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Abstract: N6-adenosine methylation (m6A) is a prevalent form of RNA modification found in the
expressed transcripts of many eukaryotic organisms. Moreover, m6A methylation is a dynamic
and reversible process that requires the functioning of various proteins and their complexes that
are evolutionarily conserved between species and include methylases, demethylases, and m6A-
binding proteins. Over the past decade, the m6A methylation process in plants has been extensively
studied and the understanding thereof has drastically increased, although the regulatory function
of some components relies on information derived from animal systems. Notably, m6A has been
found to be involved in a variety of factors in RNA processing, such as RNA stability, alternative
polyadenylation, and miRNA regulation. The circadian clock in plants is a molecular timekeeping
system that regulates the daily and rhythmic activity of many cellular and physiological processes
in response to environmental changes such as the day-night cycle. The circadian clock regulates
the rhythmic expression of genes through post-transcriptional regulation of mRNA. Recently, m6A
methylation has emerged as an additional layer of post-transcriptional regulation that is necessary for
the proper functioning of the plant circadian clock. In this review, we have compiled and summarized
recent insights into the molecular mechanisms behind m6A modification and its various roles in
the regulation of RNA. We discuss the potential role of m6A modification in regulating the plant
circadian clock and outline potential future directions for the study of mRNA methylation in plants.
A deeper understanding of the mechanism of m6A RNA regulation and its role in plant circadian
clocks will contribute to a greater understanding of the plant circadian clock.

Keywords: MTA; MTB; FIONA1; m6A methylation; m6A writer; m6A eraser; m6A reader; epitran-
scriptome; circadian clock

1. Introduction

Plants, as multicellular organisms, rely on a range of complex molecular mechanisms
to control gene expression for normal development and stimuli response. Gene expression
is controlled on two levels, which involve the amount of mRNA that is produced and
the regulation of mRNA translation into proteins [1]. Recent studies have highlighted the
importance of RNA modification as a crucial mechanism that dynamically modulates the
cellular transcriptomic profile [2]. Currently, more than 200 types of RNA modifications
have been identified [3], which are involved in various plant cellular and biological pro-
cesses, including embryo development, shoot stem cell fate, floral transition, trichome
morphogenesis, leaf initiation, and root development [4–12].

In eukaryotic mRNA, m6A is the most prevalent type of modification [13,14], which
occurs through the addition of a methyl group (CH3) to the N6 position of adenosines
of the mRNA [15]. The presence of m6A in plants was first identified in maize and later
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in many other plant species such as Arabidopsis, wheat, and oats [16]. The occurrence
of m6A in Arabidopsis mRNA was determined to vary between 0.45–0.65% of the total
adenosine bases, with an estimated 0.5–0.7 m6A peaks per 1000 nucleotides [17]. A recent
study reported that m6A sites can be detected in 32–35% of all expressed transcripts [13].
The frequency of m6A is unevenly distributed within the mRNA and is predominantly
clustered near the stop codon and 3′ untranslated regions (UTRs) [18–20]. The m6A of
plants is also found to be enriched near the start codon [17,21]. Many chloroplast-associated
and photosynthesis-related genes showed an abundance of m6A sites located around the
start codon, which suggests a unique function of m6A in plant photosynthesis [17,22].

Though these modifications have been detected since the 1970s, studies on m6A were
initially limited due to the lack of methods for identifying m6A sites. However, with the
discovery of the first m6A demethylase (fat mass and obesity-associated protein [FTO]) in
2011 [23], m6A has been determined to be a dynamic and reversible process that may have
regulatory functions. Since then, several approaches have been developed to facilitate the
functional study of m6A methylation. Based on the strategies to identify or recognize m6A
sites, these approaches can be broadly divided into two categories: antibody-dependent
methods such as methylated RNA immunoprecipitation (MeRIP)-seq [18], UV cross-linking
and immunoprecipitation (miCLIP)-seq [24], or super-low-input m6A (SLIM)-seq [25] and
antibody-independent methods such as deamination adjacent to RNA modification targets
(DART)-seq [26], m6A-selective chemical labeling (m6A-SEAL)-seq [27], m6A-selective allyl
chemical labeling (m6A-SAC)-seq [28], or nanopore-based direct RNA (DR)-seq [29]. Each
of these methods has its own advantages and limitations, which have been discussed in
detail in previous reviews [30,31].

As more efficient mapping methods are developed and more m6A-related genes are
identified, the important roles that m6A plays in various biological processes are being
gradually discovered. Although most m6A functional studies were conducted in an animal
system, several reports have shown that m6A modification plays a crucial role in the
regulation of plant development [4,32–35] and stress resistance [7,32,36,37]. In this review,
we provide the current progress on the understanding of m6A biogenesis and function and
its involvement in the regulation of plant circadian clock.

2. m6A in Plants
2.1. General Mechanisms

Generally, the m6A modification process involves numerous components, which
include methylases, demethylases, and m6A-recognizing proteins (Figure 1). These are
commonly termed m6A writers, erasers, and readers, respectively [15,38]. In plants and
other eukaryotes, N6-adenosine methylation occurs through the binding of m6A writers to
a highly conserved consensus sequence, RRACH (R = G/A; H: U/A/C) [10], which leads
to the transfer of a methyl group from an S-Adenosyl Methionine (SAM) molecule onto
the sixth nitrogen of the adenosine base [39]. However, the m6A abundance is significantly
lower than that of the RRACH motifs, indicating that not all of these consensus motifs
are associated with m6A modification and that the mechanism by which these motifs are
selected for m6A modification remains elusive [40]. The reverse process of oxidatively
removing the methyl group from the adenosine base is modulated by m6A erasers [39].
Finally, m6A-modified RNA is recognized by the m6A readers which subsequently utilize
different complexes to regulate the RNA fate [41]. The Arabidopsis genome contains 29
m6A regulatory genes (6 writers, 6 erasers, and 17 readers) which encode for 55 proteins (8
writers, 14 erasers, and 33 readers) [42]. Next, we discuss in detail the structural features
and the mechanistic insight of each m6A component.
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Figure 1. Schematic model of m6A modifications and its regulatory roles in RNA metabolism. m6A 
writers, erasers, readers, and other proteins/protein complexes are illustrated in yellow, blue, red, 
and green, respectively. The colorful circles with dashed lines indicate unidentified/unconfirmed 
components/factors/regulations in the plant system. m6A writers install a methyl group at the N-6 
position of an adenosine base after binding to the RRACH (R = G/A; H: U/A/C) consensus sequence. 
Various plant writers have been identified along with their homologs in the animal system. The 
presence of other plant writers and motifs, should they exist, remains to be identified. m6A 
modifications can be removed enzymatically by erasers. Plant erasers contain only members from 
the ALBHKs family. m6A readers are responsible for recognizing m6A-containing transcripts. Plants 
readers include members from the ECT family and CPSF30. Structural changes in RNA after m6A 
modification or the recognition of m6A modifications by m6A readers can facilitate or inhibit the 
interaction between RNA and various protein complexes, thus directly or indirectly regulating RNA 
metabolisms including RNA degradation, RNA stabilization, RNA splicing, miRNA processing, 
and histone modification. 
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of WTAP, RBM15, VIRMA, ZC3H13, and HAKAI [45]. METTL3, the first discovered 
methylase, harbors a catalytic subunit that serves as the main catalytic core for the 
methylation reaction [46,47]. Though METTL14 shares a high homology with METTL3 it 
is unable to bind with SAM but rather functions as a facilitator for the interaction between 
METTL3 and the RNA target [48,49]. MACOM interacts weakly with MAC to support the 
MAC functions, with each of its components performing a distinct function. WTAP binds 
directly to METTL3 to improve the activity of methyl transferase by ensuring the proper 
localization of the METTL3-METTL14 heterodimer [50]. RBM15 functions by recruiting 

Figure 1. Schematic model of m6A modifications and its regulatory roles in RNA metabolism. m6A
writers, erasers, readers, and other proteins/protein complexes are illustrated in yellow, blue, red,
and green, respectively. The colorful circles with dashed lines indicate unidentified/unconfirmed
components/factors/regulations in the plant system. m6A writers install a methyl group at the
N-6 position of an adenosine base after binding to the RRACH (R = G/A; H: U/A/C) consensus
sequence. Various plant writers have been identified along with their homologs in the animal system.
The presence of other plant writers and motifs, should they exist, remains to be identified. m6A
modifications can be removed enzymatically by erasers. Plant erasers contain only members from
the ALBHKs family. m6A readers are responsible for recognizing m6A-containing transcripts. Plants
readers include members from the ECT family and CPSF30. Structural changes in RNA after m6A
modification or the recognition of m6A modifications by m6A readers can facilitate or inhibit the
interaction between RNA and various protein complexes, thus directly or indirectly regulating RNA
metabolisms including RNA degradation, RNA stabilization, RNA splicing, miRNA processing, and
histone modification.

2.2. m6A Writers

Generally, the methylase-containing protein complexes that are responsible for the
N6-adenosine methylation of mRNA are commonly called m6A writer complexes [43].
Components of these complexes are evolutionarily conserved between the main eukaryotic
lineages [4]. Studies on mammalian and Drosophila systems indicate that the m6A methylase
complex consists of two sub-complexes, which are the m6A-METTL complex (MAC) and
the m6A-METTL associated complex (MACOM) [44]. METTL3 and METTL14 together
form the stable heterodimer that is MAC, while the MACOM consists of WTAP, RBM15,
VIRMA, ZC3H13, and HAKAI [45]. METTL3, the first discovered methylase, harbors a
catalytic subunit that serves as the main catalytic core for the methylation reaction [46,47].
Though METTL14 shares a high homology with METTL3 it is unable to bind with SAM
but rather functions as a facilitator for the interaction between METTL3 and the RNA
target [48,49]. MACOM interacts weakly with MAC to support the MAC functions, with
each of its components performing a distinct function. WTAP binds directly to METTL3
to improve the activity of methyl transferase by ensuring the proper localization of the
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METTL3-METTL14 heterodimer [50]. RBM15 functions by recruiting the complex to the
specific sites on RNA to promote methylation [51]. VIRMA mediates the preferential m6A
mRNA methylation in the 3′ UTR and near-stop codons [52]. ZC3H13 is required for the
nuclear localization of the complex [53], while HAKAI appeared to stabilize the WTAP and
VIRMA protein [54].

In Arabidopsis, several orthologues of animal m6A writer components have been
identified with similar functions and shown to interact with each other [8,38]. These
orthologues include the mRNA adenosine methylase A (MTA; an orthologue of the methyl
transferase 3 [METTL3]) [55] and B (MTB; an orthologue of METTL14) [8], the splicing factor
FKBP12 interacting protein 37 kDa (FIP37; an orthologue of the Wilms tumor-1 associated
protein [WTAP]) [8], the protein virilizer (VIR; an orthologue of the m6A methyltransferase-
associated virus [VIRMA]/KIAA1429) [8], the putative ubiquitin E3 ligase HAKAI [8], the
RNA-binding protein FPA (an orthologue of the RNA-binding protein 15 [RBM15]) [56], and
the HAKAI-interacting zinc finger protein HIZ2 (a possible orthologue of the CCCH type
13 zinc finger protein [ZC3H13]) [57] (Figure 1). Protein sequence analysis has identified
the specific conserved domains that are present in each m6A writer, which are MT-A70,
WTAP, VIR_N, HAKAI, and CCCH domains in MTA/MTB, FIP37, VIR, HAKAI, and
HIZ2, respectively [42,57]. The MT-A70 domain is required for the binding of substrate
SAM, which is essential for the formation of m6A in mRNA [46]. Similar to their animal
orthologues, plant m6A writers are mainly localized in the nucleoplasm [8]. Interestingly,
though the knockdown of RBM15 reduced global levels of m6A [51], the knockdown of
FPA, the RBM15 orthologue in Arabidopsis did not [56]. This may indicate the distinct
roles of RBM15/FPA in m6A methylation in animal and plant systems.

Apart from m6A methyl transferases in the MTA-MTB complex which are responsible
for the majority of m6A sites in Arabidopsis [8,10,32,55], several methyl transferases have
also been identified, including METTL16 [58], METTL5 [59], or the zinc finger CCHC
type containing 4 (ZCCHC4) [60]. While there is currently no information regarding the
orthologues of METTL5 and ZCCHC4 in plants, FIO1 has been identified as the orthologue
of METTL16 in Arabidopsis [58,61]. However, FIO1 is distinct from METTL16 since FIO1
does not methylate Arabidopsis SAM synthetases or affect their transcript expression levels.
Instead, FIO1 installs m6A into U6 small nuclear (sn)RNA, a small subset of poly(A)+

RNA, and several phenotype-related mRNAs, thereby regulating the mRNA stability and
many developmental processes [62]. Another example of independent methyl transferase
that is found in Arabidopsis is MTC (an orthologue of METTL4) [63]. The structural
comparison revealed that Arabidopsis MTC homodimer shared similar features with the
METTL3-METTL14 heterodimer, suggesting that MTC functions as the m6A writer [63].
MTC displayed N6−2′-O-dimethyladenosine (m6Am) in vivo and N6-methylation of 2′-
O-methyladenosine (Am) within single-stranded RNA in vitro [63]. However, whether
these methyl transferases act independently or cooperatively with other proteins for m6A
methylation requires further investigation.

Though the m6A consensus sequences (RRACH) frequently appear in mRNA (once
every ~57 nucleotides), only a few are methylated. Additionally, despite the abundance
of RRACH sequences, m6A only occurs in specific transcripts. As previously mentioned,
the regulatory mechanisms of this transcript- and site-specific selectivity remain unclear.
Two models have been proposed for the recruitment of m6A writer complex to the specific
transcript, which is mediated by (i) transcription factors or (ii) histone modifications.
Similarly, there are also two proposed models for site-specific targeting of m6A, which
are (i) the RNA-binding protein (RBP)-mediated and (ii) RNA polymerase II (Pol II)-
mediated recruitment models. These models have been extensively discussed in a previous
review [64]. However, it is noteworthy that these models only account for a small fraction
of m6A-containing transcripts in the cell, suggesting that there are unknown mechanisms
responsible for most of the mRNA N6-adenosine methylation.

The m6A modifications occur in response to various internal and external stimuli such
as heat shock, DNA damage, or stress [65–69]. The m6A writer complex is suitable for
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regulation at different levels, such as changes in the abundance of individual components
or post-translational modifications (PTMs). The catalytically active subunit METTL3,
which is targeted by miRNAs [70] and SUMOylation [71], is an obvious candidate for this
regulation. Expression and stability of other m6A writer complex components appear to
be METTL3-dependent [72] and can be affected by PTMs [73]. Overall, much knowledge
regarding the regulatory role of this methyl transferase activity and m6A landscape remains
to be elucidated.

2.3. m6A Erasers

m6A modification is a reversible process, by which the methyl group is removed
catalytically by the m6A erasers in a dynamic, rapid, signal-dependent manner [74]. The
m6A demethylases belong to the ALBHK protein family (a homolog of the α-ketoglutarate
dependent dioxygenase AlkB family) [23,75]. To date, FTO and ALBHK5 are the only two
identified m6A erasers in animals, although several members of the AlkB family have been
documented to function by reversing m6A methylation [76]. Unlike FTO, which has no
identified homolog in the plant system, the Arabidopsis genome contains 13 ALBHK family
members with different subcellular localizations [77]. Five of these proteins are identified
to be homologs of ALBHK5 including ALKBH9A, ALKBH9B, ALKBH9C, ALKBH10A,
and ALKBH10B [6]. Among these, ALKBH9B is suggested to have demethylase activi-
ties in vitro and in vivo [7]. However, alkbh9b and alkbh9c mutants did not display any
changes in the m6A/A ratio [6]. Another homologous protein, ALKBH10B, was shown to
demethylate m6A in vivo and in vitro and the alkbh10b mutant consistently has increased
m6A level [6]. Although m6A erasers have previously been suggested to play a crucial role
in m6A functioning, they now appear to be limited to specific tissues and conditions [64].

2.4. m6A Readers

Eukaryotes can perceive m6A marks via the m6A readers. These m6A-binding proteins
play a major role in the mechanism by which m6A regulates RNA metabolism. The charac-
terization of m6A readers revealed that these proteins can be categorized into three classes
based on their mechanism of recognizing m6A-containing RNA, which are (i) direct bind-
ing to the m6A base using a YT521-B homology (YTH) domain [78,79]; (ii) binding of the
exposed single-stranded RNA motifs generated by m6A-induced structural changes [80,81];
or (iii) utilizing a common RNA-binding domain (RBD) and its flanking regions to rec-
ognize the m6A-modified transcripts [82]. Class I m6A readers are proteins that contain
the YTH domain, which recognizes and binds to the N6-methyl group of adenosine via a
hydrophobic binding pocket that contains conserved aromatic side chains [83]. The binding
of class II readers to m6A-containing transcripts occurs via an m6A switch mechanism,
in which the methylation destabilizes the Watson-Crick base-pairing and increases the
accessibility of a single-stranded RNA-binding motif that is recognized by this class [80,81].
Class III readers lack of YTH domain and bind to m6A-containing transcripts in an RNA-
structure-independent manner [82]. Though these are shown to utilize a common RBD and
its flanking region for the recognition of m6A modifications, the exact mechanism behind
these selective binding remains unclear. The different m6A-binding mechanisms indicate a
broad and complex network of m6A-dependent pathways, and each class of m6A reader
can be employed for specific targets or conditions.

Currently, there is no information regarding the homologs of class II and III readers in
the plant system. In contrast, 13 proteins containing the YTH RNA-binding domain have
been identified in the Arabidopsis genome [84]. These proteins can be categorized into two
subgroups: (i) the evolutionarily conserved C-terminal region 1–11 proteins (ECT1–11) that
belong to the YTHDF family [4] and (ii) the other two members that belong to the YTHDC
family (ECT12 and the cleavage and polyadenylation specificity factor 30 [CPSF30]) [9,85].
Structural analysis revealed that the YTH domain of the first group is located near the
C-terminus, in contrast to the other group whose YTH domain is located in the internal
regions [86]. The conserved consensus sequence RRm6ACH is recognized by the YTH
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domain of ECTs. Concurrently, the intrinsic disorder region within the ECTs forms a stable
interaction with the U-rich sequence in adjacent regions, thereby controlling the occupancy
of the binding adjacent to m6A with different RNA-binding factors. These ECT-binding
targets are mainly involved in the translation and metabolic processes [4]. Arabidopsis
CPSF30 forms two splice isoforms via alternative polyadenylation: (i) a ~28 kDa isoform
(CPSF30-S) that harbors three zinc finger domains and is homologous to mammalian
CPSF30 and (ii) a ~70 kDa isoform (CPSF30-L) that has an additional YTH domain that is
unique to plants [87,88]. The CPSF30 binding site is predominantly located in the mRNA
3′ UTR region and its m6A binding ability enhances the formation of CPSF30 liquid-like
nuclear bodies to regulate polyadenylation [85].

2.5. m6A Regulates RNA Activity

m6A employs diverse mechanisms to regulate RNA metabolism, which involves
different aspects such as stability, structure, translatability, localization, or splicing (Figure 1).
However, most m6A studies regarding its molecular functions were conducted in animals.
The impact of m6A on plant RNA activity is limited. Current evidence suggests that
m6A in plants, like in the animal model system, also mediates the stability of RNA under
various conditions. For example, the knockdown of m6A components such as the writer
MTA [6,32] or reader ECT2 [11] and CPSF30 [85] in Arabidopsis was shown to accelerate
the degradation of target transcripts. Similarly, the writer FIP37 destabilized mRNA of the
key shoot meristem genes [10] while demethylation by the ALKBH10B eraser promoted
the stability of its targets [6].

Several underlying mechanisms have been proposed to explain the m6A roles in RNA
stability. The m6A binding by the mammalian reader YTHDF2 may directly or indirectly
regulate transcript stability by either recruiting the CCR4-NOT deadenylase complex to
destabilize the m6A-containing mRNA [89] or promoting the translocation of mRNA from
the translation machinery to processing bodies for degradation [90]. In another study, m6A
was found to regulate the interaction between mRNA and the mRNA stabilizer human
antigen R (HuR) in a distance-dependent manner [91]. In close proximity, m6A promotes
HuR binding and conversely decreases HuR binding when far apart [91]. The regulatory
roles of m6A on mRNA stability may also lead to structural changes in mRNA, under
certain conditions. For example, m6A increases the stability of mRNA and subsequently
leads to a decrease in structural complexity in response to a change in salinity [92]. m6A
may impact RNA structure by promoting the transition from paired to unpaired RNA,
as suggested by the less structured mRNAs with the m6A consensus motif GGACU in
wild-type mouse embryonic stem cells (mESCs) compared with that of METTL3-knockout
mESCs [93].

Another potential mechanism that m6A may utilize to regulate RNA metabolism is
alternative polyadenylation (APA), which has been suggested in several studies. Reducing
expression of VIR, an m6A writer in Arabidopsis negatively affected mRNA 3′s end forma-
tion and subsequently resulted in the preferential proximal poly(A) site selection [13]. The
reader CPSF30 was also found to regulate APA and poly(A) site selection [85,94]. Addition-
ally, m6A is necessary to maintain transcriptome integrity by guiding site-specific mRNA
polyadenylation in target genes with intrinsic transcription termination and polyadenyla-
tion defects [95]. This APA pathway termed the m6A-assisted polyadenylation requires
the writer FIP37 and reader CPSF30-L for proper functioning [95]. Studies on other plant
species support the involvement of m6A in the APA pathway, as m6A modification can
affect poly(A) site selection in maize [96].
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There are lines of evidence that suggest the interaction between m6A and other regula-
tory mechanisms of mRNA. m6A modifications were found to affect the primary-microRNA
(pri-miRNA) secondary structure and recruitment of microprocessor complexes to the pri-
miRNA in Arabidopsis [97]. Furthermore, the m6A writer MTA also interacted with
proteins involved in miRNA biogenesis such as RNA Polymerase II and TOUGH [97].
This observation is consistent with the animal system, as N6-adenosine methylation of
pri-miRNA mediated by METTL3 facilitated the DGCR8 microprocessor complex pri-
miRNA processing [98]. Another m6A component involved in this process was the nuclear
m6A reader hnRNPA2B1 [99]. In the opposite direction, miRNA machinery plays a role
in regulating m6A formation, possibly by modulating METTL3-mRNA binding [100].
Crosstalk between histone modification and m6A has also been proposed in a previous
study. H3K36me2 and m6A were found to co-occur near the 3 UTR region and affected the
global level of each other in Arabidopsis [101]. Furthermore, the direct interaction between
an H3K36me2 writer SET DOMAIN GROUP 8 (SDG8), and an m6A writer protein FIP37
was observed. Still, further investigation is required to fully understand this crosstalk. In
conclusion, though has been indicated in many previous studies, the underlying mecha-
nisms for the regulatory roles of m6A in RNA metabolism require further investigation,
especially in plant systems.

3. m6A in the Plant Circadian Rhythm

3.1. Plant Circadian Clock and m6A Methylation

Plants, as sessile organisms, evolve to sense and predict environmental changes. The
most dramatic changes in the environment are day-night cycles due to the earth’s rotation
and many processes in plants are synchronized with their circadian cycles. The circadian
clock is the endogenous timekeeper that governs and coordinates these rhythmic processes
to increase plant fitness. This is based on the observation that altered period length or
out-of-phase conditions in plants interfere with their optimal growth or defense against
abiotic and biotic stress [102,103]. The fundamental and molecular aspects of the circadian
clock rely on the transcriptional feedback among the central oscillator components with
morning components, CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)/LATE ELONGATED
HYPOCOTYL (LHY), and an evening component, TIMING OF CAB EXPRESSION1 (TOC1)
(Figure 2) [104]. Additional transcriptional feedback loops involve morning and evening
complexes that link the central clock components. The morning components, such as the
PSEUDORESPONSE REGULATOR9 (PRR9) and PRR7, act to reset the clock in the morning
by inhibiting the transcription of LHY and CCA1 [105]. The evening complex with the LUX
ARRHYTHMO (LUX), EARLY FLOWERING3 (ELF3), and ELF4 act to maintain the clock
in the evening by repressing the transcription of PRR9 and PRR7 [106]. Cycling activators
such as NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED GENE1 (LNK1)/LNK2
and REVEILLE8 (REV8) are involved in the activation of evening complex components
including LUX, ELF3, and ELF4 [107,108]. Post-translational feedback regulation has a role
in the maintenance of the circadian clock. For example, ZEITLUPE (ZTL) promotes the
degradation of TOC1, while the GIGANTEA (GI) and PSEUDORESPONSE REGULATOR3
(PRR3) function to stabilize and protect TOC1 [109,110]. Overall, this complex network
of transcriptional and post-translational feedback loops allows the clock to maintain a
consistent and robust circadian rhythm in Arabidopsis.
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Figure 2. A proposed model depicting the involvement of FIO1 and general m6A writer complexes
in regulating circadian clock, flowering, and hypocotyl elongation in Arabidopsis. Diverse pathways
respond to various external (photoperiod, vernalization, and ambient temperature) and internal
(autonomous, gibberellins, and circadian oscillator) stimuli/signals to regulate these processes
are shown in red and blue, respectively. FIO1 prevents premature flowering and maintains the
circadian period by affecting the expression level, splicing, and/or stability of several key circadian
clock transcripts (e.g., LHY and CCA1), flowering regulator transcripts (e.g., SOC1 and FLC), and
photomorphogenesis-related genes (e.g., PIF4) through direct m6A methylation of the 3′ UTR and a
subset on the CDS region, or indirectly through m6A methylation of U6 snRNA. The general m6A writer
complex (including MTA, MTB, FIP37, VIR, and HAKAI) recognition motifs are mainly present in the 3′

UTR region. PIF37 can interact with cryptochromes (CRY1) and increases the m6A modification of PIF3,
PIF4, and PIF5, which consequently reduces their RNA stability and promotes photomorphogenesis [111].
However, CRY2 recruits MTA, MTB, and PIF37 to methylate several core circadian clock genes and
enhances their mRNA stability [62]. The involvement of other m6A writer components such as VIR and
HAKAI in the regulation of these processes requires further investigation.
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In plants, the circadian clock controls the rhythmic expression of thousands of genes
through transcriptional activation or suppression by multiple transcription factors [112]. Re-
cent studies using RNA-seq analysis have highlighted the importance of post-transcriptional
regulation of mRNA, including alternative splicing, polyadenylation, mRNA nuclear ex-
port, mRNA degradation, and mRNA methylation, in the rhythmic expression of these
genes [113–115]. In particular, m6A methylation has been proposed as a new and emerging
layer of dynamic mRNA regulation in the circadian clock. In mammalian cells, many
well-known clock genes, including Clock, Periods (Pers), Albumin D-site-binding protein,
Nuclear receptor subfamily 1 group D member 1 (Nr1d1), and Casein kinase 1 delta (CK1δ),
contain multiple m6A methylation sites on their transcripts [116,117]. Silencing of the m6A
methylase METTL3 expression lengthened the circadian period through a delay in the
nuclear export of mRNAs of the clock genes Per2 and Aryl hydrocarbon receptor nuclear
translocator-like (Arntl) [116]. Cryptochrome 1 (CRY1) and CRY2 are core components of
the mammalian circadian clock and interact with an m6A eraser FTO, which is required to
maintain global m6A methylation levels [118]. In addition, cry1cry2 knockdown mice with
a complete loss of circadian rhythm have significantly lower levels of m6A and a loss of
the circadian rhythm of m6A [118]. In plants, daily oscillation of mRNA transcripts of the
writers and erasers and accumulation of global m6A levels at midnight have been observed
in seagrasses Cymodocea nodosa and Zostera marina [119].

Recent advancements in molecular technologies for direct detection of RNA methy-
lation, such as nanopore mRNA-seq, miCLIP-seq, and m6A-seq, have enabled high-
throughput quantitative analysis of the methylation levels and accurate identification
of deposition sites on mRNA in various developmental conditions [13,120]. m6A methy-
lation is more frequently found in mRNAs of clock-controlled genes (CCGs) and many
mRNAs of clock components are m6A methylated in Arabidopsis [17,120]. m6A is the most
prominent and dynamic type of RNA methylation and determines the fate of CCG mRNA,
including the mRNA stability, splice-site choice, and RNA 3′ end formation [13,120]. The
importance of m6A in the regulation of the circadian clock in plants has been emphasized by
several recent studies on the genome-wide analysis of the function of (i) CRY1/2-mediated
MTA-MTB-FIP37 methylase complexes [112,120]; (ii) VIR, another conserved m6A writer
complex component [13]; and (iii) FIO1, a homolog of the m6A writer METTL16, in the
regulation of the circadian clock and related physiology (Figure 2) [62,121–124].

3.2. Circadian Clock Regulation through m6A Methylation by a General m6A Writer Complex

Deposition of m6A on the majority of mRNAs is catalyzed by a multiprotein RNA
methylases complex, which consists of two methylases (MAC) including MTA and MTB, as
well as the additional proteins (MACOM) including FIP37, VIR, and HAKAI [8,74]. MTA,
MTB, and FIP37 are the core components of the m6A methylase complex as counterpart
subunits of METTL3, METTL14, and WTAP in the mammalian METTL3/14-type general
m6A writer complex [38].

In Arabidopsis, the m6A deposition is more commonly detected in the mRNAs of
CCGs, particularly those involved in chloroplast-related or photosynthesis processes, with
57% of CCG mRNAs relative to the 41% of expressed mRNAs [120]. m6A methylation is
also more frequently found in mRNAs of clock regulatory genes, with a 1.4-fold enrichment.
These include the morning components, CCA1 and LHY, and the evening components, GI
and ELF3 [120]. To understand the role of the general m6A writer complex in the circadian
clock, the m6A profiles and circadian rhythms should be examined in these mutants.
However, these loss-of-function mutations result in embryonic lethality, which is a major
obstacle in exploring the role of m6A in the circadian clock. Instead, partially rescued
plants expressing the embryo-specific ABSCISIC ACID INSENSITIVE3 (ABI3) promoter-
driven MTA in the mta mutant (ABI3::MTA/mta) were used to reveal the role of the MTA
methylase in the circadian clock [120,125]. These plants demonstrated a 90% reduction in
m6A methylation in leaves and a long-period rhythm in white light with reduced m6A
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methylation in the 3′ UTR of CCA1 mRNA. Interestingly, MTA and FIP37 physically interact
with CRY1 and CRY2, blue light receptors, and MTB also interacts with CRY2 [55,112,120].

CRY1 and CRY2 mediate blue light input in the circadian clock depending on the
fluence rate, with CRY1 for strong light and CRY2 for weak light [126,127]. However, the de-
tailed mechanisms of how CRY1/2 blue light inputs are transduced to the circadian oscilla-
tors are not clearly understood and may include GI and PIFs [128,129]. Recently, it has been
reported that CRY2 interacts with MTA to elicit m6A methylation of the CCGs to mediate the
blue light input to the oscillator [120]. CRY-mediated blue light induces m6A modification
in 10% mRNAs within a few hours in a fluence rate-dependent manner [112,120]. In blue
light, CRY1 interacts with FIP37 and accelerates the m6A-mediated mRNA degradation of
PIF3, PIF4, and PIF5 which are negative regulators of light and circadian clock-mediated
hypocotyl growth [112]. On the other hand, CRY2 forms acute and dynamic blue light-
mediated photobodies that concentrate molecules in the complex through liquid-liquid
phase separation [120]. CRY2 recruits MTA, MTB, and FIP37 in the photobodies within
a few seconds, which induces the mRNA m6A modification of ten core clock component
genes including CCA1 and enhances their mRNA stability. The CRY2-mediated photobod-
ies promote the enrichment of m6A writers and are regarded as another photo-regulatory
layer in the regulation of the circadian clock [120,130].

Although CRY2 and the MTA-MTB-FIP37 methylase complex form photobodies and
transfer the blue light input to the circadian clock, detailed analysis of their circadian
clock phenotypes indicates that an additional and separate role of MTA in regulating the
circadian clock exists [120]. The cry1cry2 double mutant showed reduced responses to
period shortening effects by increased intensity of blue light, indicating the involvement
of CRY1/2 in parametric entrainment of blue light input to the circadian clock through
continuous modulation of the circadian clock by recognizing the intensity of blue light.
However, mta showed a similar period shortening responsiveness as the wild type in blue
light, and a longer period in white light than in blue light, indicating that this additional role
may be mediating other light input or the modulation of the core clock oscillator. However,
the effect of blue light-induced photobodies on the dynamic mRNA m6A modification of
circadian regulatory genes remains unknown.

VIR, another conserved component of the general m6A writer complex, is also linked
to circadian clock regulation [13]. The vir-1 mutant, a weak mutant allele of the VIR gene,
exhibited a remarkable reduction in the m6A ratio to between 5–15 % in 3′ UTR and further
exhibited multiple developmental defects as well as a lengthened circadian period. In vir-1,
the mRNA abundance in the circadian core clock components including PRR7, LNK1/2,
and GI, which had m6A modification, was increased. Unlike with the mta mutant, the
CCA1 level was increased in vir-1, which is associated with a long-period rhythm in vir-1.
VIR was also found in splicing speckles, where it was co-localized with the splicing factor
SR34, but the alteration in splicing patterns of mRNA in the vir-1 mutant was minor [8,13].
In contrast, vir-1 mutation led to a global shift of the poly (A) tail length distribution of
CCGs [13]. Additionally, vir-1 mutation abolished the 3′ end formation in mRNAs, which
is similar to the function of human VIRMA, an orthologue of VIR, in the polyadenylation
selection [52]. Human VIRMA associates with the polyadenylation cleavage factors, CPSF5
and CPSF6, which facilitates the selection of proximal polyadenylation sites within the 3′

UTR of mRNAs. Plant VIR might regulate the stability of mRNA encoding circadian clock
genes through nonsense-mediated decay of mRNA with lengthened 3′ UTRs or aberrant
poly(A) tail lengths.

Although MTA and VIR function in the same methylase complexes and mta and vir-1
mutations have similar lengthening effects on the circadian period, their functional role
in regulating the circadian clock appears to be different [13,120]. MTA and VIR mediate
the stabilization and 3′ end formation of their target mRNAs, respectively, despite their
similar preference for m6A modification at the 3′ UTR. Interestingly, the levels of CCA1
mRNA, which are the result of these mutations, are opposite in their mutants relative to the
wild type. This may be due to the cumulative effect of the altered activity of circadian clock
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genes, which are selectively guided by MTA and VIR. A more detailed investigation into
the molecular effects of these mutations on clock-regulatory genes may reveal how they
cooperate and act independently in regulating the circadian clock. It has been observed that
m6A methylation of mRNAs can be regulated by the circadian clock, as global methylation
profiles peak at midnight in marine plants [119]. Interestingly, the expression of several
components in the general m6A writer complex, including MTA, MTB, and HAKAI, is
diurnally regulated with a peak time at night and MTB expression is regulated by the
circadian clock (Figure 3a,d) [131]. Further investigation into whether m6A methylation in
CCGs is regulated by the circadian clock can suggest the dynamic role of m6A methylation
by general m6A writer complexes in regulating the circadian clock.
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Figure 3. Expression of genes encoding proteins involved in m6A modification in plants under diurnal
and free-running conditions. Relative expression of rhythmic genes in the m6A writer (a,d), m6A
eraser (b,e), and m6A reader (c,f) in diurnal (a–c) and free-running conditions (d–f) was determined
as a normalized value against the maximum value of expression at all-time points. Genes involved
in m6A metabolism are selected according to [132]. Raw expression data were derived from the
DIURNAL project (http://diurnal.mocklerlab.org, accessed on 2 January 2023) and rhythmic genes
in diurnal and free-running conditions were determined based on the correction cutoff value = 0.8
and the condition = LDHC and LL23_LDHH (the DIURNAL project), respectively [131].

Overall, it is evident that m6A methylation induced by the MTA-MTB methyl writer
complex is essential for the photo-input or maintenance of the plant circadian clock, but the
dynamic regulation and the role of m6A readers and erasers in regulating m6A methylation
need to be established.

3.3. FIO1, a Core Clock Component as m6A Methylase

FIO1 was first identified by the screening of photoperiodic flowering responses and
was further characterized as a core clock component for the maintenance of the proper
circadian period [61]. FIO1 is predicted to be a tentative methylase with a SAM binding
domain and an orthologous protein to mammalian METTL16. Mammalian METTL16,
another type of m6A methylase, is known to function as a specific m6A writer on the
mRNA MAT2A and the U6 snRNA without uncertainty, although a hundred candidate
mRNAs could be predicted as its targets through a genome-wide m6A IP-seq [133]. MAT2A,
the first identified target of METTL16, is the key enzyme in synthesizing SAM, which is
required as a methyl donor for most cellular methylation events [134]. METTL16 establishes
homeostasis of SAM through the stabilization of MAT2A through direct deposition of m6A

http://diurnal.mocklerlab.org
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on its mRNA when the availability of the SAM is limited in the cell. Another target
of METTL16 is U6 snRNA which is an RNA component of U6 ribonucleoprotein in the
spliceosome [135]. METTL16 binds and deposits a single m6A at the UACAGAGAA site
within the stem-loop structure in the U6 snRNA, which is required for its incorporation
into U4/U6 snRNA. METTL16 mediates the stability and splicing sites of the mRNAs
by influencing the U6 spliceosome [136,137]. Recent research on FIO1 suggests that it
possesses bona fide methylase activity with the catalytic motif with a stretch of amino acids
NPPF for the binding of adenine substate RNAs in vitro and in vivo [62,123,124].

Recently, several reports have highlighted how FIO1 mediates m6A methylation by
regulating various circadian clock-related developmental processes including photomor-
phogenesis and floral transition (Figure 2) [62,121–124]. In fio1 mutants, about 10%–15% of
m6A in the total mRNA and 10–60% of the U6 snRNAs were reduced in seedlings, rosette
leaves, and floral buds, which were relatively minor effects compared to the 80%–90%
m6A loss in fip37 and mta. Global profiling of m6A methylation in fio1 mutants revealed
more than 2-fold hypomethylated m6A peaks in around 1000–2500 mRNAs, which are
mainly located around the 3′ UTR and near the stop codon. In Arabidopsis, FIO1 installs an
m6A at the consensus sequence of U6 m6A motif ACAGA and plant-specific mRNA m6A
motifs GGACC and UGUAU, with higher activity in the consensus sequence and different
preferential activity for single-stranded over-stem-loop structures in U6 snRNA [62,123]. It
is noted that multiple motif variants have been found in FIO1-mediated methylation sites
with YHAGA (Y = C/U; H = C/A/U) in the CDS region [121]. The GAACU and UGUAA
consensus sequences in the 3′ UTR [123], and DRACH (D = A/G/U; H = A/C/U) in the
3′ UTR [124]. Interestingly, there were no global pattern changes in the remaining m6A
between the wild type and fio1 mutant, indicating that FIO1 has no preferential choice
in m6A position and motif. FIO1 has a lesser effect on global m6A levels, but a higher
m6A reduction in specific groups of mRNAs, indicating that FIO1 likely mediates certain
biological and physiological processes [62,121–124]. Gene ontology analysis of the differ-
entially expressed genes and genes with hypomethylated mRNA in fio1 mutant revealed
characteristics of circadian rhythm and flower development [62]. These results support that
FIO1 regulates the m6A deposition in mRNAs of specific target genes involved in certain
biological processes including the circadian rhythm.

The fio1 mutant exhibits several developmental phenotypes, including a long circadian
period, early flowering, and long hypocotyls, which may be due to an aberrant circadian
rhythm or an independent function of FIO1 in developmental processes [61]. Based on the
differential expression and hypomethylated mRNAs in the fio1 mutant, many important
regulatory genes involved in the circadian clock, floral transition, and photomorphogenesis
are estimated to be the direct targets of FIO1 (Figure 2). For example, FIO1 affects the
m6A modification of transcripts of CCA1 and LHY in the circadian clock pathway, CO and
CRY2 in the photoperiodic flowering pathway, FLC in the autonomous and vernalization
flowering pathway, SOC1, SVP, SPL3, and SEP3 in the floral integration pathway, and
PIF4 in photomorphogenesis [62,121,123]. However, the effectiveness of m6A modification
by FIO1 on the target mRNAs is different among them, with the degradation of LHY,
CO, CRY2, SOC1, SPL3, SEP3, and PIF4 mRNAs, and stabilization and altered splicing
of SVP and FLC mRNAs [123]. Additionally, RNA-IP with FIO1 contributes to revealing
a direct target of FIO1 as evidenced by the association of FIO1 with SOC1, SVP, CCA1,
and LHY mRNAs [121], PIF4, CRY2, CO, and FLC mRNAs [62], and SPL3 and SEP3
mRNAs [123]. The effect of FIO1 on a wide range of targets supports the concept that
FIO1 might be independently involved in various physiological processes through its m6A
methylation of various target transcripts. However, several additional clock regulatory
genes including ZTL, LKP2, LIP1, and LCL1 [62], ELF3, TIC, and PHYA [123], and WNK1,
CKB3, and CRY1 [121] were predicted to be potential targets of FIO1, because their mRNAs
were hypomethylated in fio1 mutants, although their expression was not dramatically or
consistently affected. Additionally, gene ontology analysis suggests that the regulation
of the circadian clock is enriched in hypomethylated mRNAs in fio1 mutants [62]. In this
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regard, it cannot be excluded that FIO1 plays a specific role in the regulation of the circadian
clock through m6A methylation.

FIO1 is required for the maintenance of the period length in the core clock, but it
is not clear how FIO1 contributes to the proper functioning of the circadian clock. As
FIO1 functions as an m6A methylase, it may be involved in the depositing of m6A on the
mRNAs of central oscillator genes, which affects their stability. CCA1 and LHY mRNAs
are representative targets of FIO1-mediated m6A methylation, but their mRNA levels are
not consistently affected in fio1 mutants in different studies, potentially due to different
experimental conditions or alleles used. The cumulative effect of m6A on a subset of FIO1
target mRNAs induces changes in RNA stability, alternative 3′ ending, or splicing, which
can modulate the activity of the circadian rhythm [113–115,138]. Alternatively, other effects
of m6A methylation on target mRNAs such as changes in histone modification, nuclear
retention, or translational activity, which have not been examined in these studies, may be
involved [101,113,116,139].

Another important factor necessary to understand the role of FIO1 in regulating the
circadian clock is whether the methylation activity of FIO1 is dynamically regulated by the
circadian clock. FIO1 mRNA and protein levels are not controlled by the circadian clock [61].
It is possible that FIO1 generates a dynamic methylation profile on the mRNAs through its
association with other m6A methylases, such as MTA-MTB m6A methylase complex and
MTC m6A methylase, whose component and own expression, respectively, are regulated in
a rhythmic manner (Figure 3a,d) [131]. Alternatively, FIO1 may have rhythmic collabora-
tors that assist it to regulate the dynamic m6A methylation. Expression of genes encoding
putative RNA methylases (AT5G51130 and AT5G10620) is diurnally rhythmic and their
orthologous proteins can interact with METTL16 in humans and Drosophila [140–142]. The
rhythmic features of m6A CCGs mRNA could be regulated in other layers of m6A methyla-
tion processing by m6A readers or erasers, which might act on different Zeitgeber times
(Figure 3b,c,e,f). Global m6A methylation and expression profiles in fio1 mutants under
diurnal or free-running conditions can provide a comprehensive and accurate evaluation
of the dynamic role of FIO1 on targets in the circadian clock.

FIO1 shares structural similarities with the mammalian METTL16, but their functional
effect on m6A methylation might differ. This may be due to the difference in their sub-
cellular localization; FIO1 is localized exclusively in the nucleus, while METTL16 protein
exists in both the nuclear and cytoplasmic regions and also in the nucleolus in the G1/S
phase [61,143,144]. The cytosolic mammalian METTL16 has additional functions in en-
hancing the translation efficiency of transcripts through interaction with the eukaryotic
translation machinery beyond m6A deposition [133,144]. However, FIO1 is likely to func-
tion as a nuclear methylase in the nucleoplasm, although the possibility of residual cytosolic
FIO1 having additional functions cannot be excluded. In contrast to METTL16, FIO1 did
not induce changes in the global alternative splicing patterns, with only 43 alternative
splicing events, although FIO1 also methylated m6A in U6 snRNAs [120]. Additionally, the
m6A in four mRNAs that encode for the synthesis of SAM was not affected by FIO1 [62,124].
Importantly, FIO1 installs m6A in plant-specific m6A motifs beyond the consensus sequence
motif of U6 snRNAs.

A recent report by Simpson and colleagues (2022), however, highlighted the impor-
tance of FIO1-mediated m6A modification in U6 snRNA rather than in mRNAs [124]. The
m6A deposition on U6 snRNA by FIO1 is essential for accurate splicing through the prefer-
ential selection of the canonical site from the two major 5′ splice sites. RNA-seq analysis
of the fio1 mutant revealed widespread deregulation of pre-mRNA splicing by more than
2300 alternative 5′ splicing site selections, which is different from other reports [120,121].
Although m6A levels in more than 2800 sites are altered in the fio1 mutant, over 85% of
them overlapped with the hypomethylated sites in the fip37 mutant, implying that FIO1-
dependent methylation on mRNAs is relatively small. This might be due to the indirect
effect of a 40% loss of MTB activity with premature termination due to altered splicing.
Additionally, splicing changes in the mRNAs of several circadian clock genes, LHY and
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WNK1, and additional clock regulators, including HOS1 and SAR1, were found in fio1.
Interestingly, hos1 and sar1 mutants showed early flowering phenotypes with high levels of
CO and reduced levels of FLC expression [145,146] and lengthened circadian periods [147],
which is similar to that of the fio1 mutant. In addition, global changes to the alternative
splicing in loss-of-function mutants of the splicing of factor PRMT5, Type II protein arginine
methyltransferase 5 [148,149], and SPLICEOSOMAL TIMEKEEPER LOCUS1 (STIPL1) [150]
lengthened the circadian periods, which supports the indirect effect of the hypomethylation
of U6 snRNA in fio1 being responsible for its aberrant circadian rhythm. However, FIO1 can
directly interact with their targets and affect the m6A levels in their mRNAs [62,121,123],
supporting that FIO1 installs direct m6A deposition on specific mRNAs for the regulation
of developmental processes. Regardless, FIO1 is not likely a major writer of m6A modifica-
tions but rather a more selective methylase that acts on specific mRNAs and U6 snRNAs for
the regulation of the circadian clock. Further investigations into the biological implications
of FIO1-mediated m6A on U6 snRNA and its target mRNAs are required.

4. Conclusions and Future Directions

In recent years, m6A has emerged as an essential mechanism for RNA metabolism
regulation. However, a substantial amount of m6A studies have been conducted in animal
systems, but there is a lack of information regarding the mechanistic insights of this
RNA modification in plants. Although it is highly conserved among species, plant m6A
machinery also contains distinct features or components compared to that of the animal
systems such as the plant-specific CPSF30-L isoform [87,88] or the different roles of RBM15
and FPA in animal and plant systems [51,56]. Studies on the RNA regulatory mechanisms
of plant m6A in conjunction with animal m6A may provide other perspectives on the
conserved and distinct functions of m6A in plants and animals. Furthermore, the number
of identified m6A proteins in plants is relatively low compared to that of animals, which is
also an obstacle to fully understanding the functions of m6A in plants. Further investigation
into the mechanisms for the site- and transcript-specific selection of m6A modification is an
interesting direction to be focused on in the future.

The development of novel sequencing technologies has facilitated the functional stud-
ies of m6A and provided considerable insights into this regulatory mechanism. However,
there are still limitations in these methods that hinder the m6A studies such as the large
amounts of inputs, lack of stoichiometric information, and low specificity and efficiency.
Furthermore, many of these approaches have not been tested on plant systems. Therefore,
the development of an improved, plant-specific method may accelerate the progress in
studying m6A in plant systems.

The plant circadian clock is a complex and dynamic system that is coordinately regu-
lated at multiple levels. m6A methylation, a newly emerging layer of epitranscriptomic
regulation, has been observed to be prevalent in transcripts of photoreceptors, clock regu-
latory genes, and CCGs, indicating its role in various hierarchical structures of the clock,
including inputs, the central oscillator, and outputs. Genetic evidence from mutant studies
for methyl writers has demonstrated the importance of m6A methylation in the regulation
of the plant circadian clock.

There is still much to understand regarding the effects and mechanisms of m6A
modification on transcripts in clock regulatory genes and how it influences the regulation
of the plant circadian clock. Further research should delve deeper into this topic and
explore the kinetics of RNA methylation and demethylation in relation to the circadian
rhythm and specific regulatory pathways involved in the circadian clock. The function of
m6A erasers or readers, as well as other m6A writers, in regulating the circadian clock and
their related processes also needs to be clarified. Further investigation into the impact of
m6A modification on RNA metabolism and key circadian RNA molecules will improve
our understanding of the molecular mechanisms underlying the plant circadian clock.
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