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Abstract: Rice (Oryza sativa L.) is an important cereal crop worldwide due to its long domestication
history. North-Eastern India (NEI) is one of the origins of indica rice and contains various native
landraces that can withstand climatic changes. The present study compared NEI rice landraces
to a check variety for phenological, morpho-physiological, and yield-associated traits under high
temperatures (HTs) and elevated CO2 (eCO2) levels using molecular markers. The first experiment
tested 75 rice landraces for HT tolerance. Seven better-performing landraces and the check variety
(N22) were evaluated for the above traits in bioreactors for two years (2019 and 2020) under control
(T1) and two stress treatments [mild stress or T2 (eCO2 550 ppm + 4 ◦C more than ambient tempera-
ture) and severe stress or T3 (eCO2 750 ppm + 6 ◦C more than ambient temperature)]. The findings
showed that moderate stress (T2) improved plant height (PH), leaf number (LN), leaf area (LA),
spikelets panicle−1 (S/P), thousand-grain weight (TGW), harvest index (HI), and grain production.
HT and eCO2 in T3 significantly decreased all genotypes’ metrics, including grain yield (GY). Pollen
traits are strongly and positively associated with spikelet fertility at maturity and GY under stress
conditions. Shoot biomass positively affected yield-associated traits including S/P, TGW, HI, and
GY. This study recorded an average reduction of 8.09% GY across two seasons in response to the
conditions simulated in T3. Overall, two landraces—Kohima special and Lisem—were found to be
more responsive compared to other the landraces as well as N22 under stress conditions, with a
higher yield and biomass increment. SCoT-marker-assisted genotyping amplified 77 alleles, 55 of
which were polymorphic, with polymorphism information content (PIC) values from 0.22 to 0.67.
The study reveals genetic variation among the rice lines and supports Kohima Special and Lisem’s
close relationship. These two better-performing rice landraces are useful pre-breeding resources for
future rice-breeding programs to increase stress tolerance, especially to HT and high eCO2 levels
under changing climatic situations.
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1. Introduction

Climate change has significant implications for agriculture and food production [1].
The changes in temperature, precipitation patterns, and extreme weather events associated
with climate change can impact various aspects of agricultural systems, including phenol-
ogy, growth and development, crop yields, and overall food security [2,3]. High tempera-
ture and elevated carbon dioxide (eCO2) levels are two significant consequences of climate
change that can have profound impacts on rice-based (Oryza sativa L.) agriculture [4,5],
which is one of the most important cereals, serving as the staple food for approximately
67% of the world population [6]. Heatwaves can cause stress to rice plantations by exceed-
ing their temperature tolerance thresholds, leading to reduced photosynthesis, impaired
pollen development, and lower crop yields [4]. Higher CO2 concentrations can initially
stimulate rice growth due to increased photosynthesis rates, which can lead to potentially
higher yields [7]. However, it is essential to carefully consider the possible advantages of
eCO2 in light of the adverse consequences associated with rising temperatures [8]. Based
on the current trends, global temperatures can be expected to rise by 3 ◦C at the end of
the century, which will lead to fluctuations in climate-related parameters, directly and
indirectly impacting on agricultural rice production [9].

Rice is the world’s most important cereal crop followed by wheat and provides
approximately 50% of calories for almost half of the world’s population and its demand
will increase by approximately 28% by 2050 [10]. With no CO2 interplay, global rice yield
could decline by an average of 3.2% for a 1 ◦C increase in global ambient temperature.
This amount could be uplifted in some regions due to increased temperatures, changing
rainfall patterns, and abnormal weather events [11]. Rice is predominantly cultivated and
consumed in Asia—especially in India, China and Japan, where India largely produces
indica rice [12]. It possesses exceptional genetic diversity, making it one of the few species
with such a rich genetic pool on the Indian subcontinent. Through its wide range of
domestication history, rice landraces representing traditional and locally adapted varieties,
hold immense potential in addressing challenges posed by climate change [13,14]. The
North-East (NE) region of India is recognized as a significant hotspot for rice genetic
resources due to its diverse rice-growing environments and as a secondary the center of
origin for rice; the NEI possesses a rich biodiversity of rice germplasm that showcases
unique characteristics [15]. As a result of the Green Revolution, most of the ancient rice
varieties and landraces are still not cultivated in the majority of the rice-growing areas
as they have been replaced by high-yielding modern cultivars [14]. Being the center of
rice domestication, the tribal and rural areas of NEI harbor a remarkable rice genetic
diversity maintained by farmers and exhibit variations in various traits, such as phenology,
plant height, photoperiod sensitivity, grain size and shape, aroma, cooking quality, and
tolerance to abiotic and biotic stresses [16]. Harnessing the genetic diversity present in these
landraces can contribute to the development of new rice varieties that can thrive under
changing climate conditions. By incorporating traits like early flowering and maturity,
higher pollen vitality and reproductive success, higher biomass, improved plant traits for
breeding purposes, and improved grain filling and yield, these landraces offer a promising
avenue for sustainable rice production under escalating climate challenges, ultimately
bolstering food security for both local communities and the broader population [17–19].

In addition to the breeding values of these landraces under high temperatures and
eCO2 levels, it is also very important to the genetic characterization of the landrace popula-
tion by using molecular genetic markers and to support genotypic performance to screen
out better-performing landraces for future breeding pipelines. Different molecular markers,
like Start Codon Targeted (SCoT), simple sequence repeat (SSR), and single nucleotide poly-
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morphic (SNP) markers, have been used to characterize rice genotypes and have revealed
their profound role in varietal discrimination and trait selection [20,21]. SCoT markers are
a type of molecular marker used in crop genetic analysis and are based on the polymor-
phism on short ATG start codon region of genes, making them valuable tools for studying
genetic diversity, population structure, and phylogenetic relationships among different
rice varieties with stress-tolerance properties [22]. SCoT-marker-based analysis presents
distinct advantages over other widely used molecular markers, like SSR and SNP, in rice as
it does not require prior knowledge of genomic sequences for primer design, making them
particularly valuable for non-model species or less-studied rice varieties [23]. Furthermore,
SCoT markers offer higher polymorphism rates compared to SSRs, enabling more accurate
discrimination between closely related genotypes and enhancing the resolution in genetic
diversity studies. In comparison to SNP markers, SCoT analyses are cost-effective, as it
avoids the resource-intensive processes of SNP discovery and genotyping. SCoT markers
also target non-coding regions near start codons, potentially revealing regulatory elements
that influence gene expression and functional variations. These features collectively render
SCoT-marker-based analyses an efficient and versatile tool for studying trait-associated
variations in rice, particularly in scenarios where genomic resources are limited or when
budget constraints are considered [24].

Considering NEI’s (the Nagaland region of India) geographical location within the
Indo-Burma region is considered the center of the origin of rice, this study hypothesizes
that the rice landraces native to Nagaland possess unique characteristics and genetic traits
developed through the evolution in this region. Due to their collection through participatory
rural appraisal approaches, certain rice landraces have been identified as showing notable
environmental stress tolerance, and it is anticipated that these landraces, which evolved
in the center of the origin of rice, might exhibit a wide array of adaptive mechanisms in
response to changing climatic parameters, including high temperature and eCO2. In this
regard, this study aimed to identify and understand the diverse responses of Nagaland’s
rice genotypes to these changing environmental factors, providing critical insights into
their adaptation mechanisms. Hence, the present investigation aims to (a) characterize
the native North-Eastern indica rice landraces for phenology, morphological, physiological
traits, and yield-associated parameters; (b) study the effect of high temperature and eCO2
on the rice traits for improved yield; and (c) the marker-assisted selection of potential rice
landraces that are better adapted to the aforesaid stress conditions for the identification of
resilient traits to develop climate-resilient rice varieties.

2. Materials and Methods
2.1. Plant Materials

A total of 75 locally grown rice landraces were collected from different rice-growing
places of Nagaland (Table S1) situated in North-East Indian agro-ecological regions, and
were agronomically evaluated in the experimental field (26◦45′ N latitude, 94◦12′ E longi-
tude, 87 m altitude above mean sea level) of Assam Agricultural University (AAU), Jorhat,
Assam, India, during two consecutive rice growing seasons of the year 2019 (year-1) and
2020 (year-2). The meteorological data during the cropping seasons (from late June to late
December) were obtained from the Department of Agrometeorology, AAU, Jorhat, India,
and presented graphically in Figure S1.

2.2. Screening the Genotypes for High-Temperature (Heat) Stress Tolerance

All 75 rice landraces were screened for high-temperature (heat) tolerance (HT) by
the in-field standard Screening Evaluation Score (SES) system of the International Rice
Research Institute (IRRI), Philippines [25]. A completely Randomized Design (CRD) with
two replications was followed for the field evaluation of seven heat-tolerant genotypes, viz.
Tatza, Kohima Special, Kakadhan, Laldhan, Tzumma, Lisem, and Mapok Temeseng, which
were selected for further detailed evaluation (Table 1). For comparison, one national rice
check variety Nagina 22 or N22 was included.
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Table 1. Shortlisted rice genotypes’ names, collection places from Nagaland state of India, and
genotypic types.

Accession No. Rice Genotypes Places of Collection District State Genotypic Type

G1 Tatza Punglao Dimapur Nagaland Landrace
G2 Kohima Special Molva Dimapur Nagaland Landrace
G3 Kaladhan Jharnapani Dimapur Nagaland Landrace
G4 Laldhan Medziphema Dimapur Nagaland Landrace
G5 Tzumma Sochunoma Dimapur Nagaland Landrace
G6 Lisem Mopongchuket Mokokchung Nagaland Landrace
G7 MapokTemeseng Merangkong Mokokchung Nagaland Landrace

G8 Nagina 22 (N22)
Central Rice Research
Institute (CRRI),
Cuttack, India

Bidyadharpur Orissa Improved
(check variety)

2.3. Experimental Set-Up and Treatments of High-Temperature and eCO2 Stress

Surface-sterilized (with 0.1% sodium hypochlorite) rice seeds of the selected eight
genotypes were sown in plastic cups containing rice field soil with organic matter (50:50)
and grown for 30 days. Then, 10 healthy plantlets were transferred to a bigger pot (30 cm3)
in five replications with the same soil mixture for each treatment and maintained in
the bioreactors (Genesis Technologies, Bhosari, Maharashtra, India) established in the
Stress Physiology Laboratory, Department of Crop Physiology (AAU, Jorhat, India). Such
bioreactors were used for further study with high-temperature and eCO2 stress treatments.
A Factorial Completely Randomized Design (FCRD) with two factors (two bioreactors per
treatment) and 5 replicates was employed for the stress treatments. Treatment-1 (T1) is the
control set and comprises the maintenance of the plant pots under ambient temperature and
CO2, whereas treatment-2 (T2) comprises CO2 (550± 20 ppm) with + temperature (ambient
+ 4 ◦C), and treatment-3 (T3) comprises CO2 (750 ± 20 ppm) with + temperature (ambient +
6 ◦C). Each treatment was maintained in individual bioreactors as follows (Figure 1):

Figure 1. Representation of experimental setup in this study. (A) Bioreactor where the rice plants
were grown in pots, (B) control condition (T1), (C) treatment 2 (T2), and (D) treatment 3 (T3).
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T1: Control (ambient CO2 and temperature);
T2 (mild stress): CO2 (550 ± 20 ppm) with + temperature (ambient + 4 ◦C);
T3 (severe stress): CO2 (750 ± 20 ppm) with + temperature (ambient + 6 ◦C);

2.4. Growth Conditions in Bioreactors

Inside the bioreactor, the CO2 level was maintained throughout the rice plant growth
during 09:00–14:00 daily. The elevation of temperature was maintained from the tillering
stage to just before maturity through an infrared (IR) heater regulated by SCADA software v
5.1.6. Temperature transmitters based on Resistance Temperature Detectors (RTDs) sensors
were placed in each chamber to obtain data in the control room through four core-shielded
cables. IR heaters are fitted inside the bioreactors to elevate the temperature and air
conditioners are placed inside, which are operated with the help of a remote controller. All
the data were recorded in the computer placed in the control room.

2.5. Phenotyping of Phenological, Morphological, Physiological, and Yield-Associated Traits

All the agronomic practices were followed during the growth condition, as per the
desired standard. Phenological parameters, like days to flowering (DtoF) and days to
physiological maturity (DtoPM), were recorded at particular growth stages, as per the
BBCH scale [26]. The former represents the number of days taken from sowing to the
initiation of 50% flowering of panicles in a pot. The physiological maturity is expressed as
the number of days taken from sowing to 70–80% crop maturity (late grain-filling stage).
The canopy temperature (CT, ◦C) can help to optimize irrigation, detect water availability
and the crop’s overall physiological condition, and is measured by an infrared thermometer
(IRT) within six hours after treatment. Agro-morphological parameters, such as the s
number of tillers plant−1 (TL/P), leaf area (LA) (cm2), leaf area index (LAI), relative leaf
water content (RLWC), root length (RL, cm) and volume (RV, cm3), root biomass (RB, g),
anther length (AnL), and pollens anther−1 (P/A), were recorded during the grain-filling
stage. The number of tillers per hill (main plant) was counted on the tagged plants in the
pot. The numbers of green leaves (LN) and LA were measured using a portable leaf-area
meter (LI-3000C, Licor, Bad Homburg, Germany) by scanning the leaf from petiole to
the tip portion, rolling out through the machine and measuring length, width, and area.
LAI expresses the ratio of leaf surface to the ground area occupied by the plant as per
Evans [27]. LA and LAI are commonly used as an indicator of canopies’ capability to
intercept light and perform photosynthesis. RLWC can assist in the timely implementation
of water requirements, plants’ response to stress, and irrigation strategies to ensure optimal
growth and yield. It was calculated as per the formula used by Barrs and Weatherley [28]
using twenty-leaf discs. A Soil–Plant Analysis Development (SPAD) chlorophyll meter
(SPAD-502 plus, Konica Minolta, Tokyo, Japan) was used to obtain SPAD values (SPAD
units) from the four uppermost fully expanded leaves on each plant during the grain-
filling stage as per Frankin et al. [29]. Such a SPAD meter is a handheld device that
provides a quick, non-destructive measurement of the relative chlorophyll content in a
leaf and works based on the principle that chlorophyll content is directly related to the
greenness of a leaf. The normalized difference vegetation index (NDVI) was recorded
at the same time using a GreenSeeker handheld sensor (NTech Industry Inc., Ukiah, CA,
USA) as per Kimaro et al. [30]. The NDVI is widely used to monitor and assess vegetation
health, estimate biomass production, and detect environmental stress effects. For root
characteristics, a set of plants was uprooted very carefully during maturity, the roots were
separated from above-ground parts, and root length (RL) was evaluated. Root volume (RV)
was determined by the water displacement method used by Raja and Bishnoi [31]. Then,
the roots were dried in an oven at 80 ◦C for 3 days and the root biomass (RB) was recorded
using an electronic weight machine (Shimadzu ELB600, Kyoto, Japan). AnL (as mm) and
P/A were calculated at the time of flowering after staining the anthers with safranine and
observed under a light microscope [32]. Plant height (PH, cm) was measured at maturity
with the help of a meter scale from the base of the plant to the apex of the main axis. Yield
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components, such as the number of spikes panicle−1 (SP/P), spikelet fertility−1 (SF%),
the number of filled grains panicle−1 (G/P), thousand-grain weight (TGW, g), grain yield
(GY, g plant−1), and harvest index (HI), were measured at maturity. During maturity, all
above-ground plant parts (vegetative + reproductive) of each plant with tillers per pot were
manually harvested as shoot biomass (SB), and vegetative parts were separated from the
panicle. Five random panicles were collected from each pot, and the number of spikes and
filled grains were counted for each panicle. The spikelet fertility was estimated as the ratio
of the number of filled grains to the total number of florets. Then, the grains were dried and
threshed manually. The number of grains and their weight (GY and TGW) were measured
using an electronic weight machine (Shimadzu ELB600, Kyoto, Japan). HI was measured
as the proportion of GY to the total above-ground dry matter per pot and expressed in
percentage (%).

2.6. Genotyping Using Start Codon Targeted (SCoT) Markers

Genomic DNA was isolated from the young and healthy rice leaves during the ma-
turity stage following a pre-standardized protocol [33]. The DNA quality was checked
using 0.8% agarose gel electrophoresis and nanodrop reading [34]. The high-quality DNA
was used for a polymerase chain reaction (PCR)-based genotyping using a total of 30 Start
Codon Targeted (SCoT) markers, the PCR reaction was carried out in a thermal cycler (M.
J. Research, MC 013130), as performed by [35], to check the polymorphic ability, and the
monomorphic SCoT markers from the analysis were discarded. The list of 25 polymorphic
SCoT primers used in the present investigation is presented in Table S2. The PCR-amplified
products were resolved in 1.5% agarose gel following the protocol given by [36], stained
using ethidium bromide (EtBr), and documented in a UV gel documentation system (Perkin
Elmer, Geliance 200 imaging system, Waltham, MA, USA). The length of the amplified
DNA bands was determined with reference to the 100 bp DNA ladder (Fermentas Life
Sci., Waltham, MA, USA) included in the gel as a size marker. The molecular weight
(nucleotide base pairs) of the most intensely amplified bands for each microsatellite marker
was analyzed using AlphaEaseFC software v4.0 (Genetic Technologies, Miami, FL, USA) as
reported by [14]. The electrophoretic banding pattern generated from the SCoT primers
was used to calculate the pair-wise genetic similarity of rice genotypes, and a dendrogram
was constructed by using unweighted pair group analysis (UPGMA) using NTSYS-pc
software (version 2.02e).

2.7. Statistical Analyses

Statistical analysis was performed using JMP v16.0 (SAS, Cary, NC, USA) statistical
software and R-programming for Windows (×64). Differences between the treatments
were analyzed using Tukey–Kramer post hoc test. Analysis of variance (ANOVA) and
genotype–treatment–year interaction (GxTxY) was performed using a mixed model with
blocks that have random effects. Correlations between the parameters of the control set were
evaluated using the corrplot package of R v4.0.3. The principal component analysis (PCA)
was graphically computed using the first two—PC1 and PC2, through multivariate analysis.

3. Results

A total of 75 rice landraces collected from different places of Nagaland (NEI region)
were initially screened for high-temperature (heat) stress tolerance based on gradual heat-
responsive phenotypic changes of the leaves, i.e., days to stay healthy, leaf folding and
rolling, leaf tip and margin drying, whole leaf drying, and plant death (Table S1). After
the initial screening, seven landraces (Tatza (G1), Kohima special (G2), Kaladhan (G3),
Laldhan (G4), Tzumma (G5), Lisem (G6), and Mapok Temeseng (G7)) were found to
be high-temperature tolerant and were selected for comparison with the national check
variety—N22—for further study (Table 1) to describe the interactive effects of the control
(T1—no stress imposed) and the two different stress level—mild (T2) and severe (T3) with
high temperatures and eCO2. In both the control and two stress conditions, phenological
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(DtoF, DtoPM), morphological (PH, LN, RL, RV, RB, SB, AnL, and P/A), physiological (CT,
SPAD, NDVI, RLWC, and LA), and yield-associated traits (GY, HI, TGW, G/P, SP/P, and
panicle length (PL, SF%)) were evaluated in two years/seasons (2019 and 2020).

3.1. Effect of High Temperatures and eCO2 Level on Rice Phenology, Morpho-Physiological, and
Yield-Associated Parameters

The diversity in the phenological, morphological, physiological, and yield-associated
traits have been detected in control and stress treatments across the two years (2019 and
2020) of study on the selected eight rice genotypes. The mean values are shown in Table 2.
DtoF, RB m−2, TL m−2, and PL have been found to have the least effect in the different
treatments. When comparing similar treatments in both studied years for each trait, variable
performance is almost stable without much deviation. A clear trend was observed, which
indicated that the mild-stress treatment (T2) yielded better variable values than the control
across two years, which drastically declined under the severe stress (T3) of high temperature
and eCO2 levels. The reduction in DtoF and DtoPM in T2 for the studied genotypes is
vital for the shortening of crop cycle, which may correspond to a higher yield under stress
conditions. A significant reduction in DtoF and DtoPM was observed in both T2 and T3
compared to the ambient condition, regardless of the genotypes. In T2, a reduction of 3.52%
and 3.12% in DtoF was observed, while T3 showed a further reduction of 4.06% and 4.48%
in both seasons. Similarly, DtoPM had a reduction of 2.90% and 1.91% in T2 and 5.66%
and 5.0% in T3 across the two seasons, respectively. SPAD (chlorophyll content) values
decreased significantly between the control, and treatments (T2 and T3) in both years. But
the NDVI shows such a similar trend only for year-1. In year-2, NDVI increased slightly in
T2 compared to the control, but it was non-significant (p < 0.05 in Tukey–Kramer post hoc
test). It was observed that the trait values in T3 were generally much lower than the values
in the control, but for some traits, it was higher than the control, e.g., CT, root traits (RL, RV,
and RB), and PL.

Table 2. Mean values of the studied traits under the control and two different stress treatments in
two consecutive years—year-1 and year-2. The mean values with different letters are significantly
different (p = 0.05) as per Tukey–Kramer’s LSD test.

Traits
Year-1 Year-2 Mean

(X)Control T-2 T-3 Control T-2 T-3

Days to flowering 90.71 a 87.57 a 87.09 a 90.63 a 87.85 a 86.61 a 88.41
Days to physiological maturity 121.54 a 118.02 ab 114.65 b 120.30 a 118.01 ab 114.32 b 117.81
Anther length (mm) 1.79 bc 2.06 ab 1.01 d 1.76 c 2.17 a 1.09 d 1.65
Pollens anther−1 715.78 b 939.73 a 596.77 c 737.08 b 976.06 a 613.94 c 763.23
Canopy temperature (◦C) 26.45 c 27.90 b 30.45 a 25.91 c 27.15 bc 28.56 b 27.74
SPAD 40.91 ab 37.82 b 31.50 c 43.51 a 39.75 ab 33.01 c 37.75
NDVI 0.69 a 0.66 a 0.45 b 0.42 b 0.46 b 0.43 b 0.52
Root length (mm) 22.81 b 27.51 a 24.57 b 23.27 b 27.31 a 25.10 ab 25.09
Root volume 43.87 c 48.89 ab 46.22 bc 44.48 c 49.28 a 46.76 abc 46.58
Root biomass m−2 41.28 a 46.12 a 43.15 a 41.48 a 45.83 a 43.33 a 43.53
RLWC 74.75 b 81.14 a 69.34 c 73.76 b 79.38 a 68.55 c 74.48
Tillers m−2 594.67 a 627.08 a 579.71 a 594.67 a 624.13 a 582.08 a 600.39
Leaf number 23.47 ab 24.59 a 22.85 b 23.43 ab 24.43 a 22.62 b 23.56
Leaf area (cm2) 66.30 bc 69.64 a 64.28 c 66.92 b 71.60 a 64.70 bc 67.24
Shoot biomass m−2 1311.17 ab 1370.04 a 1209.42 cd 1278.58 bc 1348.92 ab 1189.13 d 1284.54
PH (cm) 111.76 b 118.15 a 105.04 c 111.80 b 119.94 a 104.97 c 111.94
Panicle length (cm) 23.80 a 24.16 a 24.08 a 24.02 a 24.56 a 24.27 a 24.15
Spikelets panicle−1 58.67 ab 61.10 a 52.27 b 57.17 ab 58.96 ab 43.50 c 55.28
Grains panicle−1 157.55 a 163.61 a 116.01 b 156.92 a 163.46 a 116.08 b 145.61
GY g m−2 1019.29 bc 1141.79 a 937.21 c 1023.42 bc 1134.79 ab 944.83 c 1033.56
HI 77.68 b 83 a 77.18 b 79.86 ab 83.72 a 79.19 ab 80.11
TGW 24.15 bc 27.47 a 20.14 d 22.64 c 26.23 ab 19.07 d 23.28
Spike fertility% 83.40 b 91.23 a 74.16 c 84.81 b 93.20 a 74.71 c 83.58
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It is shown that anther length and pollens anther−1 significantly contribute to a higher
SF% at maturity in the control and treatments. T2 is much more productive than the
control, but severe stress (T3) dramatically reduces SF% (Figure 2A,B). In the relationship
between AL and SF%, the genotypic variation in T3 is much more distinct compared
to the control and T2, which is quite overlapping with P/A. Also, SF% positively and
significantly influences GY (Figure 2C). A clear association of SB with major yield attributes,
i.e., PL, SP/P, G/P, GY, HI, and TGW, was found (Figure 2D–I). SB is mostly positively and
significantly associated with all the yield attributes, except PL, for which the association is
non-significant and with a very low regression (R2) value (Figure 2D). SB highly influences
GY, with higher significance levels and higher R2 values across the treatments (Figure 2G).
T2 showed an increase in G/P of 3.68% and 4.03%, whereas, in contrast, T3 resulted in a
stress-induced reduction of 27.10% and 26.72% in both seasonal years. The Lisem genotype
exhibited a higher percent increase in G/P, with increases of 7.64% and 6.09% over the
check variety N22. On average, T2 exhibited an increment in GY of 11.75% and 10.52%, and
T3 showed a reduction of 8.31% and 7.87%.
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It was found that stress-responsive physiological traits, like CT, SPAD, NDVI, RL,
RLWC, and LA, are significantly associated with GY m−2 across the control (T1) and two
stress treatments—mild (T2) and severe (T3) (Figure 3A–F). CT is negatively related to
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the GY increment, but the rest of the physiological traits show a positive association with
GY. The control and the stress treatments are significant in case of all trait-association,
except when the RLWC and GY of the control has a comparatively low R2 value, i.e.,
0.42 (Figure 3E).
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Figure 3. Relationship of grain yield (GY m−2) with the stress-responsive physiological parameters:
canopy temperature (A), SPAD (B), NDVI (C), root length (D), relative leaf water content (RLWC)
(E), and leaf area (cm2) (F) under control and two different stress conditions (mild and severe).
‘*’, ‘**’, and ‘***’ denote the significance level at p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001, respectively.
‘ns’ = Non-significant.
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3.2. Inter-Relationship between the Studied Traits

The variability of the studied traits has been revealed through their inter-relationship
by considering the control (T1), and the corrplot is shown in Figure 4A and 4B. In both
years (year-1 and year-2), DtoPM, PL, SP/P, and TGW are found to be non-significant,
along with other traits. CT is shown to be mostly negatively correlated with other traits.
The most positive correlation is provided by AnL, P/A, SPAD, NDVI, RL, LN, SB, SP/P,
G/P, GY, and SF%. In year-1, the highest positive significant correlation (r = 0.94, p < 0.001)
is shown between NDVI and G/P, and between P/A and GY (Figure 4A), whereas in year-2,
the same highest correlation was observed for P/A, which is associated with LA and TGW
(Figure 4B).
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Figure 4. Correlation matrix in the form of corrplot using the studied parameters of rice genotypes of
the control set in both year-1 (A) and year-2 (B). The range of correlation coefficient (r) is shown in the
horizontal index bar. The cross mark (X) denotes a non-significant correlation (p = 0.05). DtoF—Days
to flowering, DtoPM—days to physiological maturity, AnL—anther length, P/A—pollens per
anther, CT—canopy temperature, SPAD—Soil–Plant Analysis Development, NDVI—normalized
difference vegetation index, RL—root length, RV—root volume, RLWC—relative leaf water con-
tent, TL/P—tillers per plant, LN—leaf number, LA—leaf area, SB—shoot biomass, PH—plant
height, PL—panicle length, SP/P—spikelets per panicle, G/P—grains per panicle, GY—grain yield,
HI—harvest index, TGW—thousand-grain weight, SF%—spikelet fertility%.

3.3. Combinatorial Interaction between Genotypes (G), Treatments (T) and Years (Y)

Analysis of variance (ANOVA) of the studied parameters of the eight selected rice
genotypes in the two consecutive years shows enormous variability for genotypes (G),
treatments (T), and years (Y), and their all combinatorial interactions (G×T, G×Y, T×Y, and
G×T×Y), as shown in Table 3. ANOVA shows that the R2 of the traits ranged between 0.76
(PL) and 0.99 (DtoF, P/A, CT, NDVI, RB, RLWC, G/P, and SF%). Most of all traits show
significant differences in the case of genotypes, treatments, and years individually, but in
some instances, years do not produce significant variable differences, e.g., phenology (DtoF
and DtoPM), AnL, RB, TL m−2, and LN. A significant difference for G×T×Y was observed
in a few traits like AnL, P/A, CT, NDVI, SP/P, G/P, and SF%. In all combinatorial aspects,
CT, NDVI, SF%, P/A, SPAD, LA, SP/P, and G/P were producing the maximum significant
variation of the factor combinations.
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Table 3. Analysis of variance (ANOVA) of the studied parameters of rice genotypes with genotypes
(G), treatments (T), and years (Y), and their interactions.

Fixed Factors DF
Studied Parameters

DtoF DtoPM AnL P/A CT SPAD

G 7 <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 ***
T 2 <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 ***
Y 1 0.7054 0.035 * 0.1941 <0.0001 *** <0.0001 *** <0.0001 ***

G×T 14 0.1518 0.0888 <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 ***
G×Y 7 0.0544 <0.0001 *** 0.0139 * <0.0001 *** <0.0001 *** <0.0001 ***
T×Y 2 0.4244 0.1119 0.3264 0.1361 <0.0001 *** 0.0312 *

G×T×Y 14 0.9984 0.9711 0.0057** <0.0001 *** <0.0001 *** 0.9573

R2 0.99 0.96 0.89 0.99 0.99 0.98

Fixed factors DF NDVI RL RV RB RLWC TL/P

G 7 <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 ***
T 2 <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 ***
Y 1 <0.0001 *** <0.0001 *** <0.0001 *** 0.732 <0.0001 *** 0.9692

G×T 14 <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** 0.0372 *
G×Y 7 <0.0001 *** 0.0057 ** 0.0313 * 0.8495 <0.0001 *** 0.0394 *
T×Y 2 <0.0001 *** 0.0418 * 0.7323 0.0812 0.0038 ** 0.8749

G×T×Y 14 <0.0001 *** 0.99 0.996 0.994 0.4069 0.9938

R2 0.99 0.97 0.98 0.99 0.99 0.97

Fixed factors DF LN LA LAI SB PH PL

G 7 <0.0001 <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 ***
T 2 <0.0001 <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** 0.0087 *
Y 1 0.1831 <0.0001 *** <0.0001 *** <0.0001 *** 0.0067 ** 0.0218 *

G×T 14 0.5779 <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** 0.9957
G×Y 7 0.0099 ** <0.0001 *** <0.0001 *** 0.9057 0.1162 <0.0001 ***
T×Y 2 0.7737 <0.0001 *** 0.6975 0.2438 0.0006 *** 0.6283

G×T×Y 14 0.9998 0.7161 0.7323 0.9393 0.9945 0.9403

R2 0.92 0.96 0.98 0.98 0.97 0.76

Fixed factors DF SP/P G/P GY HI TGW SF%

G 7 <0.0001 <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 ***
T 2 <0.0001 <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 ***
Y 1 <0.0001 <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 ***

G×T 14 <0.0001 <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 ***
G×Y 7 0.0012 ** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 ***
T×Y 2 0.0064 ** 0.2735 0.3247 0.2719 0.1851 0.0035 **

G×T×Y 14 <0.0001 *** <0.0001 *** 0.8294 0.6204 0.2886 0.0418 *

R2 0.77 0.99 0.98 0.90 0.98 0.99

G—genotype, T—treatments, Y—years, DF—degree of freedom, DtoF—days to flowering, DtoPM—days
to physiological maturity, AnL—anther length, P/A—pollens per anther, CT—canopy temperature, SPAD,
NDVI—normalized difference vegetation index, RL—root length, RV—root volume, RB—root biomass,
RLWC—relative leaf water content, TL/P—tillers per plant, LN—leaf number, LA—leaf area, LAI—leaf area
index, SB—shoot biomass, PH—plant height, PL—panicle length, SP/P—spikelets per panicle, G/P—grains per
panicle, GY—grain yield, HI—harvest index, TGW—thousand-grain weight, SF%—spikelet fertility%. ‘*’, ‘**’,
and ‘***’ denote the significance level at p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001, respectively.

3.4. Multivariate Analysis of the Phenotypic Parameters

Principal component analysis of the two consecutive years showed a clear separation
of treatments with distinct trait vectors. In year-1 (Figure 5A,B), the rice genotypes were
plotted with PC1, explaining 62.4% of the phenotypic variation. PC1 is positively loaded
with plant traits (NDVI, SB, RLWC, LN, RL, and TL/P) and yield attributes (SF%, G/P,
TGW, GY, and HI) and negatively loaded with PH and PL. Similarly, PC2 contributes
14.8% and is positively loaded with phenology (DtoF and DtoPM), and negatively loaded
with CT.
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Figure 5. Principal component analysis (PCA) for the studied parameters of yield and non-
yield components of eight rice genotypes for year-1 (season 1) under control and two treatment
(treatment-2 and treatment-3) conditions. (A) represents the genotypic and treatment interactions,
and (B) represents the variable vectors. Control (ambient temperature and CO2), treatment-2 (am-
bient temperature + 4 ◦C, CO2 550 ± 20 ppm), and treatment-3 (ambient temperature + 6 ◦C, CO2

750 ± 20 ppm). The studied traits are canopy temperature (CT), days to flowering (DtoF), days to
physiological maturity (DtoPM), plant height (PH), NDVI, tiller plant−1 (TL/P), leaf number (LN),
root length (RL), relative leaf water content (RLWC), panicle length (PL), grains panicle−1 (G/P),
spikelets panicle−1 (S/P), spikelet fertility% (SF%), grain yield (GY), thousand-grain weight (TGW),
and harvest index (HI).

In the second year (Figure 6A,B), almost all the vector trend and genotypic position are
similar and static. PC1 and PC2 explain 59.9% and 18.4% of the trait variations, respectively.
PC1 is positively loaded with plant traits (NDVI, RLWC, LN, TL/P, and RL) and yield
attributes (SF%, G/P, GY, and TGW) and negatively loaded with PH and SP/P. On the
other hand, PC2 contributes in the same way in year-1. Genotypic discrimination, as per
the treatment, is very clear in the PCA chart, which shows that treatment-3 (severe high-
temperature and eCO2 stress) is much more distinctive from the control and treatment-2
(mild high-temperature and eCO2 stress); however, that of the control and treatment-2 are
almost similar and not distinctive between the genotypes.
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Figure 6. Principal component analysis (PCA) for the studied parameters of yield and non-yield com-
ponents of eight rice genotypes for year-2 (season 2) under control and two treatment (treatment-2 and
treatment-3) conditions. (A) represents the genotypic and treatment interactions, and (B) represents
the variable vectors. Control (ambient temperature and CO2), treatment-2 (ambient temperature +
4 ◦C, CO2 550 ± 20 ppm), and treatment-3 (ambient temperature + 6 ◦C, CO2 750 ± 20 ppm). The
studied traits are canopy temperature (CT), days to flowering (DtoF), days to physiological maturity
(DtoPM), plant height (PH), NDVI, tiller plant−1 (TL/P), leaf number (LN), root length (RL), relative
leaf water content (RLWC), panicle length (PL), grains panicle−1 (G/P), spikelets panicle−1 (S/P),
spikelet fertility% (SF%), grain yield (GY), thousand-grain weight (TGW), and harvest index (HI).
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3.5. Selection of Genotypes Based on Yield-Associated Performance under Stress Conditions

Genotypic selection was based on better performance to produce improved yield and
yield-associated parameters with a short phenological span under stress conditions that are
comparatively higher than the check variety—N22 (Figure 7).
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Figure 7. Radar charts showing the mean variability of major yield-associated traits—days to
flowering (A), shoot biomass m−2 (B), rice-grains panicle−1 (C), spikelet fertility% (D), grain yield
m−2 (E) and thousand-grain weight (F)—of studied rice genotypes across two years for the genotypic
selection under different high temperature and eCO2 level. Genotypes are Tatza (G1), Kohima special
(G2), Kaladhan (G3), Laldhan (G4), Tzumma (G5), Lisem (G6), Mapok Temeseng (G7), and N22 (G8).

Based on the fewer days needed for flowering and higher yield parameters, like SB,
rice-G/P, SF%, GY, and TGW, Kohima special (G2) and Lisem (G6) were found to have
a higher yield than N22 (G8). Among the genotypes, Mapok Temeseng (G7) exhibited a
longer duration of flowering, with an increase of 33.11% compared to N22. On the other
hand, Kaladhan had the shortest duration of flowering (19.94% less compared to N22)
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(Figure 7A). In the case of SF%, Kohima special exhibited the highest increase, by 9.48%,
than the check genotype N22, followed by Lisem, which showed a considerable increase in
SF (8.09%) (Figure 7D). Also, under the stress treatments in both T2 and T3, the performance
of these two landraces is much higher compared to the other landraces. Even in the higher
stress condition (T3), trait variables are decreased considerably less compared to those
of the control and mild-stress treatment (T2). Out of the eight studied rice genotypes,
Tatza (G1) was found to be a very low-yielding landrace under stress conditions. In the
control, Kohima special and Lisem yielded 1177.50 ± 17.61 and 1129.67 ± 23.62 g rice
grains m−2, respectively, which was much higher in range than N22 (1038.50 ± 13.43) and
Tatza (814.67 ± 20.48), with the value increasing under mild stress (T2), viz. 1365.50 ± 18.44
for Kohima special, 1294.83 ± 21.73 for Lisem, 1226.67 ± 25.82 for N22, and 859 ± 29.53
for Tatza. But under severe stress (T3), Kohima special (1108.67 ± 18.61) and Lisem
(1062.50 ± 12.74) performed better than N22 (985.33 ± 24.72) and Tatza (709.50 ± 34.69)
(Figure 7E). Upon analyzing the GY data, a significant difference was observed among
the different treatment levels. Kohima special displayed a higher per cent increase in
GY (12.32%) than N22. Lisem also showed notable increases (7.30%) (Figure 7E). When
considering all the treatments and comparing them to the check genotype N22, the landrace
Kohima special exhibited the highest increase in TGW (by 11.22%) (Figure 7F).

3.6. SCoT Marker-Assisted Genetic Analysis and Genotypic Selection

Initially in this study, 30 SCoT markers were screened for genetic analysis among the
studied rice genotypes, including seven landraces and one check variety of the 30 SCoTs,
only 25 primers were selected for genetic analysis based on sharp, clear banding patterns.
The genotyping information is presented in Table 4. The selected 25 SCoT primers amplified
a total of 77 alleles, with an average of 3.08 alleles per SCoT locus. One (SCoT28 and
SCoT34) to seven (SCoT21) alleles were amplified using the studied marker set that had a
100–1400 bp range for the amplicon size. Out of 77 amplified alleles, 55 alleles were found to
be polymorphic with 71.42% polymorphism. Only eight markers (SCoT5, SCoT9, SCoT15,
SCoT19, SCoT20, SCoT21, SCoT31, and SCoT32) were found to be only polymorphic,
whereas three markers (SCoT28, SCoT34, and SCoT36) were found to be only monomorphic
in nature. The estimates of polymorphic information content (PIC) values ranged from
0.22 to 0.67, with an average of 0.45 per primer. The highest PIC value (0.67) was observed
for four alleles in SCoT15. The SCoT5, SCoT8, SCoT15, SCoT18, SCoT20, SCoT22, SCoT28,
SCoT53, SCoT33, and SCoT35 markers showed a PIC value above 0.50. The lowest PIC
value (0.22) was obtained with four alleles in the SCoT27 primer (Table 4).

Table 4. Molecular genotyping data through the 25 SCoT-marker-based fingerprinting of rice geno-
types, including landraces and check variety.

Sl. No. SCoT Markers Total
Amplicons Amplicon Size (bp)

Number of
Monomorphic

Bands (%)

Number of
Polymorphic

Bands (%)
PIC 1

1 SCoT2 2 180–300 1 (50%) 1 (50%) 0.44
2 SCoT5 3 100–400 0 3 (100%) 0.52
3 SCoT6 6 150–750 1 (16.66%) 5 (83.33%) 0.38
4 SCoT8 4 300–800 2 (50%) 2 (50%) 0.58
5 SCoT9 2 140–190 0 2 (100%) 0.30
6 SCoT15 4 190–1050 0 4 (100%) 0.67
7 SCoT16 3 160–480 1 (33.33%) 2 (66.66%) 0.50
8 SCoT17 4 110–820 1 (25%) 3 (75%) 0.43
9 SCoT18 3 900–1400 1 (33.33%) 2 (66.66%) 0.60

10 SCoT19 2 120–260 0 2 (100%) 0.49
11 SCoT20 2 170–350 0 2 (100%) 0.55
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Table 4. Cont.

Sl. No. SCoT Markers Total
Amplicons Amplicon Size (bp)

Number of
Monomorphic

Bands (%)

Number of
Polymorphic

Bands (%)
PIC 1

12 SCoT21 7 220–900 0 7 (100%) 0.37
13 SCoT22 4 400–1000 1 (25%) 3 (75%) 0.58
14 SCoT24 3 400–1200 2 (66.66%) 1 (33.33%) 0.34
15 SCoT26 3 400–1250 2 (66.66%) 1 (33.33%) 0.38
16 SCoT27 4 200–550 1 (25%) 3 (75%) 0.22
17 SCoT28 1 1000 1 (100%) 0 0.52
18 SCoT29 4 300–1200 2 (50%) 2 (50%) 0.47
19 SCoT30 4 200–800 1 (25%) 3 (75%) 0.53
20 SCoT31 2 300–500 0 2 (100%) 0.29
21 SCoT32 2 120–280 0 2 (100%) 0.38
22 SCoT33 3 150–500 1 (33.33%) 2 (66.66%) 0.58
23 SCoT34 1 800 1 (100%) 0 0.30
24 SCoT35 2 180–500 1 (50%) 1 (50%) 0.57
25 SCoT36 2 300–600 2 (100%) 0 0.33

Total 77 22 55
Average 3.08 0.88 2.2 0.45

1 Polymorphism information content (PIC).

The dendrogram, based on SCoT-based genotyping data, classified the studied rice
genotypes into two broad clusters—I and II (Figure 8). Cluster I comprise six landraces—Tatza
(G1), Kohima special (G2), Kaladhan (G3), Laldhan (G4), Lisem (G6), and Mapok Temeseng
(G7)—whereas cluster II comprises two genotypes—one landrace, i.e., Tzumma (G5) and
one modern check variety, i.e., N22 (G8). In cluster I, Jaccard’s similarity coefficient shows
the highest similarity (75%) between Kohima special and Lisem, which are connected closely
to each other. Then, they sub-clustered with Kaladhan, which further sub-clustered with
Laldhan and Mapok Temeseng. These five genotypes then distantly clustered with Tatza.
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4. Discussion

The present study sheds light on the potentiality of rice landraces of the North-
East Indian region to perform better than the commonly used check variety under high
temperatures and eCO2 levels in the context of ongoing climate change in the present
day. The observed variability in terms of phenological, morphological, physiological, and
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yield-associated traits in the studied genotypes under mild and severe treatments of high
temperature and eCO2 in two successive cropping seasonal years (2019 and 2020) were
further confirmed with SCoT-marker-based genetic profiling.

4.1. Rice Landraces as Pre-Breeding Materials

Rice landraces, especially from the North-East Indian (NEI) location are important
pre-breeding materials for future rice-breeding programs. Numerous studies have demon-
strated that indigenous rice varieties that farmers cultivated, maintained, and preserved
throughout the year in their local agro-ecological niche have a high level of genetic diversity,
making them viable genetic resources for enhancing yield, agronomic performance, and
tolerance to abiotic stresses [16,37]. Evolutionarily, landraces play a bridging role in domes-
tication from wild species to modern high-yielding rice varieties. In this investigation, the
initial screening led to the identification of seven comparatively heat-tolerant rice landraces,
out of a group of 75, that are very easy to grow and perform well during a large scale trial
under field conditions. Such screening was based on the visible changes caused by the
high temperature—like leaf and leaf-tip rolling, curling, and rice-plant death (Table S1) [4].
For further analysis, a national check rice variety Nagina22 (or N22) developed by the
National Rice Research Institute (NRRI, Cuttack, India) was added. Many other studies
used this heat-tolerant variety for a comparative study of the heat-stress response of other
rice genotypes [38,39].

4.2. Genotypic Evaluation for Phenological, Morphological, Physiological, and Yield-Associated
Traits and Traits’ Association

The evaluation of the genotypes under stress treatments reveals the profound effects
of high temperatures and eCO2 levels on rice phenology, morpho-physiological, and yield-
associated parameters (Table 2). The year-wise variability of almost every trait was very
low because the traits were mostly genetically stable through the year-wise environmental
fluctuations. So, further deviation must come from the treatments and genotypes. A notice-
able pattern was seen wherein the mild-stress treatment (T2) of high temperature (ambient
+ 4 ◦C) and 550 ppm CO2 resulted in higher trait values compared to the control. However,
this trend significantly diminished under much higher temperatures (ambient + 6 ◦C) and
higher CO2 (750 ppm) levels (T3). The stress-induced reduction in growth parameters was
greatly ameliorated by eCO2. Elevated CO2 with a high temperature shows a significant
difference in plant height among the genotypes in both years. The reduction in DtoF and
DtoPM under mild stress is of great importance in shortening the life cycle, which may re-
sult in higher yields under stressful conditions for the tolerant genotypes [40]. The reduction
in DtoF and the increase in yield-associated traits in rice in response to high-temperature
and eCO2 conditions, respectively, have been reported in other studies [41]. Early flowering
and maturity are important to minimize the cost-effective agricultural input during the
cropping season and may help to avoid the onset of climatic instabilities [42]. The treatment
effect was visualized in most of the yield-associated traits as they are multigenic and very
hard to regulate. For reproductive success, pollen (male reproductive particle) viability,
P/A, and AnL are crucial for higher yield [33]. A significant difference in such pollen
traits were reported in our previous study on hot chilis grown under high temperatures
and eCO2 [32]. The effect of high temperature on pollen viability in rice grown under
polyhouse with elevated temperature from 29 ◦C to 40 ◦C and maintained until 15 h, with
a relative humidity of 75%, was observed. Such experimental set-up exhibited a 20–40%
increase in SF after exposure to high temperature. Moreover, pollen fertility ranged from
39 to 90% [43]. When validating the contribution of AnL and P/A to SF% at maturity, both
found a significantly positive correlation in different stress levels (Figure 2A,B), but the
strength was much higher between P/A and SF% because the pollen in the anther has a
direct influence on the reproductive success of rice, which in turn may eventually lead to a
higher grain set panicle−1 and higher GY (Figure 2C). Following our results, Sakai et al. [44]
also found that eCO2 increases the number of SP/P and grain set. An earlier study reported
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a higher TL number, LA, and SB (above ground) in hybrid rice cultivars under eCO2
conditions. The higher biomass can be also related to a higher N2 supply and a minimum
(1–2 ◦C) temperature elevation [45]. The roots are also an important stress-responsive plant
part as they uptakes nutrients from the soil and channel them to the shoot and leaves to
influence plant growth and development. The photo-assimilates are stored in shoot and
root parts, improving their biomass. Under abiotic stress conditions, there is a considerable
effect on rice roots, especially root length, number, branching, and volume [14,46]. There
was a notable difference in root length among the genotypes in both years. Jin et al. [47]
reported that improved root traits under eCO2 were due to increased photosynthetic carbon
allocation towards roots, which stimulates root growth and thereby enhances water and
nutrients uptake efficiency. As a consequence, the RB and root/ shoot ratio in rice increased
in response to higher temperatures [48]. In many cereal crops, including rice, it has been
tested and proved that having a higher biomass can increase GY and grain set through
channeling nutrients and photo-assimilates higher up to the growing panicles during grain
set [49]. In the present study, SB significantly and positively correlates with GY, SP/P, G/P,
HI, and TGW in stress treatments (Figure 2D–I) except PL (non-significant associations),
which is showing a considerably lower R2 value, i.e., 0.76 (Table 3). Generally, it seems that
a long panicle can hold higher grains, leading to a higher yield, but the finding indicates
higher advantages of panicle density or grain set panicle−1 on the yield rather compared to
PL. The probable cause may be in the mild-stress conditions, as CO2 helps to accelerate the
photosynthesis rate due to a higher LN or greater LA, which assimilates more carbon to
improve biomass, eventually boosting GY [48]. We have found the evidence that a higher
LA is associated with P/A and GY in this study (Figure 4B).

4.3. Effect of High Temperatures and eCO2 Levels on Genotypes and Traits

In the previous study on hot chillis [32], three different elevated CO2 levels—380,
550, and 750 ppm—were used, out of which the higher concentrations show significant
results to carry forward in this present experimental setup. With rice, in the present study,
the mild concentration of CO2 (550 ppm) is higher than current atmospheric CO2 levels
and represents a realistic projection of its concentrations in the coming years. The 4 ◦C
increase in temperature is moderate, but it is a plausible estimation based on climate change
projections. The severely elevated level (750 ppm) represents a more extreme scenario,
which reflects a potential trajectory of emissions if continuing at the current rates. The 6 ◦C
temperature increase is a severe but plausible projection under continued global warming
scenarios. The IPCC provides comprehensive assessments of climate change, including
future climate scenarios, CO2 projections, and temperature increases based on different
environmental emission pathways. These predictions are utilized to select realistic stress
conditions for the experiment [50]. Under high-temperature and eCO2 stress conditions,
the physiological traits of rice play a very crucial role in characterizing genotypes and
stress effects. In our study, CT, chlorophyll content (SPAD), NDVI, RL, RLWC, and LA are
found to be significantly correlated with GY (Figure 3A–F). Stress-tolerant rice plants have
a characteristic feature of lowering their body temperature when exposed to a stressful
environment and can function internally in stress-resilient ways to produce higher grain
production and/or minimize the trade-off of yield penalties because of harsh stress [51]. In
this case, CT is negatively associated with the GY increase, whereas the other physiological
characteristics are positively associated with GY. NDVI also indicates the vegetation and
biomass of the crop and thus shows a significant correlation (r = 0.94) with G/P (Figure 4A).
As was discussed earlier, the number of years (Y) has the very least effect on the traits
as most of the traits show significant differences in the case of genotypes, treatments,
and years individually, but in some instances where G and T are significant effects, the
number of years does not produce significant variable differences for DtoF, DtoPM, AnL,
RB, TL m−2, or LN (Table 3). Multivariate analysis exhibits a clear separation of treatments.
Mainly, the severe stress condition is distinctly separated in the PCA plane due to its
harsh negative effect on the studied traits, whereas the control and mild stress are almost
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in the same place because of their similar or close effect (Figure 5A,B). In most of the
traits, mild stress has a beneficial effect over the control, as we stated before. Phenology
is grouped in the close vicinity of CT. However, the plant height vector is closely situated
with other physiological and yield-associated traits. In general, for the modern varieties,
PH is inversely proportional to the GY as a result of the Green Revolution. But as we
have used most of the landraces, it represents a higher PH-mediated biomass increment
and a higher yield. When considering selecting the best-yielding rice landraces that have
a similar or higher performance compared to the national check variety under stress
conditions, Kohima special (G2) and Lisem (G6) have been identified as potent landraces
that have a comparatively shorter DtoF and higher SB, grain set panicle−1, SF%, GY, and
TGW (Figure 7).

4.4. SCoT Marker-Assisted Genetic Analysis and Genotypic Selection

In our investigation, SCoT markers were used to assess the molecular effect of high
temperature and eCO2 on genotypes’ genetic diversity. In relation to the responsiveness of
rice under other abiotic stresses, some other molecular markers, like SSR, ISSR, SNP, were
used in the rice landrace population [13,14,34,36,52]. SCoT-marker-based analysis is better
than other frequently used molecular markers since primer creation does not need genomic
sequence information [23]. SCoT markers also have larger polymorphism rates than SSRs,
making them better at distinguishing closely related genotypes. SCoT analysis eliminates
the need for resource-intensive SNP identification and genotyping, making it cheaper than
SNP markers. SCoT markers also target non-coding areas around start codons, which may
identify gene expression and functional variation regulators [53–55]. In our study, eight
SCoT markers (SCoT5, SCoT9, SCoT15, SCoT19, SCoT20, SCoT21, SCoT31, and SCoT32)
have been identified as highly polymorphic and can be used further in rice genotyping
for high-temperature- and CO2-induced stress. The polymorphism information content
(PIC) of the studied SCoT markers is moderate and signifies each marker’s genotypic
discrimination ability. The two best-performing rice landraces (Kohima special and Lisem)
under high temperature and eCO2 level were determined by multivariate analysis, which
is supported by the SCoT-marker-based selection data as they showed a similarity in their
marker-based clustering (Figure 8).

In this way, rice landraces exhibiting resilience and superior performance under high-
temperature and elevated atmospheric-CO2-stress conditions should be prioritized in
ongoing climate change scenarios in agricultural sectors. However, stability over multiple
environments and seasons is critical, so multi-location trials should be conducted to validate
their adaptability. Additionally, assessing the genetic diversity present in the selected rice
landraces will guide breeders in avoiding narrow genetic bases and potential vulnerabilities.
New climate-resistant rice varieties may be developed using the genetic diversity of Kohima
Special and Lisem. These landraces can provide a sustainable rice production in the face
of climate change by incorporating traits like efficient photosynthesis, heat tolerance,
and water-use efficiency. This will improve food security for local communities and the
wider population.

5. Conclusions and Future Perspectives

The present investigation employed the evaluation of rice landraces for better perfor-
mance under high temperatures and eCO2 for breeding traits, and was further aided by
SCoT-marker-assisted selection. The study aimed to identify and understand the diverse
responses of Nagaland’s rice genotypes to the changing environmental factors, providing
critical insights into their adaptive mechanisms. The novelty of this study lies in the used
rice landraces, which are very much native to the unexplored regions of North-East India
(NEI), with their potential resilience to these climate change-related stressors, highlighting
the importance of regional diversity and adaptation. By comprehensively assessing mor-
phological, phenological, physiological, and yield-associated traits, this finding led to the
identification of two potent regional rice landraces—Kohima special and Lisem—which
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have a much superior yield ability, compared to the national check variety N22. SCoT-
marker-based genotyping also revealed moderate genetic diversity among the genotypes
and found few potent markers (SCoT5, SCoT9, SCoT15, SCoT19, SCoT20, SCoT21, SCoT31,
and SCoT32) with better discrimination ability to precisely select the superior genotypes
that would help rice breeders in the selection of suitable parents for breeding purpose
and genetic mapping studies. By using these two landraces as donor parents, the genetic
background of N22 and other modern cultivars can be improved and sustained in chang-
ing climatic scenarios. The unique geographic focus, with emphasis on future climatic
stressors; comprehensive evaluation, molecular analysis, and the identification of resilient
rice landraces collectively differentiate this study from others in the field of rice research
and stress-tolerance assessment. Furthermore, it is expected that the insights gained from
this study will aid in the development of climate-resilient rice varieties capable of with-
standing future climatic challenges. The findings could influence rice-breeding programs,
guiding the selection of rice varieties that are better equipped to thrive in the changing
environmental conditions. This multidimensional perspective can shape the future of rice
breeding and contribute to global efforts aimed at achieving food security in an era of
environmental uncertainty.
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evening during the cropping seasons (A) Year-1 and (B) Year-2; Table S1: Screening of rice landraces
from North East India (Nagaland) under high temperature stress condition; Table S2: Details of used
SCoT primers and their sequences, GC content and melting temperature (Tm).
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