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Abstract: The Mi-1 gene of tomato (Solanum lycopersicum) confers resistance against some nema-
todes and insects, but the resistance mechanisms differ depending on the harmful organism, as
a hypersensitive reaction (HR) occurs only in the case of nematodes. The gene Rme1 is required
for Mi-1-mediated resistance to nematodes, aphids, and whiteflies, and several additional proteins
also play a role in this resistance. Among them, the involvement of the chaperone HSP90 has been
demonstrated in Mi-1-mediated resistance for aphids and nematodes, but not for whiteflies. In
this work, we studied the implication of the Hsp90 gene in the Mi-1 resistance against the whitefly
Bemisia tabaci by means of Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS). The
silencing of the Hsp90 gene in tomato Motelle plants carrying the Mi-1 gene resulted in a decrease in
resistance to whiteflies, as oviposition values were significantly higher than those on non-silenced
plants. This decrease in resistance was equivalent to that caused by the silencing of the Mi-1 gene
itself. Infiltration with the control TRV vector did not alter Mi-1 mediated resistance to B. tabaci.
Similar to the Mi-1 gene, silencing of Hsp90-1 occurs partially, as silenced plants showed a significant
but not complete suppression of gene expression. Thus, our results demonstrate the requirement of
Hsp90 in the Mi-1-mediated resistance to B. tabaci and reinforce the hypothesis of a common model
for this resistance to nematodes and insects.
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1. Introduction

Bemisia tabaci (Hemiptera: Aleyrodoidea) is one of the most damaging agricultural pest
species worldwide, with a high polyphagia, virus transmission capacity, and insecticide
resistance problems [1–3]. B. tabaci is a complex of cryptic species [4,5], with MED and
MEAM being two of the most damaging ones, formerly known as biotypes B and Q, respec-
tively [6]. Higher fitness of biotype Q in the context of intensive insecticide use has resulted
in frequent competitive displacement of biotype B in many locations, including Spain [7–9].
Problems associated with traditional chemical pest control make plant resistance an essen-
tial tool for the integrated pest management of B. tabaci. Although sources of resistance
can be found in the wild relatives of cultivated plants, so far, the only cloned resistance
(R) gene against whiteflies is the tomato Mi-1 gene [10]. This gene also provides resistance
to root-knot nematodes (Meloidogyne spp.) and other phloem feeding insects such as the
potato aphid, Macrosiphum euphorbiae, and the tomato psyllid Bactericerca cockerelli [11–14].
Mi-1-mediated resistance works by following a gene-for-gene interaction, resulting in a
hypersensitive reaction (HR) in the case of nematodes, but not in the case of insects [15].
Factors in the epidermis and/or mesophyll of Mi-1-resistant tomato inhibit the whiteflies
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from reaching the phloem sieve elements [16], which results in reduced host suitability and
whitefly reproduction [17].

The Mi-1 gene was introduced into cultivated tomato from the wild relative Lycopersicum
peruvianum [18] and is present in many tomato cultivars [19]. Like other R genes, Mi-1 encodes
a coiled-coil domain nucleotide binding site leucine-rich repeat (CC-NLR) protein [20,21].
Previous research has demonstrated the role of salicylic acid (SA) in Mi-1-mediated resistance
to whiteflies [22]. More recently, the baseline differences in the tomato transcriptomic profile
associated with the Mi-1 gene and the changes after infestation with B. tabaci were investi-
gated [23]. Among other results, the differential gene expression provided support to the
fact that the attack of whiteflies does not promote HR in tomato leaves, as demonstrated for
aphids in tomato [15] or whiteflies in Arabidopsis [24]. The Rme1 gene is also required for Mi-
1-mediated resistance to nematodes, aphids, and whiteflies, acting early in the Mi-1 pathway,
either at the same step as the Mi-1 product or earlier in the response cascade [25]. However,
knowledge on the genes implicated in Mi-1-mediated resistance to whiteflies is not complete.
In the case of nematodes and aphids, Mi-1-mediated resistance involves several additional
genes [26,27], among which are Sgt1 and Hsp90, this last gene encoding the chaperone heat
shock protein 90 or HSP90 [25,28,29]. Moreover, the heat shock factor HsfA1a is essential for
Mi-1-mediated nematode resistance [30].

The chaperone HSP90 is highly conserved in most living organisms [31] and it is
involved in diverse processes, such as protein folding and degradation and signal trans-
duction [32–34]. In Nicotiana benthamiana, HSP90 plays important roles in plant growth
and development [35]. In tomato, moderate heat stress enhances the strength of jasmonic
acid (JA) responses through the activity of HSP90 [36], and overexpression of Hsp90.2 gene
resulted in significant increases in root biomass and architecture, as well as tolerance to
salinity and drought stresses [37]. Regarding biotic stress, HSP90 is required to activate the
HR during non-host resistance in different pathosystems [31].

Most of the R proteins form complexes with other plant proteins, such as HSP90,
through which they detect the effectors of the attacking organisms [38]. HSP90 associates
with additional proteins, RAR1 or/and SGT1, stabilizing R proteins to keep them in a
controlled and competent conformation state in order to detect pathogen signals [31].
RAR1 and SGIT1 are HSP90 co-chaperones in many pathosystems [35,39–45]. However,
this is not universal as tomato I-2 gene-mediated resistance to F. oxysporum requires the
chaperone HSP90 and protein phosphatase 5 (PP5), but does not require SGT1 or RAR1 [46].
In rice and soybean, HSP90 interacts with the co-chaperone Hop/Sti [47,48]. In Mi-1-
mediated resistance to aphids and nematodes, HSP90 interacts with SGT1 but not RAR1. It
is hypothesized that nematode and insect Avr proteins would modify RME1, triggering
a conformational change and the formation of HSP90, SGT1, and Mi-1 signalosome that
would activate a defence signalling pathway [28].

The virus-induced gene silencing (VIGS) technique was used to demonstrate the
involvement of Hsp90 in Mi-1-mediated resistance to aphids and nematodes [28]. Numerous
studies on the role of Hsp90 in plant stress resistance used VIGS too [35,39,41,44,45,49–53].
VIGS is a post-transcriptional gene silencing (PTGS) method used by plants as a defence
mechanism against invading viruses [54]. It is an easy affordable technique to study
functional genomics in many plants including Solanaceae such as N. benthamiana and
tomato [54]. TRV is the choice for a VIGS vector because of the high susceptibility to this
virus of a wide range of hosts, with mild viral symptoms [55,56]. TRV is a positive-strand
RNA virus with a bipartite genome, which can move systemically in many plants, first being
used for endogenous gene silencing in N. benthamiana [57]. TRV-VIGS has also been used in
many other plant species, including most dicotyledonous plants, some monocotyledonous
plants, and even some trees [54].

Although the involvement of Hsp90 in Mi-1-mediated resistance of tomato to aphids
and nematodes was previously demonstrated by silencing of that gene in carrying Mi-1
plants (Motelle cultivar) [28], its potential implication in such a resistance to whiteflies
was unknown. The same methodology (TRV-based VIGS) was used now to evaluate the
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involvement of Hsp90 in the Mi-1-mediated resistance to whitefly B. tabaci, which is the
objective of this work.

2. Results
2.1. Evaluation of the Effects of Agroinfiltration with the Vector TRV

Motelle and Moneymaker, the resistant and susceptible tomato cultivars, respectively,
were agro-infiltrated with the TRV-VIGS vector and infested with B. tabaci in a non-choice
assay to test the effect of TRV vector on the whitefly fecundity. The results of these tests are
shown in Figure 1. Considering each tomato cultivar separately, the number of eggs on the
plant leaflets was similar, regardless of infiltration or not with the “empty” pTRV1:pTRV2
vector (TRV). No statistically significant differences due to TRV infiltration were found
for either Moneymaker (p > 0.05) or Motelle (p > 0.05) plants. On the contrary and as
expected, significant differences were obtained in the number of eggs on the control (not
infiltrated) plants of the cultivars Moneymaker and Motelle (p < 0.001). The difference
between Moneymaker and Motelle was maintained after infiltration with the empty TRV
vector (p < 0.05).
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expression of the Mi-1 gene after infestation by B. tabaci in Motelle and Moneymaker 
plants infiltrated with the empty TRV vector are shown in Figure 2. No transcript expres-
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between the cultivars Motelle and Moneymaker, it was not necessary to quantify such 
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Figure 1. Number of eggs per leaflet on plants of the cultivars Moneymaker (mi-1/mi-1) and Motelle
(Mi-1/Mi-1), infiltrated or not with the empty pTRV1:pTRV2 vector (TRV) and infested with B. tabaci
females. In each of the three independent assays, four plants were used for each tomato genotype and
treatment. Each dot represents the mean number of eggs counted on three leaflets from a single plant.
The lines indicate the median values of 12 independent plants. Different letters indicate significant
differences (p < 0.05) by the non-parametric Kruskal–Wallis test and Dunn’s post-test.

The expression of the Mi-1 gene was evaluated by RT semi-quantitative PCR analysis
in the agroinfiltrated plants. The results of the semi-quantitative analysis of the relative
expression of the Mi-1 gene after infestation by B. tabaci in Motelle and Moneymaker plants
infiltrated with the empty TRV vector are shown in Figure 2. No transcript expression was
obtained in Moneymaker plants (lacking the Mi-1 gene). In Motelle plants, the expression of
the Mi-1 gene was clearly observed from cycle 35 of the PCR. As the semi-quantitative PCR
analysis clearly shows the differences in expression of the Mi-1 gene between the cultivars
Motelle and Moneymaker, it was not necessary to quantify such expression by qPCR.
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Figure 2. Relative expression levels of the Mi-1 gene obtained by RT semi-quantitative PCR in
Moneymaker (mi-1/mi-1) and Motelle (Mi-1/Mi-1) plants infested with B. tabaci and infiltrated with
the vector pTRV1:pTRV2 empty (TRV). The ubiquitin gene (Ubi3) was used as an endogenous control.
The PCR cycles (35, 40, 45, 50) used are indicated.

2.2. Mi-1 Gene Silencing in Tomato Plants

Tomato cultivar Motelle plants were agroinfiltrated with TRV-Mi and infested with
B. tabaci in a non-choice assay and whitefly fecundity was evaluated. The number of eggs
was counted on the leaflets of Motelle plants infiltrated with TRV-Mi and values were
compared to those on Motelle and Moneymaker plants infiltrated with the empty vector
TRV. These results are shown in Figure 3. Significant differences (p < 0.05) were obtained
between Motelle plants infiltrated with the empty vector TRV and Motelle plants infiltrated
with the TRV-Mi vector. This demonstrates that silencing of the Mi gene decreases resistance
against whiteflies, until similar levels to that of the highly susceptible cultivar Moneymaker
infiltrated with the empty vector.
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Figure 3. Number of eggs per leaflet on plants of the cultivars Moneymaker (mi-1/mi-1) and Motelle
(Mi-1/Mi-1), infiltrated with the empty pTRV1:pTRV2 vector (TRV) and on Motelle plants agroinfil-
trated with the vector pTRV1:pTRV2-Mi (Motelle TRV-Mi) and infested with B. tabaci females. In
each of the three independent assays, four plants were used for each tomato genotype and treatment.
Each dot represents the mean number of eggs counted on three leaflets from a single plant. The lines
indicate the median values of 12 independent plants. Different letters indicate significant differences
(p < 0.05) by the non-parametric Kruskal–Wallis test and Dunn’s post-test.
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To confirm silencing of the Mi-1 gene, its expression was analyzed by semi-quantitative
(Figure 4) and real-time quantitative PCR (Figure 5). Only the Motelle plants were an-
alyzed by semi-quantitative PCR as no expression of the gene was previously obtained
in Moneymaker plants (Figure 2). Figure 4 shows that, in the leaflets of Motelle TRV-Mi
plants (which had a large number of eggs), the expression of the Mi-1 gene was not clearly
detected until cycle 45, while in Motelle plants infiltrated with the empty vector (Motelle
TRV), Mi-1 expression was detected from cycle 35. This indicates a partial silencing of Mi-1
expression; namely, the expression values of Mi-1 do not reach zero because its silencing
occurs only in a subset of the cells of the analysed tissue, as it is observed in the mosaic
pattern of photobleaching when silencing the phytoene desaturase (PDS) gene (Figure 6).
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are indicated.
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Figure 5. Expression of Mi-1 in agroinfiltrated tomato plants using RT-qPCR analysis. The expression
of the Mi-1 gene was analysed in leaflets of Motelle (Mi-1/Mi-1) and Moneymaker (mi-1/mi-1),
plants agroinfiltrated with the empty vector pTRV1:pTRV2 (TRV), and in leaflets of Motelle plants
agroinfiltrated with the vector pTRV1:pTRV2-Mi (Motelle TRV-Mi), two days after infestation with
B. tabaci females. Each bar is the mean ± standard error of Mi-1 expression in two biological samples
and three technical replicates, normalized with the expression of the endogenous ubiquitin gene
(Ubi3). Different letters indicate significant differences (p < 0.01) by Tukey’s test.
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green areas.

The expression of the Mi-1 gene in leaflets of the above-mentioned Motelle plants was
also compared by RT-qPCR (Figure 6). Moneymaker TRV plants were included as a control.
Significantly (p = 0.001) lower levels of expression of Mi-1 were obtained in the leaflets from
Motelle TRV-Mi-1 agroinfiltrated plants than in those from Motelle TRV plants. Significant
differences (p = 0.002) were also obtained in the comparison between Motelle TRV-Mi and
Moneymaker TRV control plants. Although gene expression was reduced in Mi-1 silenced
plants, these levels did not reach zero, as in Moneymaker TRV plants, indicating a partial
silencing of the Mi-1 gene as demonstrated in the semiquantitative PCR analysis.

2.3. Hsp90-1 Gene Silencing in Tomato Plants

Tomato cultivar Motelle plants were agroinfiltrated with TRV-SlHsp90-1 and infested
with B. tabaci in a non-choice assay and whitefly fecundity was evaluated. Plants agroin-
filtrated with TRV-Mi or empty vector TRV were used as controls. The number of eggs
counted on plants agroinfiltrated with TRV-SlHsp90-1 was significantly higher (p < 0.05)
than the number on Motelle TRV control plants, and similar to that obtained in plants in
which the Mi-1 gene was silenced (p > 0.05) (Figure 7). The Motelle TRV-Mi and Motelle
TRV-SlHsp90-1 plants did not show significant differences (p > 0.05) when compared with
the Moneymaker TRV plants. However, the number of eggs was slightly higher in suscepti-
ble plants (Moneymaker TRV) than in Motelle plants agroinfiltrated with TRV-SlHsp90-1
or TRV-Mi.

To confirm the silencing of the Hsp90-1 gene in TRV-SlHsp90-1 agroinfiltrated plants,
leaflets with a high number of eggs were used in RT semi-quantitative and RT qPCR to
evaluate Hsp90-1 expression. Figure 8 shows the results of the semi-quantitative PCR.

In the control plants (Motelle TRV), the expression of Hsp90-1 is observed from cycle
21 of the PCR, while in the plants agroinfiltrated with TRV-SlHsp90-1, 27 cycles of PCR
were needed to obtain a detectable band corresponding to the expression of Hsp90-1.

The quantitative analysis of Hsp90-1 expression was performed using RT qPCR in the
same samples, as well as in Moneymaker TRV plants and Motelle plants agroinfiltrated
with TRV-Mi (Figure 9).
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(Mi-1/Mi-1), agroinfiltrated with the empty pTRV1:pTRV2 vector (TRV), Motelle plants agroinfiltrated
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Hsp90-1 (Motelle TRV-SlHsp90-1) and infested with B. tabaci females. In each of the three independent
assays, four plants were used for each tomato genotype and treatment. Each dot represents the
mean number of eggs counted on three leaflets from a single plant. The lines indicate the median
values of 12 independent plants. Different letters indicate significant differences (p < 0.05) by the
non-parametric Kruskal–Wallis test and Dunn’s post-test.
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Figure 8. Expression levels of the Hsp90-1 gene obtained by RT semi-quantitative PCR in leaflets of
Motelle plants infiltrated with the empty vector (Motelle TRV) and leaflets of plants agroinfiltrated
with agroinfiltrated with the vector pTRV1:pTRV2-SlHsp90-1 (Motelle TRV-SlHsp90-1), both infested
with B. tabaci females. The ubiquitin gene (Ubi3) was used as an endogenous control. The PCR cycles
(21, 24, 27, 30, 35) used are indicated.

In the leaflets of the Motelle TRV-SlHsp90-1 plants, levels of Hsp90-1 expression were
significantly lower (p < 0.01) than those observed in the other plants used in this experiment.
The expression levels of Hsp90-1 were similar in Moneymaker and Motelle plants infiltrated
with the empty vector TRV, as well as in Motelle plants agroinfiltrated with TRV-Mi-1.
TRV-SlHsp90-1 plants showed reduced but not complete suppression of Hsp90-1 expression.
Thus, as for the Mi-1 gene, Hsp90-1 silencing occurs partially.
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expression was analysed in leaflets of Motelle and Moneymaker plants agroinfiltrated with pTRV1:
pTRV2 empty vector (TRV) and in leaflets of Motelle plants agroinfiltrated with pTRV1:pTRV2-Mi
(Motelle TRV-Mi) or pTRV1:pTRV2-SlHsp90-1 (Motelle TRV-SlHsp90-1), 2 days after infestation with
B. tabaci females. Each bar is the mean ± standard error of the expression of Hsp90-1 in two biological
samples and three technical replicates, normalized with the expression of the endogenous ubiquitin
gene (Ubi3). Different letters indicate significant differences (p < 0.05) by Tukey’s test.

3. Discussion
3.1. Effects of Agroinfiltration with Empty TRV Vector and TRV-Mi

Our results show that agroinfiltration with the empty TRV vector did not alter basal
defence nor Mi-1-mediated resistance to B. tabaci, as oviposition values were not changed
in Moneymaker (mi-1/-mi-1) or Motelle (Mi-1/Mi-1) plants treated with this vector. Fur-
thermore, the expected differences between the susceptible Moneymaker and resistant
Motelle plants were maintained. This supports the suitability of the TRV vector for VIGS
studies with whiteflies. These results agree with those obtained with aphids [26] and
nematodes [28], confirming that the infiltration of empty TRV does not alter the resistance
mediated by the Mi-1 gene to insects and nematodes. Similarly, TRV infiltration of other
plant species did not affect resistance to pathogens mediated by other R genes, such as
the N gene, conferring resistance to tobacco mosaic virus (TMV) [58], or the SacMi gene,
involved in resistance against M. incognita in Solanum aculeatissimum [59].

Mi-1 expression analysis by semi-quantitative PCR of plants agroinfiltrated with the
empty TRV vector showed the same pattern previously observed by Li et al. [26] in younger
plants of the same cultivars: no Mi-1 expression was obtained in Moneymaker, while
expression in Motelle was observed from cycle 35 of the PCR.

Silencing of the Mi-1 gene in Motelle plants caused a partial loss of resistance to
B. tabaci, as has been previously observed for aphids and nematodes using the same TRV
vector [26,28]. In Motelle with the Mi-1 gene silenced, the oviposition of B. tabaci females
increased compared with non-silenced Motelle and was similar to that of susceptible
Moneymaker. This loss of resistance is partial because the silencing by TRV in tomato is not
uniform and is patchy throughout the infiltrated leaf, in contrast to the efficiency of VIGS
in Nicotiana benthamiana, where the silencing is more uniform [41,58,60]. The silencing of
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the PDS gene that produces a visible photobleaching phenotype in the leaves [58] allowed
to verify this patchy silencing in the foliar tissues. This patchiness necessitates a larger
number of tomato plant replicates for the analysis of any gene whose silencing does not
produce a visible phenotype in the plant.

Associated with the partial loss of resistance to B. tabaci, semi-quantitative PCR and
qPCR analyses confirmed the partial silencing of Mi-1, manifested as a significant reduction
in the gene expression levels in plants agroinfiltrated with the TRV-Mi-1 construct.

3.2. The Gene Hsp90-1 in the Mi-1-Mediated Resistance to B. tabaci

It was previously known that Mi-1-mediated resistance to aphids and nematodes in
tomato requires the participation of Hsp90-1 [28]. Here, our results demonstrate for the first
time that the chaperone Hsp90-1 is also involved in Mi-1-mediated resistance to whiteflies.
By silencing the Hsp90-1 gene in the resistant tomato Motelle, a partial loss of resistance to
B. tabaci was detected, as occurred with the silencing of the Mi-1 gene in the same tomato
cultivar, with very similar oviposition values, significantly higher than those on control
Motelle plants. Similarly, Hsp90 is also involved in the tomato resistance mediated by
the I-2 gene to Fusarium oxysporum [46] and in other pathosystems, such as the resistance
mediated by the Pto, Rx, N, and Tm-22 genes to Pseudomonas syringae pv. tomato (Pst), potato
virus X (PVX), and TMV in Nicotiana benthamiana [41,61]. Other examples are the resistance
mediated by RPS2 against Pst in Arabidopsis [42] or the PsoRPM2-mediated resistance to
Meloidogyne incognita in tobacco [62]. Thus, the requirement of HSP90 seems common in
many cases of resistances mediated by plant R genes. As HSP90 is a highly conserved
protein in most living organisms, involved in many biological processes [31–34], it could
also be relevant for the basal response of plants to damaging organisms. However, the
study of the possible involvement of the Hsp90 gene in the basal response of susceptible
tomatoes to B. tabaci is outside the scope of the present work.

As noted above for the plants with a silenced Mi-1 gene, the partial loss of resistance
to B. tabaci observed in the Motelle plants with silenced Hsp90-1 was correlated with
a significant decrease in the expression levels of this gene, verified by means of semi-
quantitative PCR and qPCR. This reduction in Hsp90-1 expression confirmed the results
from a previous work in which the same gene was silenced [28]. Quantitative analysis was
also used after VIGS to confirm Hsp90 silencing in wheat [52], to evaluate the function of
SlSERK3A and SlSERK3B in bacterial and nematode innate immunity [63], or to study the
roles of the HsfAs in Mi-1.2-mediated resistance [30].

Previous studies have determined that some chaperones are constitutively expressed,
while others are induced in response to stress. AtHSP90.1 is induced in Arabidopsis by
p. syringae (Pst DC3000) infection, while three other AtHSP90 isoforms are not [42]. How-
ever, during the interaction of tomato/B. tabaci, the expression of Hsp90-1 did not vary
in Motelle or Moneymaker plants agroinfiltrated with the empty vector TRV or in plants
silenced for Mi-1, suggesting constitutive levels for Hsp90-1 and a regulation independent
of Mi-1. This invariance in the expression levels of Hsp90-1 had been observed previously in
untreated Motelle plants when comparing non-infested and aphid-infested plants, suggest-
ing that infestation also does not produce variation in the expression levels of Hsp90-1 [28].
Similarly, previous studies have shown that Mi-1 expression is also constitutive, with the
same level of expression in different organs of the plant, in different developmental stages,
and after the attack of nematodes and aphids [64,65]. Although Hsp90-1 expression is
constant, it is known that HSP90 protein levels in tomato are reduced after whitefly infesta-
tion [66]. Using polyclonal antibodies, a decrease in HSP90 protein levels has been shown
after infestation with both viruliferous (TYLCV-carrying) and non-viruliferous whiteflies,
indicating that the stress suffered by the plant translates into a greater consumption of
the HSP90 protein, with this reduction in protein levels being more pronounced in plants
resistant to TYLCV [66]. Taken together, it could be suggested that the biotic stress caused
by infestation with sucking insects in tomato plants does not alter the expression of the
Hsp90 gene, but it does cause a response that reduces the accumulated levels of this protein.
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We have observed in this work that Hsp90-1 silenced plants had a slightly smaller size
than the rest of the agroinfiltrated plants. A similar phenomenon has been observed in the
silencing of Hsp90 in N. benthamiana [41], suggesting that HSP90 is involved in signalling
pathways that affect both plant growth and immunity processes. In wheat too, silencing of
certain Hsp90 genes caused a more pronounced inhibition of wheat seedling growth and
even plant death [52].

Several activation models have been described regarding the role of Hsp90 in R gene-
mediated resistance [28,47,67]. In Mi-1-mediated resistance, the model based on the “gate-
keeper hypothesis” [68] proposes an interaction between Mi-1, HSP90, and SGT1 proteins
that “guard” the RME1 protein [28]. Previous works had already shown that Rme1 is
required for Mi-1-mediated resistance to nematodes, aphids, and whiteflies [25,29], but not
for I-2 gene-mediated resistance to F. oxysporum f.sp. lycopersici [29] or for Pto-mediated
resistance to Pst [25]. In the model proposed by Bhattarai et al. (2007) [28] for Mi-1 gene-
mediated resistance to aphids and nematodes, HSP90 interacts with SGT1 but not RAR1,
and RME1 is the target protein for nematode and insect avirulence proteins, which would
modify RME1. This modification would cause a conformational change in the Mi-1 protein
that would allow the union of HSP90 and SGT1, to form a signalosome that would activate
the signalling pathway and defence in the plant. Our previous and current results with
B. tabaci reinforce the hypothesis of a common model for nematodes and insects in the
interaction of Mi-1, RME1, and HSP90 proteins. From this point on, further evaluation
of the expression of other marker genes downstream to Mi-1 will allow to deepen the
knowledge on the entire pathway in the complex process of the Mi-1-mediated resistance
of tomato against nematodes, aphids, and whiteflies.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Tomato (Solanum lycopersicum L.) near isogenic lines Motelle and Moneymaker were
used in this study. Motelle is homozygous dominant for the Mi-1 R gene (Mi-1/Mi-1)
and Moneymaker is homozygous recessive (mi-1/mi-1). These cultivars differ only in the
presence of a 650 kb introgressed region from Solanum peruvianum containing the Mi-1
gene, in chromosome 6 of Motelle [69,70]. Seeds were germinated in sterile vermiculite
(number 3, Projar, Spain) inside a growth chamber under controlled conditions: 24 ◦C and
20 ◦C (16 h day/8 h night) at 70% relative humidity. Plants were watered when needed
and supplied every 15 days with a 20/20/20 nutritive complex (Nutrichem 60; Miller
Chemical, Hanover, PA, USA) at 3 g·L−1. Approximately 10 days after germination, when
the first true leaves began to emerge, cultivation of the agro clones was started, as described
below (see Section 4.3). Around 15 days after germination, the first two true leaves had
generally already developed (Figure 10) and agroinfiltration of these leaves and cotyledons
was carried out. During and after infiltration, care was always taken to keep the plants
in separate trays for each genotype and treatment, in order to avoid possible accidental
transmission of the virus by contact or during irrigation. About 8 weeks after infiltration,
bioassays were carried out by infesting the plants with whiteflies.
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4.2. VIGS Constructs

The Tobacco Rattle Virus (TRV) vector was used for gene silencing. It is made up
of pTRV1 (TRV1), which contains the replicative part of the virus, and pTRV2 (TRV2), in
which the gene to be silenced is inserted. This vector has been extensively described [58].

The pTRV2-SlHsp90-1, pTRV2-Mi-1, and pTRV2-PDS constructs were used to silence
the Hsp90-1, Mi-1, and PDS genes, respectively. Moreover, an empty pTRV2, without
introduced genetic material, was also used to check if the infiltration itself produces
any alteration in the behaviour of B. tabaci. The silencing of Mi-1 has been carried out
successfully before [26], but its effect on resistance to whiteflies has not been studied. The
silencing of the PDS gene aimed to evaluate the efficacy of the silencing, as it produces
a visible phenotype of photobleaching due to the suppression of the activity of phytoene
desaturase, which participates in the biosynthesis of carotenoids [26,58].

The pTRV1:pTRV2-PDS (TRV-PDS) and pTRV1:pTRV2-SlHsp90-1 (TRV-SlHsp90-1)
constructs were obtained from Dr. S. Dinesh Kumar [35,58]. The pTRV1:pTRV2-Mi-1 (TRV-
Mi-1) construction was carried out by cloning a 300 bp fragment of the Mi-1 cDNA and
using the primers C1/2Do and C2S4 for their amplification [66]. The amplified fragment
was cloned into pGEM T-Easy vector and restricted using SphI and then treated with T4
DNA polymerase. The resulting fragment was digested with SacI and introduced into
pTRV2. The plasmid formed was transformed into a culture of Agrobacterium tumefaciens
GV3101. Each of the agroclones (TRV1 and TRV2) obtained came from an isolated colony
and were preserved in glycerol at −80 ◦C.

4.3. Growth of Agroclones and Agroinfiltration

As mentioned above, the growth of agroclones started approximately 10 days after
germination of tomato seeds. Firstly, agroclones were grown on Petri dishes with 1.5% agar
in LB medium supplemented with 50 mg·L−1 Kanamycin and 25 mg·L−1 Rifampicin at
28 ◦C for 24–48 h. Two days before the agroinfiltration, an isolated colony of each agro-
clone was introduced into a test tube containing 2 mL of LB medium supplemented with
50 mg·L−1 Kanamycin and 25 mg·L−1 and incubated overnight at 28 ◦C with horizontal
agitation (200–250 rpm). Then, 2 ml of each culture was added to a 125 mL Erlenmeyer flask
containing 25 mL of LB medium supplemented with Kanamycin (50 mg·L−1), Rifampicin
(25 mg·L−1), Acetosyringone (20 µM), and MES (10 mM). Erlenmeyer flasks were incubated
overnight at 28 ◦C with horizontal agitation (200–250 rpm).

The day of agroinfiltration (approximately 15 days after germination, as mentioned
at the beginning) depended on whether the plants had already developed their first two
true leaves. This day, the cultures were centrifuged at 2800 rpm at room temperature
for 10 min. The pellet was resuspended in a freshly prepared infiltration buffer (10 mM
MgCl2, 10 mM MES, and 200 µM Acetosyringone). The concentration was measured in
a spectrophotometer at OD600nm and adjusted to an absorbance value of 2. Then, the
agroclones were gently stirred for 3–5 h in the dark. After this incubation period, the leaves
were infiltrated as follows.

Firstly, TRV1 was mixed with each TRV2 (‘empty’ or with the gene of interest to be
silenced) in a 1:1 ratio to obtain a total volume of 8 mL, usually enough to infiltrate 10 plants.
The mixture was aspirated with a needleless syringe and the infiltration was carried out by
gently pressing with the syringe on the underside of the leaves and cotyledons so as not to
cause any mechanical damage to the plants (Figure 11).

Ten days after infiltration, plants were ready for transplanting into pots. The tempera-
ture at infiltration was reduced to 19 ◦C and maintained during the next 8 weeks to delay
plant development, thus favouring the virus distribution. So, these 10-week-old plants
reached a degree of development similar to that of 8-week-old plants that had grown at
24 ◦C and 20 ◦C (day/night), which is important as tomato resistance mediated by Mi-1 to
B. tabaci is dependent on plant development [71].
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4.4. Bioassays with Plants Infested with B. tabaci

Moneymaker and Motelle plants were used, both uninfiltrated and infiltrated with
pTRV1:pTRV2-’empty’ (TRV). In addition, Motelle plants infiltrated with pTRV1:pTRV2-
Mi-1 (TRV-Mi-1) and with pTRV1:pTRV2-SlHsp90-1 (TRV-SlHsp90-1) were also used. These
six types of plants were infested in non-choice bioassays with adult females of the MED
(Mediterranean species) B. tabaci. A population of these whiteflies was reared for several
generations in our laboratory, free from any plant pathogen, on the susceptible tomato
cultivar Marmande. Infestation was performed inside a growth chamber at 24 ◦C and 20 ◦C
(16 h day/8 h night) at 70% relative humidity. Briefly, each of three well-developed leaflets
from the upper part of the tomato plant was placed into a cage made up from a 50 mL
Falcon tube following the methodology described in Rodriguez et al. [23]. Twenty female
whiteflies were taken from the rearing colony by vacuum aspiration and deposited into
each tube containing a leaflet. Four replicated plants were used for each plant genotype
and treatment and three independent assays were carried out. After two days, the tubes
and the whiteflies were removed and the number of eggs on each leaflet was counted. The
statistical analysis of the data was performed by the non-parametric Kruskal–Wallis test
and Dunn’s post-test, as more than two groups were compared.

Immediately after egg counting, infested leaflets were cut with a scalpel and placed
individually in Eppendorf tubes containing glass beads, frozen in liquid nitrogen, and
stored at −80 ◦C until RNA extraction for gene expression analyses. In addition, other non-
infested leaflets were collected from the same plants, individually placed in hermetically
sealed plastic bags, and kept on ice until they were used to extract genomic DNA in order
to confirm the plant genotype in terms of the presence/absence of the Mi-1 gene.

4.5. Genomic DNA (gDNA) Extraction and PCR Amplification

Genomic DNA was extracted from three young leaflets from each plant, following
the protocol described by Peterson et al. [72] with slight modifications. The extracted
genomic DNA was quantified prior to amplification. For PCR, 50–100 ng of DNA was used
and the amplification was carried out in a programmable thermal cycler Thermal Blok II®

(Lab-Line Instruments®, Dubuque, IA, USA). The reaction was as follows: 3 min at 94 ◦C,
followed by 30 cycles of three steps each: 30 s at 94 ◦C, 30 s at 64 ◦C, and 30 s at 72 ◦C.
Finally, a cycle of 5 min at 72 ◦C. The amplification of Mi-1 from gDNA was performed
using the primers PMiF3 (5′-GGTATGAGCATGCTTAATCAGAGCTCTC-3′) and PMiR3
(5′-CCTACAAGAAATTATTGTGCGTGTGAATG-3′), designed by El Mehrach et al. [73].
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4.6. RNA Extraction and cDNA Synthesis and Amplification

Total RNA was extracted from the leaflets collected in the B. tabaci infestation bioassays.
Total RNA extraction was performed using Trizol (Invitrogen, Waltham, MA, USA), in a
three-step process, including (1) homogenization, separation, precipitation, washing, and
dissolution; (2) treatment with DNase RQI (Promega); and (3) re-extraction of the RNA
using phenol/chloroform.

cDNA synthesis was performed using 5 µg of the total RNA extracted, which was
reverse-transcribed using Superscript II reverse transcriptase (Invitrogen). The synthesized
cDNA was amplified by PCR for semi-quantitative analysis and those samples with greater
interest were subsequently amplified by qRT-PCR (qPCR). The semi-quantitative PCR
amplification consisted of 5 min at 95 ◦C for a variable number of three-step cycles: 45 s
at 94 ◦C, 45 s at 60 ◦C, and 1 min at 72 ◦C. For the amplification of Mi-1, 35, 40, 45, and
50 cycles were performed [26], while for the amplification of Hsp90-1, 21, 24, 27, 30, and
35 cycles were used [28]. The expression of the endogenous Ubi3 gene, which has been
used in previous VIGS works [26,28], was used as a control. The amplified products were
analysed by electrophoresis on Ethidium bromide stained with 1.5% (w/v) agarose gels.

By this semi-quantitative PCR, the cDNA extracted from leaflets of Moneymaker and
Motelle plants infiltrated with the empty vector (pTRV2-’empty’) was amplified. cDNA
was also amplified from Motelle plants silenced for the Mi-1 gene or for the Hsp90 gene,
selecting those leaflets in which the number of B. tabaci eggs was higher than that observed
in Motelle plants not silenced but infiltrated with the empty vector. The sequences of
primers used are detailed in previous works [26,28].

The most interesting samples amplified by semi-quantitative PCR, which confirmed
the silencing of the genes, were quantified using real-time quantitative PCR (qRT-PCR or
qPCR). This procedure measures the concentration of cDNA in a sample, using a probe that
emits fluorescence (SYBR Green®, Alameda, CA, USA) when bound to nucleic acid. The
quantification of the samples was carried out in the 7900HT Fast Real Time PCR system
(Applied Biosystems, Waltham, MA, USA) of the Genomics Service of the “Albert Sols”
Institute (http://www.iib.uam.es/portal/web/genomica), and Ubiquitin was used as an
endogenous control gene for quantification. Two biological samples (leaflets) per plant type
were used and each of the qPCR reactions was performed in triplicate for each biological
sample. Leaflets of Mi-1 or Hsp90 silenced Motelle plants, in which the number of B. tabaci
eggs was higher than that in Motelle leaflets of not silenced plants but infiltrated with the
empty vector (pTRV2-‘empty’), were analysed. Leaflets from Moneymaker plants were also
tested as controls. The qPCR conditions were 10 min at 95 ◦C, followed by 40 cycles of 15 s
at 95 ◦C and 1 min at 60 ◦C. Finally, the dissociation curve was carried out, for 15 s at 95 ◦C,
followed by 15 s at 60 ◦C and finally 15 s at 95 ◦C. The primers used in this study were
specifically designed using the Primer Express® program (Applied Biosystems) and their
specificity was checked against the SGN and NCBI databases. The primers are detailed
in Table 1. The relative expression of each gene was calculated using the ∆∆CT method,
comparing the data with the reference gene (Ubi3). Finally, the mean of the triplicates and
the associated error were calculated. The data obtained were analyzed using the Tukey test
to compare all of the samples with each other.

Table 1. Primers designed for qRT-PCR of Mi-1, Hsp90-1, and Ubi3 genes.

Gene Primer name Sequence

Mi-1
Mi-RT-F 5′-AGAGGAGGGAACGATCTTCAGA-3′

Mi-RT-R 5′-AAGCAAAGTTCAACCAAAATGCT-3′

Hsp90-1 HSP90-RT-F 5′-TAGCCTTGATGAGCCAAACACA-3′

HSP90-RT-R 5′-CGATACTCAGACCAAGCTTCAGC-3′

Ubi3
Ubi3-RT-F 5′-TGTGGGCTCACCTACGTTTACA-3′

Ubi3-RT-R 5′-CTGATAGAGCATTGCTAAACATTAAAATC-3′

http://www.iib.uam.es/portal/web/genomica
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