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Abstract: The inoculation of plants with plant-growth-promoting microorganisms (PGPM) (i.e., bac-
terial and fungal strains) is an emerging approach that helps plants cope with abiotic and biotic
stresses. However, knowledge regarding their synergic effects on plants growing in metal-rich soils is
limited. Consequently, the aim of this study was to investigate the biomass, ecophysiology, and metal
accumulation of the facultative Ni-hyperaccumulator Alyssoides utriculata (L.) Medik. inoculated
with single or mixed plant-growth-promoting (PGP) bacterial strain Pseudomonas fluorescens Migula
1895 (SERP1) and PGP fungal strain Penicillium ochrochloron Biourge (SERP03 S) on native serpentine
soil (n = 20 for each treatment). Photosynthetic efficiency (Fv/Fm) and performance indicators (PI)
had the same trends with no significant differences among groups, with Fv/Fms > 1 and PI up to
12. However, the aboveground biomass increased 4–5-fold for single and mixed inoculated plants.
The aboveground/belowground dry biomass ratio was higher for plants inoculated with fungi (30),
mixed (21), and bacteria (17). The ICP-MS highlighted that single and mixed inocula were able to
double the aboveground biomass’ P content. Mn metal accumulation significantly increased with
both single and mixed PGP inocula, and Zn accumulation increased only with single PGP inocula,
whereas Cu accumulation increased twofold only with mixed PGP inocula, but with a low content.
Only Ni metal accumulation approached the hyperaccumulation level (Ni > 1000 mg/kg DW) with
all treatments. This study demonstrated the ability of selected single and combined PGP strains to
significantly increase plant biomass and plant tolerance of metals present in the substrate, resulting
in a higher capacity for Ni accumulation in shoots.

Keywords: Fv/Fm; metals; performance index; PGP

1. Introduction

Metal pollution in soil has become a global environmental issue due to the intense
increase in industrialization and intensive agricultural activities [1]. Metals are highly
toxic and persistent pollutants because they are not biodegradable, and their oxidation
state can change, with a half-life longer than 20 years [2]. Metallic pollutants have caused
health problems for approximately 10 million people worldwide [3], and they represent
37% of contaminants in European soils and waters [4]. Metal-contaminated soils also
act as stressors on plants, causing photosynthetic activity alterations and affecting global
ecophysiological performance [5–8] by inhibiting plant growth and biomass production [9].

Hyperaccumulators are plants able to effectively transfer metals to their shoots [10],
reaching a concentration >1% (depending on the metal) [10–12]. This ability can be ex-
ploited for phytoextraction in metal-rich soils enriched by natural or anthropogenic in-
puts [13] to concentrate metals in the aboveground biomass [2]. Phytoextraction is a cost-
effective and sustainable technology with good public acceptance, although the process
does require a significant amount of time to succeed. To improve metal hyperaccumulation,

Plants 2023, 12, 554. https://doi.org/10.3390/plants12030554 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12030554
https://doi.org/10.3390/plants12030554
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0003-4459-531X
https://orcid.org/0000-0002-9595-4629
https://orcid.org/0000-0003-3701-9154
https://doi.org/10.3390/plants12030554
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12030554?type=check_update&version=2


Plants 2023, 12, 554 2 of 13

several assisted phytoremediation techniques can be exploited: (i) using chelating agents
that increase the uptake and translocation of metals to the shoots [14,15]; (ii) the effective
addition of exogenous phytohormones [16–20]; and (iii) inoculation with plant-growth-
promoting microorganisms (PGPM), an emerging approach that employs plant growth
promoting bacteria (PGPB) and plant-growth-promoting fungi (PGPF) to alleviate metal
stress and support metal uptake [21]. However, chelating agents affect plants’ health via
stunted growth and leaf chlorosis [14], reduced biomass [14], or increased risk of ground-
water pollution via metal mobilization, as in the case of Ethylenediaminetetraacetic Acid
(EDTA) [22]. Exogenous phytohormones impact plant yield [16,23,24]. Regarding PGPM,
the combined use of fungi and bacteria requires prior evaluation to rule out antagonistic
action between strains. It is well known that some fungal strains can produce effective
antibacterial secondary metabolites.

Given expanding interest in the PGPM approach, new studies are required to increase
knowledge regarding their effects on plants growing in metal-rich soils.

PGPB are directly and indirectly involved in plant growth stimulation. PGPB are
directly involved in minerals solubilization, promotion of nutrients uptake, nitrogen fixa-
tion, phosphate solubilization, production of siderophores, and secretion of hormones and
metabolites [24–26]. PGPB are indirectly involved in protection against pathogens [27,28],
increased plant resistance to abiotic stresses, such as excess soil metals [29], and reduc-
tion of metal toxic effects [24]. Indeed, some PGPB have potential for phytoremediation
purposes [30]. Among these, Pseudomonas fluorescens complex Migula, 1895 are ubiqui-
tous in rhizospheric microbiota [31] and tolerant to metals [32,33]. These bacterial strains
were also able to increase crop yield (e.g., Solanum tuberosum L.) [34], growth parameters
(e.g., Pisum sativum L., up to 45%; Phaseolus vulgaris L., up to 20%) [35], and shoot dry
biomass (e.g., Eragrostis tef (Zucc) Trotter, up to 2.8-fold) [36].

PGPF were more recently investigated because of their key roles in the PGP
process [37–39]. Similar to PGPB, PGPF can directly and indirectly interact with plants,
improving germination rate, photosynthetic efficiency, biomass production, stimulating
phytohormones production, etc. [37,40]. Other saprotrophic or mycoparasitic species can
act as antagonists of harmful species by modulating the expression of different genes [38].
Until now, most strains that have shown the greatest PGP effect by improving horticultural
plants’ (e.g., Brassica rapa L., Saccharum officinarum L., Cucumis sativus L., etc.) dry biomass
up to 170% belong to different genera; the most studied strains are Penicillium and Tricho-
derma. Moreover, their natural ability to produce siderophores to chelate metals can be
fruitfully exploited for bioremediation purposes [39]. For instance, certain Pseudomonas
fluorescens strains can detoxify organic and inorganic pollutants; Penicillium ochrochloron is a
metal-resistant fungus highly tolerant to copper and Ni, with metal uptake ability [32,40,41].

Currently, most studies of assisted phytoremediation techniques regarding microor-
ganisms focus primarily on endophytes as mutualistic symbionts of plants that improve
plant performance under extreme conditions, such as drought, nitrogen deficiency, salin-
ity, and metal phytotoxicity exposure. Endophyte inoculation has shown potential for
plant growth promotion and can increase metal translocation in hyperaccumulator shoots
by mitigating stresses from contaminated and naturally metal-rich soils [42]. However,
knowledge regarding mixed PGPB and PGPF microbial consortia that support plants at the
rhizosphere level is lacking.

We previously identified PGP strains of Penicillium ochrochloron and Pseudomonas
fluorescens isolated from the Ni-hyperaccumulator Alyssoides utriculata (L.) Medik. [32]
rhizosphere as synergically able to co-grow in a mixed culture, developing a biofilm
where the two microorganisms merge and reach their mature stages [41]. Their synergistic
behavior suggests their potential use as in vivo microorganism consortia to mitigate metal
stress and promote metal uptake for bioremediation purposes [33].

Hence, these strains were employed in this in vivo experiment on metalliferous soil
to directly evaluate their potential synergic role in A. utriculata’s rhizosphere for phytore-
mediation purposes. Our study evaluates and compares the effects of co-inoculations and
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single inoculations of PGP fungal and bacterial strains on A. utriculata from an assisted
phytoremediation perspective in terms of biomass production, metals and nutrients uptake,
and physiological responses.

2. Results
2.1. Biomass Production

First, data for aboveground and belowground dry biomasses were analysed. Figure 1′s
boxplots show the difference between the biomass of plants inoculated with PGPB (four-
fold), PGPF (fivefold) and mixed inocula (fivefold) over the control group. The biomass of
plants that received mixed inocula were significantly greater compared with the control
group’s biomass, as shown by the T-test (Table 1).
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Figure 1. Boxplot of the belowground and aboveground dry biomass of different treatments (n = 20
for each treatment). The boxplot illustrates the interquartile range; central lines mark the data’s
medians; box edges represent the first and third quartiles; whiskers show maximum and minimum
values; and * represents the outliers.

Table 1. Student’s T-test results for different treatments’ dry belowground and aboveground biomass;
significant: p < 0.05; highly significant: p < 0.001; and n = 20 for each treatment. Significant data are
marked in bold, ns: not significant; superscript letters highlighted higher accumulation in controls (a)
or in treatments (b).

Treatments T-Test

Belowground Aboveground

Control vs. Bacteria 0.001 b 0.000 b

Control vs. Fungi 0.000 b 0.000 b

Control vs. Mix 0.010 b 0.000 b

Bacteria vs. Mix ns ns
Fungi vs. Mix ns ns

There was a significant difference in biomass production between controls and treated
plants (Table 1). The control group had a significantly lower biomass production in com-
parison with all three treated plant groups (p < 0.001 for aboveground and belowground
biomass), whereas there was no significant difference in biomass production between the
single and mixed inocula.

Analyses concentrated on aboveground biomass, as it was the most relevant for
phytoextraction purposes. Furthermore, the aboveground/belowground dry biomass ratio
showed that the aboveground biomass was 17-fold in the bacteria group, 21-fold in the
control group and the mixed group, and 30-fold in the fungi group.
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2.2. Heavy Metals and Nutrients Accumulation in the Aboveground Biomass

The accumulation of elements in the samples’ aboveground biomass was quantitatively
analyzed via descriptive analysis (Figure 2) and inferential statistical analysis to compare
averages (Table 2).
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Table 2. Unpaired two-sample T-test results without outliers and related p-values of elements’
concentration in aboveground biomass. Significant data (p < 0.05) are marked in bold; ns: not
significant; n = 15 for each treatment; superscript letters highlight higher accumulations in (a) controls
or (b) treatments.

Treatments
p Value of Elements’ Concentration in the Aboveground Biomass

Ca Mg K P S N Ni Fe Mn Cu Zn B

Control vs.
Bacteria ns ns ns 0.000 b 0.003 a ns ns ns 0.000 b 0.003 a 0.001 b 0.015 a
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Figure 2 summarizes differences in the aboveground biomass metals accumulation for
PGP treatments and the control. Ni, the most absorbed element, accumulated differently
with each treatment, as follows: fungi > bacteria > mixed > control.

An unpaired two-sample T-test summarized the significant differences in absorption
of macronutrients, such as P, S, and sometimes N, and micronutrients, such as Mn, Cu, Zn,
and B (Table 2).

No significant differences between the control and treatments were recorded for Ni
concentrations (Table 2). However, P concentrations (control, P = 0.14%; fungi, P = 0.18%;
bacteria, P = 0.19%; and mixed P = 0.2%) and S concentrations (control, S = 2.18%; fungi,
S = 1.63%; mixed, S = 1.67%; and bacteria, S = 1.68%) were significantly different. Inter-
estingly, N concentrations for the mixed and control groups differed (control, N = 3.42%;
and mixed, N = 3.11%). Micronutrients, such as Mn (control, Mn = 110.5 mg/kg; mixed,
Mn = 208.5 mg/kg; fungi, Mn = 229.8 mg/kg; and bacteria, Mn = 414 mg/kg) and Cu
(control, Cu = 6.17 mg/kg; fungi, Cu = 2.61 mg/kg; bacteria, Cu = 3.43 mg/kg; and mixed,
Cu = 13.28 mg/kg) were significantly different for all treated plant groups compared with
the control. Single inoculum results also differed for Zn (control, Zn = 152.7 mg/kg; bacteria,
Zn = 231.6 mg/kg; and fungi, Zn = 244.4 mg/kg) and B (control, B = 42.3 mg/kg; bacteria,
B = 35.88 mg/kg; and fungi, B = 32.7 mg/kg) concentrations. The control group had higher
S and B values than single and mixed inocula did (except B in the mixed inocula). The
control’s N level was significantly higher than the mixed group’s was. The single and
mixed inocula always had significantly higher P and Mn concentrations than the control
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did, whereas there was a higher Zn level only in the single inocula. Cu accumulation was
higher in the control than in single inocula and significantly higher in the mixed group.

The macronutrient concentration in the aboveground biomass varied (Figure S1);
all plants in each treatment group had similar macronutrient accumulations, whereas
the highest concentration variability within groups was for micronutrient accumulation,
specifically metals (Figure S1).

Figure 3′s radar chart illustrates metal concentrations in treatment groups’ averaged
aboveground biomass; Fe (highest in fungi) and Mn (highest in bacteria) had the widest
concentration ranges among treatment groups, whereas Ni concentration was approxi-
mately that of hyperaccumulation (Ni > 1000 mg/kg DW) for all treatments. However, Ni
and Fe concentrations of plants treated with single and mixed inocula were not significantly
different, whereas the difference in Mn concentrations was relevant.
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2.3. Photosynthetic Efficiency and Performance Index

For each plant sample, three measurements were taken on the third and fourth leaf,
starting from the apical leaf. Figure 4 shows the averaged photosynthetic efficiency for
each group.

The polyphasic curves qualitatively show the photosystems’ correct functioning.
Figure 4′s OJIP curves were plotted on a logarithmic axis to observe chlorophyll fluo-
rescence over time, from minimum fluorescence (F0) up to maximum fluorescence (Fm).
The treatments’ average curves almost overlap, indicating that there were no differences in
the different groups’ photosystem II (PSII) function.

Regarding photosynthetic parameters, the photosynthetic efficiency Fv/Fm was al-
ways >0.8, and the performance index was always higher than one and reached a maximum
of 12. High PI values indicated potential capacity for energy conservation from photons
absorbed during PSII to the reduction of electron acceptors in the intersystem between PSII
and PSI. A Student’s T-test confirmed that each sample’s photosynthetic apparatus worked
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regardless of the treatment applied and did not reveal significant differences in the Fv/Fm
between the control groups and treated groups (p > 0.05); this confirmed the OJIP results.
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3. Discussion

Inoculation with PGPM and their consortia can help plants alleviate metal stress in
metal-rich soils [16,21,32], counteracting physiological changes that cause lower biomass
production and alterations in physiological responses, biochemical activities, and photo-
synthetic efficiency [5–8,43].

Alyssoides utriculata inoculated with single and mixed PGP inocula showed a re-
markable increase in dry aboveground biomass (up to 4–5-fold over the control) in re-
lation to more efficient phosphorous nutrition and the alleviation of metal stress, as al-
ready documented in recent studies regarding the beneficial effects of inoculated mi-
crobiota [16,21,32,44–46]. Such high biomass values support the effectiveness of PGPB
P. fluorescens SERP1 to help plants cope with metal-rich soil stress and reach a significantly
increased biomass compared with those reported in the literature.

In fact, most papers about crops inoculated with other P. fluorescens strains (such
as DR397, P22, Pseudomonas sp. Z6, and P. fluorescens biotype G) [35,36,47] identify an
increase in shoot dry biomass 2–4 times lower than our findings, even if higher plant yields
were obtained.

Similarly, the PGPF Penicillium ochrochloron used in this study showed properties
similar to those of other PGP Penicillium strains, and was able to improve the dry biomass
of horticultural plants (e.g., Brassica campestris, Saccharum officinarum, Cucumis sativus,
etc.) from 0.5 up to 1.7-fold [44,48]. Penicillium ochrochloron’s indole acetic acid (IAA) and
siderophore production, as well as its P solubilization, improved nutrient availability [48,49].
Interestingly, Tarroum et al. [50] recently demonstrated the direct (via inoculum) and
indirect (using a cell-free culture filtrate) PGP activity of Penicillium olsonii in tobacco by
increasing the dry biomass up to 4.8-fold compared to control plants; these results are
similar to ours. Moreover, the PGPF effect significantly increased plant growth and total
chlorophyll content.
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The bacterial and fungal mix used (P. fluorescens and P. ochrochloron) improved the
aboveground biomass, as similarly documented for different microbial consortia used
in crops, in Citrus sp. [36,51–53], and in the hyperaccumulator Miscanthus × giganteus
(Mxg) J.M.Greef, Deuter ex Hodk., Renvoize [54]. Nevertheless, the documented consortia
showed a lower increase in biomass (up to 3.1-fold) compared to our results. However,
using our mixture did not have more effective results than single strains in terms of biomass
increase (fivefold) (even if the increase was more relevant than those reported in the cited
studies), confirming this consortium’s strong PGP ability.

Regarding metal accumulation, a peculiar trend was noted for Mn, which increased
twofold with fungi and bacteria treatments and fourfold with the mixed treatment. Few
data are available to justify the increase in this nutrient (a minor and stable element of
the tested soil) [12], even if the ability of some fungi to solubilize Mn from insoluble Mn
oxides has already been documented [55]. Interestingly, bacteria and fungi inoculation
supported a Zn increase; a similar ability was recorded in fungi for ericoid mycorrhizal
strains that increased plants’ ability to solubilize inorganic Zn compounds, thus allowing
better colonization of soils polluted with toxic metals [56]. Additionally, other plants
inoculated with Pseudomonas fluorescens strains showed the same increases in Zn and Cu
and consequent plant growth [57–59], which supports our current findings. In addition, the
inoculation of sunflowers with P. fluorescens P22 and Pseudomonas sp. Z6 led to an increase
in Zn and Mn uptake [47] that was two times lower than our results.

Unexpectedly, the mixed treatment’s copper accumulation in aboveground biomass
was twofold greater than in the controls. This was an uncommon result, as both single
bacterial and fungal PGP strains usually alleviate copper toxicity [55], reducing its accumu-
lation in plant tissues [54], in contrast to our results. However, other studies documented
increased accumulations of P, Zn, Cu, and Mn resulting from inoculation with other mi-
crobial consortia [51] or Zn accumulation in leaves and stems that increased a plant’s dry
weight [54]. We cannot exclude that the synergistic effect of the two strains in the mixture
might have left more copper available for plants because of an antagonistic competition for
Cu between the two strains, as shown in other studies [60], further studies are required to
clarify this response.

The photosynthetic activity and global ecophysiological performance of plants in
response to metals, usually employed to detect metal stress [5–8], demonstrated a stable
Fv/Fm and plant performance in Alyssoides utriculata grown in a metal-rich soil. This con-
trasts with observations regarding other species inoculated with the bacterium Pseudomonas
fluorescens, such as the plant Sedum alfredii, a Cd hyperaccumulator, that has shown a
higher Fv/Fm value [61]. However, in a previous study conducted by Roccotiello et al. [62],
increasing the Ni level resulted in a stable Fv/Fm among Ni treatments (always≥0.8) and
a PI >1.5. Our findings showed higher values of both parameters, highlighting the ability
of this species to cope with other metals and avoid severe damage to its photosynthetic
apparatus. A similar response has been demonstrated in species such as Arundo donax
under Se treatments, where no alterations in the Fv/Fm ratio were observed in most of
the selected ecotypes [63]. The response of A. utriculata confirms the constitutive ability
of this species to cope with metals when living on metalliferous soils (such as the soil
tested in our study), which is similar to other hyperaccumulators [64–67], and illustrates
the peculiar morpho-physiological and biochemical adaptations typical of hyperaccumu-
lator plants [68,69]. Interestingly, the bacteria and fungi tested in this study (and their
combination) did not result in a better ecophysiological performance, as their main effects
were related to the optimization of the plants’ mineral nutrition. Further investigations are
needed to clarify this response.

4. Materials and Methods
4.1. Plant Species and Soil Collection

The facultative Ni-hyperaccumulator Alyssoides utriculata (L.) Medik. (Figure 5) is a
small thermophilic, xerophilous, suffruticose, and chamaephyte plant. It is found in the
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northeastern Mediterranean region; in Italy, it is quite commonly found in the Piedmont
and Liguria regions, where it mainly grows on serpentinites [61].
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A. utriculata plants were grown from seeds collected according to international guide-
lines [70]. Samples were harvested from the Ligurian Appenines. The presence of Ni in the
mother plants was assessed using a colorimetric field Dimethylglyoxime (DMG) test.

Voucher herbarium specimens of Alyssoides utriculata plants and seeds were deposited
in the University of Genoa herbarium, codes GE1904 and GE5364, respectively. The soil sam-
pled in the ophiolitic Massif of the Voltri group (Beigua Geopark) originated from serpenti-
nite bedrock, and its chemical analysis, as in [55], highlighted high metal concentrations, as
follows: average nickel, (Ni) = 945 mg kg−1; magnesium (Mg), MgO = 21 wt%; manganese
(Mn), MnOt = 0.20 wt%; Zinc, (Zn) = 150 mg kg−1; and copper, (Cu) = 25 mg kg−1. These
concentrations were the starting conditions of our experiment.

The soil was subjected to granulometric and mineralogical analyses and divided into
2 fractions, coarse (>4 mm) and medium-fine (<2 mm), equally mixed. To eliminate the
original biotic component, the soil was sterilized via oven drying at 130 ◦C.

4.2. Experimental Design

The experimental design consisted of 80 samples, with 20 plant replicates for each
treatment (control, bacteria, fungi, and mixed). After inoculation (see Section 4.3), pots
were placed in completely randomized series. The trial lasted 18 months after inoculation.
Each sample was labeled, classified with a unique number, and monitored over time via
photographic documentation.



Plants 2023, 12, 554 9 of 13

4.3. Soil Inoculation

The bacterial strain Pseudomonas fluorescens Migula, 1895 (SERP1) and the fungal
strain Penicillium ochrochloron Biourge (SERP03 S) were used in vivo as inocula. The strain
sequences were submitted to the NCBI GenBank® database under accession numbers
MG661811 and MG850978, respectively. These PGP strains had previously demonstrated
the ability to co-grow effectively [32].

Two weeks after setting up the soil, the selected microbiotic components were inocu-
lated. Each vessel was inoculated with 1 mL of bacterial or fungal suspension (or a mixture
of the two) at a concentration of 108 colony-forming units (CFUs).

The pots were divided into four groups: control (20 pots with native soil as is, non-
sterile and not inoculated); fungi (20 pots with sterile native soil and Penicillium ochrochloron
inoculum); bacteria (20 pots with sterile native soil and Pseudomonas fluorescens inoculum);
and mixed (20 pots with sterile native soil and bacterial–fungal co-inocula).

The pots were irrigated once a week (120 mL in each pot) using an automatic system
(MySolem System) to maintain a 70% water holding capacity (WHC) to guarantee microbial
and fungal activity.

4.4. Seeds Sowing

Eighty seeds were sown in each substrate. Germinators were sterilized using hydrogen
peroxide before being sown into a mixture of soil of natural origin and sterile vermiculite
in a 1:1 ratio. Seeds were sterilized using 10% sodium hypochlorite and washed three times
with sterile distilled water. Germinators were placed in a protected culture to maintain
high relative humidity and promote germination.

4.5. Transplants of A. utriculata

After 2 months, plants were subjected to mild fertilization with N-P-K (10:20:10)
fertilizer at 1/4 strength (2 mL for each plant).

After 3 months, A. utriculata seedlings with 2–3 pairs of leaves were transplanted into
labelled pots (containing one of the four substrates) in the experimental greenhouse.

4.6. Ecophysiological Response

Ten months after transplant, direct measurements verified photosynthetic efficiency,
that is, the ratio of energy accumulated during photosynthesis chemical reactions to ab-
sorbed light energy.

For the analysis, 240 in vivo measurements (20 sample plants per treatment group
and control and 3 leaves per plant) were made using the Hansatech Instruments HANDY-
PEA tool.

The sensor unit consisted of a series of three diodes emitting a 650 nm peak wavelength
(which was readily absorbed by chlorophyll) at a maximum intensity of 3500 µmol m−2 s−1

on the sample’s surface.
Leaves were dark-adapted for 20 min, then submitted to a 1-s pulse of ultra-bright red

radiation. The recorded parameters were F = F0, Fm, Fv/Fm, and PI.

• F0 is the minimum fluorescence value, representing emissions from the excited chloro-
phyll molecules in the photosystem II’s antenna structure.

• Fm is the maximum fluorescence value, obtained after applying a saturation pulse to
a dark-adapted leaf.

• Fv/Fm indicates the maximum quantum efficiency of the photosystem II, which
indicates a plant’s photosynthetic performance.

• PI (performance index) indicates a sample’s viability.

4.7. Biomass Evaluation

Twelve months after transplanting, belowground and aboveground biomass produc-
tion was evaluated; roots were separated from leaves, washed several times under tap
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water and subsequently three times under deionized water, and oven-dried at 60 ◦C for
48 h before weighing.

4.8. Analysis of Elements

To quantitatively evaluate the elements’ concentrations in plants, dried aboveground
biomass was weighed, powdered, and sent to the Land Analysis and Vegetable Productions
Laboratory, Sarzana, SP, Italy, for ICP-MS analysis.

4.9. Data Analysis

Data were processed using Minitab 15 Statistical Software.
A descriptive statistical analysis for each dataset, and subsequently an inferential statis-

tic, was created by applying the Student’s T-test to compare the means of unpaired samples.
Radar graphs highlighted similarities and anomalies among the different treatment groups.

Parametric analysis verified whether the average value of a distribution significantly
differed from a certain reference value; this facilitated studying the experimental groups via
comparison with the control group. The confidence interval was 95%. PEA Plus Application
software was used to analyze samples’ OJIP polyphasic curves.

5. Conclusions

Single and mixed inocula of fungi and bacteria on Alyssoides utriculata facilitated a
specific response to metal stress in terms of the accumulation of elements and a related
increase in aboveground plant biomass.

The eco-physiological performance of A. utriculata was stable with single and mixed
PGP inocula and comparable with the control. Plants’ aboveground biomass was between
four and five times higher in single and mixed inoculated plants over controls due to
increased P uptake. All treated plants reached the Ni hyperaccumulation threshold with
no observable differences in Ni concentrations. All treatments resulted in a Mn increase,
the mixed inocula promoted the uptake of Cu twofold, and single inocula increased the Zn
concentrations. Even if these elements’ concentrations were far below the hyperaccumula-
tion threshold, these results indicate the selected single and combined PGP strains’ abilities
to help plants cope with metals in the substrate.

This study, through selected microbial strains, found an application to improve the
rhizosphere resilience when the available nutrients are depleted and help plants coping
with metal stress. In addition, it provides new insight for using selected PGP strains for a
sustainable assisted phytoremediation approach in metal-contaminated soils.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants12030554/s1, Figure S1: Radar chart without outliers, normalized. The absorption
values were normalized to the means of each group, showing in the in the same order of magnitude
the behavior of different replicates within the same group of treatments: (A) control, (B) bacteria, (C)
fungi, and (D) mixed (n = 15 for each group).
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