes involved in oxidore-
ductase activity might contribute to cold tolerance [30]. Moreover, the identification of
DEGs in Pisum sativum using RNA-seq analyses confirmed that oxidoreductase-related
genes were enriched after cold treatment [29]. Notably, our result that the down-regulated
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genes were involved in the plant–pathogen interaction pathway supports the notion that
there exists balancing trade-offs between biotic and abiotic stress responses [31].

In conclusion, in the present study, we showed that transgenic soybeans expressing
peanut AhALDH2B6 had greater cold tolerance, with longer roots and taller stems, and
a lower content of MDA and higher activities of POD, CAT, and ALDH compared to P3
plants. RNA-seq data showed that AhALDH2B6 altered the expression of genes involved in
oxidoreductase-related functions such as peroxidase, oxidoreductase, monooxygenase, and
antioxidant activity. These findings shed light on the function of AhALDH2B6 and its role
in abiotic stress processes and highlight the potential of transgenic breeding in facilitating
the growth of soybean in cold climates.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Transgenic soybean and recipient soybean P3 were grown at 25 ◦C in a greenhouse
under LDs (16 h/8 h light/dark). Transgenic and P3 soybeans were provided by the In-
stitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun,
China. Tolerant (TF15) and sensitive (FH25) peanuts were incubated at 25 ◦C in a green-
house under LDs (16 h/8 h light/dark. Relative humidity: 50%. The light intensity was
300 µmolm−2s−1).

4.2. Vector Construction

Total RNA was extracted from the roots of three-week-old peanuts and reverse-
transcribed into cDNA. The AhALDH2 genes from peanut were amplified using corre-
sponding primers (Supplemental Table S1). The pCAMBIA3301 vector was digested with
Nco I and BstE II, while Kpn I and EcoR I were utilized for the digestion of the pYES2 vector.
The AhALDH2B6 gene was then cloned into the pCAMBIA3301 (named pCAMBI3301-
AhALDH2B6) vector, while those of AhALDH2B2, AhALDH2B4, AhALDH2B6, AhALDH2B7,
and AhALDH2C1 gene coding sequence were cloned into yeast expression vector pYES2
containing GAL1 promoter and URA3 as selective markers.

4.3. Genetic Transformation and Progeny Identification in Soybean

The pCAMBI3301-AhALDH2B6 recombinant plasmid was transformed into Agrobac-
terium EHA101. Regenerated plants expressing pCAMBI3301-AhALDH2B6 were ob-
tained, as previously described [32,33]. Genomic DNA was extracted from transgenic
progeny, and positive plants were identified through PCR using corresponding primers
(Supplemental Table S1).

4.4. Yeast Transformation and Low-Temperature Treatment

The yeast protein expression under low-temperature treatment was analyzed as previ-
ously published [21]. Briefly, the recombinant vector and pYES2 vector were transformed
into INVSCI-competent cells using a yeast transformation kit, and the transformation prod-
ucts were plated on SD/-Ura (2% (w/v) glucose) plates and cultured at 30 ◦C for 3–5 days
to screen for positive clones. The positive clones were subsequently resuspended in sterile
water, plated onto SG/-Ura (2% (w/v) galactose) medium, and incubated at 30 ◦C for
3–5 days to screen positive clones. The positive clones were inoculated in 15 mL SD/-Ura
liquid medium and cultured at 30 ◦C until the OD600 value reached 0.4. The yeast culture
was centrifuged at 8500 rpm for 1 min. The cells were resuspended in 1–2 mL SG/-Ura
medium and then cultured in a 5 mL induction medium for 24 h at 30 ◦C. The yeast was
treated at −20 ◦C for 3, 6, 9, 12, or 24 h, followed by a recovery period of 9 h at 30 ◦C, at the
end of which cell density (OD600) was measured.

4.5. Low-Temperature Stress Treatment

Transgenic soybean and P3 seeds in the same growth stage were selected. The seeds
were disinfected with 70% (v/w) ethanol for 1 min and then soaked in 5% (w/v) sodium
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hypochlorite solution for 15 min before being rinsed 5–6 times with sterile water. Then, the
completely sterilized soybean seeds were soaked in 25 ◦C sterile water for 12 h, followed by
incubation in a dark growth chamber for 24 h. For the germination stage, three transgenic
strains and P3 were planted in vermiculite for two weeks and then transferred into a
lower temperature chamber of 6 ◦C. Plant height was measured after 12 d, and root
length was measured after 9 d. TF15 and FH25 peanuts were sown in sand and then
transferred to a greenhouse at 25 ◦C under LDs (16 h/8 h, light/dark). Three weeks later,
TF15 and FH25 peanut plants were stored in a 6 ◦C chamber for 9 d (Figure 1A). We
used a commercial kit (Michy Bio, Suzhou, China) to determine physiological indicators.
ALDH (Cat. #M0608A) enzyme activity was measured in peanut. Physiological indices
were measured in transgenic soybeans, including ALDH (Cat. #M0608A) and MDA (Cat.
#M0106A), POD (Cat. #M0105A), and CAT (Cat. #M0104A) activities after 12 d of low-
temperature stress treatment, according to the manufacturer’s instructions.

4.6. RNA Library Construction

We performed RNA-seq analysis using line 1-1 and P3 as a control. The soybean
was treated with/without cold treatment for 9 d. The radicles were sampled for RNA
extraction using an RNA extraction kit (Kangwei Century Biotechnology, Beijing, China).
Berry Genomics Company performed library construction and transcriptome sequencing.

4.7. qRT-PCR Validation of Gene Expression

For peanut, to investigate the expression pattern of AhALDH2 family genes, after 9 d
of low-temperature treatment, TF15 and FH25 roots were collected for qPCR verification.
Meanwhile, the expression pattern of ALDH2 expression in different tissues of peanut
was analyzed. For soybeans, after 9 d of low-temperature treatment, three T3 generation
transgenic homozygous soybeans (line 1-1, line 2-2, line 4-1) and P3 soybean radicles
were used for qPCR verification. Total RNA was extracted from plants using TRIzol
reagent. The reverse transcription kit was used for cDNA synthesis and the removal of
genomic DNA. The cDNA sequence was used as a template to analyze differences in gene
expression using the SYBR qPCR Master Mix kit (vazyme, Nanjing, China). The LightCycler
480 II instrument was used for qPCR analysis. The 2−∆∆CT method was used to calculate
relative expression. GmActin6 and Arachis-Actin11 were used as internal reference genes.
Supplemental Table S1 shows the list of the primers used for qPCR.

4.8. Quality Control and Reads Mapping

The quality of the RNA-seq raw reads was analyzed using Fast QC software (version
0.11.9) [34], which was used to check and filter the adaptors and low-quality bases using
the Trim galore software (version 0.6.7). Using the Hisat2 software, the clean reads were
mapped to the soybean reference genome (Glycine_max_v4.0, NCBI) [35]. The mapped
reads were then quantified using the feature Counts software (version 2.0.1) [36]. DESeq2
(version 1.36.0) [37] was used to normalize quantified reads and perform differential
expression analysis between sample groups to identify differentially expressed genes
between transgenic and wild-type at room temperature versus cold treatment and to
prepare data for functional enrichment analysis. The raw data from this experiment were
submitted to the NCBI SRA database (ID: PRJNA932570).

4.9. Gene Ontology and KEGG Pathway Analysis

The R package AnnotationHub (version 3.6.0) was used to obtain the annotation
information files for soybean in the database. Using the R package ClusterProfiler (v4.6.0),
down-regulated and up-regulated differentially expressed genes (DEGs) lists were analyzed
for gene ontology (GO) gene function clustering and enrichment. Using the R package
ClusterProfiler (v4.6.0), KEGG pathway annotation analysis of differentially expressed
genes was performed, the metabolic pathways of gene products in cells were systematically
analyzed, and the function of these gene products was determined.
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4.10. Data Analysis

In this study, SPSS software was used for data analysis, and one-way ANOVA and
t-test were used for the significance test.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12162928/s1, Figure S1: OD600 values of yeast cells at
different time points under normal culture conditions; Figure S2: OD600 values after 8 h of resuscita-
tion at low temperature after various treatment times; Table S1: Primers used in this study; Table S2:
Differentially expressed up-regulated and down-regulated genes.
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