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Abstract: Salt stress is a severe type of environmental stress. It adversely affects agricultural pro-
duction worldwide. The overproduction of reactive oxygen species (ROS) is the most frequent
phenomenon during salt stress. ROS are extremely reactive and, in high amounts, noxious, leading to
destructive processes and causing cellular damage. However, at lower concentrations, ROS function
as secondary messengers, playing a critical role as signaling molecules, ensuring regulation of growth
and adjustment to multifactorial stresses. Plants contain several enzymatic and non-enzymatic an-
tioxidants that can detoxify ROS. The production of ROS and their scavenging are important aspects
of the plant’s normal response to adverse conditions. Recently, this field has attracted immense
attention from plant scientists; however, ROS-induced signaling pathways during salt stress remain
largely unknown. In this review, we will discuss the critical role of different antioxidants in salt
stress tolerance. We also summarize the recent advances on the detrimental effects of ROS, on the
antioxidant machinery scavenging ROS under salt stress, and on the crosstalk between ROS and other
various signaling molecules, including nitric oxide, hydrogen sulfide, calcium, and phytohormones.
Moreover, the utilization of “-omic” approaches to improve the ROS-regulating antioxidant system
during the adaptation process to salt stress is also described.

Keywords: reactive oxygen species; superoxide dismutase; hydrogen sulfide; catalase; ascorbate
peroxidase; nitric oxide; salt stress; omics; phytohormones

1. Introduction

During their life cycle, plants encounter diverse biotic and abiotic stresses, varying
from salinity, drought, cold, flooding, heat, mineral deficiency or excess, and exposure to
toxins [1]. Stress has a detrimental effect on growth and development, leading to reduced
productivity in different staple food crops [2–5]. Salinity stress is the most severe abiotic
stress and regulates complex phenotypic changes. It leads to an electrolyte imbalance by
perturbing the metabolic activities of plants, thereby severely influencing their development
and productivity worldwide [1,6,7]. A vast area of cultivated land is affected by this type of
stress [8,9]. Salinity impacts plants via (a) the osmotic effect, (b) the ionic effect, (c) hormonal
imbalance, (d) nutrient imbalance, and (e) the generation of ROS [9–11]. Plants are often
exposed to multifactorial stresses, which may exhibit cumulative effects on plants owing to
integrated signaling pathways [5,6,11].
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ROS include singlet oxygen (1O2), superoxide radical (O2
−•), hydroxyl radical (HO•),

hydrogen peroxide (H2O2), alkoxyl radicals (RO•), and peroxy radicals (ROO•) (Table 1).
They are generated under normal growth conditions [12,13]. However, extreme abiotic
stress induces the overproduction of ROS [14], which alter cellular and molecular con-
stituents, for instance, oxidizing DNA, proteins, carbohydrates, lipids, and enzymes and
leading to programmed cell death (Figure 1) [15,16]. To prevent injuries, plants precisely
control the generation of ROS through different enzymatic and non-enzymatic antioxidants.
The enzymatic antioxidant plant defense machinery includes peroxidase (POD), superoxide
dismutase (SOD), glutathione reductase (GR), catalase (CAT), dehydroascorbate reductase
(DHAR), ascorbate peroxidase (APX), and monodehydroascorbate reductase (MDHAR),
while non-enzymatic antioxidants include ascorbate (AsA), flavonoids, carotenoids, stil-
benes, tocopherols, and other vitamins. These counteract oxidative stress either by restoring
the level of endogenous antioxidants or by directly detoxifying the overproduced ROS,
thereby increasing the tolerance to oxidative stress [17–19]. Unregulated production of
ROS has a harmful effect on plant health. Conversely, physiological levels of ROS are
involved in redox signaling, regulating plant development [20]. The precise regulation of
ROS production facilitates communication between cells by amplifying the signals through
nicotinamide adenine dinucleotide phosphate oxidase (NADPH) in response to various
stresses by modulating the conformation of different proteins and triggering genes involved
in stress tolerance [16]. Thus, elucidation and understanding of the molecular basis of ROS
signaling and of the related downstream pathways would help alleviate stress in plants.
Furthermore, considering the changing climate, the genetic manipulation of signaling path-
ways would further contribute to the development of stress-tolerant cultivars, minimizing
stress-induced losses. In this review, we discuss the critical role of the antioxidant defense
machinery that prevents the accumulation of ROS during salinity stress. Moreover, we also
discuss the crosstalk with various signaling molecules and the use of genetic engineering
to modulate salinity-related ROS signaling and to ensure optimal plant development and
acclimation responses.

Table 1. Different types of ROS (1O2, HO•, O2
−•, and H2O2), their place of production, mechanisms

of action, and scavenging systems.

Types of ROS Sites of Production Mechanisms of Action Radical Type Scavenging System

Hydroxyl
radical (HO•)

Mitochondria,
chloroplasts, and plasma

membranes

Reacts with all biomolecules:
proteins, lipids, RNA, and DNA. Free radical Sugars, flavonoids,

proline, and ascorbate

Singlet
oxygen (1O2)

Nucleus, chloroplasts,
mitochondria, and plasma

membranes

Oxidizes proteins containing
cysteine, methionine, tryptophan,
tyrosine, and histidine residues;

polyunsaturated fatty acids such
as methylene-interrupted polyenes
and others; and guanine residues

of DNA.

Non-radical α-tocopherol and
carotenoids

Superoxide
(O2

•−)

Mitochondria,
peroxisomes, chloroplasts,

electron transfer chains,
and apoplast

Dismutates to H2O2 and reacts
with double-bond-containing
proteins such as iron-sulfur
proteins via the iron atom.

Free radical Flavonoids, ascorbate, and
superoxide dismutase

Hydrogen
peroxide (H2O2)

Mitochondria,
peroxisomes, chloroplasts,

cytosol and
apoplast

Reacts with DNA.
Oxidizes proteins and forms HO•
and O2

−•. It further reacts with
proteins by attacking methionine

and cysteine residues.
Reacts with heme proteins.

Non-radical

Catalase, ascorbate
peroxidase, guaiacol

peroxidase,
peroxiredoxins,

glutathione, and ascorbate
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Figure 1. Excessive production of reactive oxygen species (ROS) in plants causes oxidative stress,
leading to apoptosis, which severely affects plant growth and productivity. HO•, hydroxyl radical;
H2O2, hydrogen peroxide; O2•−, superoxide radical; and 1O2, singlet oxygen.

2. Production of ROS in Plant Cells

The cell wall, plasma membrane (PM), peroxisomes, mitochondria, and chloroplasts
are the primary sites of ROS generation in plant cells (Figure 2) [21,22]. Thus, compartmen-
tal production of ROS reflects its total production in plant cells [15,23]. Chloroplasts are
the main site of ROS production, generating 30–100 times more ROS than mitochondria.
Essentially, ROS are formed in photosystems I and II and in the electron transport chain
(ETC). In the photosystems I and II, ROS formation is dependent on the reaction between
light and chlorophyll (chl), an essential component of the photosystems [15,23,24]. Under
high light, chl in photosystem II reaches a high-energy singlet excited state. The energy is
further transferred to molecular oxygen, which is transformed into singlet oxygen. Some
part of the energy is transmitted to the reaction center chlorophyll P680 and further to
the ETC, a process known as photochemical quenching (pQ). Nevertheless, the absorbed
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energy might exceed the capacity of pQ; the surplus energy is dissipated as fluorescence or
heat [25].
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Figure 2. Mechanism and site of production of ROS in plants. SOD, superoxide dismutase; ROS,
reactive oxygen species; ETC, electron transport chain; OEC, oxygen-evolving center; H2O2, hydrogen
peroxide; PS I, photosystem I; PS II, photosystem II; O2

−•, superoxide anion; 1O2, singlet oxygen;
HO•, hydroxyl radical; NADPH, nicotinamide adenine dinucleotide; XOD, xanthine oxidase; and
UO, urate oxidase.

Carotenoids such as lutein and zeaxanthin extinguish triplet-excited Chl (3Chl*),
inhibiting energy transmission to other molecules. If 3Chl* cannot be effectively quenched,
it reacts with triplet oxygen, generating 1O2 [26]. Furthermore, after absorption of light
energy, P680 reaches an excited state (1P680*), transfers an electron to pheophytin, and
subsequently to a quinone in the PSII reaction center. In adverse conditions, if this quinone
acceptor is not capable of taking any electrons, pheophytin couples with P680, forming
the triplet photoexcited state 3P680* [27]. Theoretically, β-carotene in the PSII reaction
center has the capacity to reduce 3P680*; however, the distance between β-carotene and
3P680* is too great, and the quenching is unsuccessful, leading to the production of 1O2 [28].
Additionally, some environmental stresses trigger the closure of stomata, reducing the
level of carbon dioxide in the chloroplasts and leading to a severe reduction in the ETC.
Thus, it increases the possibility of pairing between the quinone and 1P680* in PS II and
enhances the production of 1O2 [29]. Conversely, PS I does not generate 1O2. However,
photoreduction of the molecular oxygen at PSI results in the production of O2

−• (Mehler
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reaction), which is further converted into H2O2 via superoxide dismutases (SODs) [30,31].
Then, metal ions such as Fe2+ transform H2O2 and O2

−• into HO• [15]. In the roots, ROS
are generated in the mitochondria, where electron leakage from complex I and III of ETC
generates O2

−•, which yields H2O2 via copper-zinc-SOD (CuZn-SOD) and manganese-
SOD (Mn-SOD) [15,31]. In peroxisomes, the production of ROS is mainly catalyzed by
glycolate oxidase [32]. Further, in the peroxisomal matrix, xanthine oxidase can catalyze
the formation of uric acid and O2

−•, the latter being converted to H2O2 through urate
oxidase and SOD [33–35].

Apart from β-oxidation, H2O2 is produced in the peroxisomes by flavin oxidase
and from disproportionation of O2

−• [32,36]. Furthermore, copper amine oxidase, sar-
cosine oxidase, sulfite oxidase, and polyamine oxidase also produce H2O2 in the peroxi-
some [37]. MDHAR quenches H2O2 via the ascorbate-glutathione (AsA-GSH) cycle and
produces AsA in the peroxisomes [38,39]. NADPH oxidase, quinine, lipoxygenases (LOX),
POD, oxidases, germin-like oxalate, and reductase participate in ROS production in the
apoplast [19,40]. Moreover, LOX, amine oxidases, and POD are the main sources of ROS
in the cell wall [17,41], while quinone reductase and NADPH oxidase produce ROS in the
PM [41,42]. Additionally, cytochrome P450 generates O2−• in the endoplasmic reticulum.
β-oxidation, urate oxidase (UO), and glycolate oxidase generate H2O2 and O2−• in the
glyoxysomes [43]. Finally, aldehyde oxidase (AO) and xanthine oxidase contribute to ROS
production in the cytosol [44].

3. Role of Antioxidants in Oxidative Stress

In plant cells, physiological ROS function as secondary messengers, being redox-
signaling molecules in various signaling pathways that regulate the response to adverse
environmental conditions [41,45]. In conditions of extreme stress, excess production of
ROS is toxic and leads to programmed cell death [14]. The type of action of ROS (signaling,
regulatory, or destructive) is determined by the balance between their generation and
quenching [46]. The enzymatic and non-enzymatic antioxidants counteract excess ROS
(Figure 3A,B), maintaining adequate concentrations in different compartments of plant
cells [47,48]. Increasing the level of antioxidant enzymes via exogenous supply or through
genetic engineering could reinforce the plant defense system, enabling plants to adapt
under various stress conditions.

3.1. Enzymatic Antioxidants

The antioxidant enzymes—including CAT, SOD, MDHAR, APX, guaiacol peroxidase
(GPX), DHAR, and GR—localized in diverse plant cell compartments comprise the plant
antioxidant defense system (Figure 3A). In the following sections, we will discuss each
antioxidant enzyme in detail.

3.1.1. SOD

SOD (E.C.1.15.1.1) is a metalloenzyme present in all aerobic organisms. It represents
the first bulwark against ROS-induced damage owing to different environmental stresses.
SOD catalyzes the conversion of O2

−• into O2 and H2O2, ensuring its elimination [49].
Thus, this enzyme decreases the formation of HO• via the Haber–Weiss reaction [50].
Based on the type of prosthetic metal, SODs in plants are classified into three isoenzymes:
iron-SOD (Fe-SOD), CuZn-SOD, and Mn-SOD. These are common in various organelles,
including mitochondria, chloroplasts, the nucleus, apoplasts, and peroxisomes [51]. SOD
isoenzymes catalyze the dissociation of O2−• into H2O2 and O2 as follows:

O2
•−+ SOD −M2+ → O2 + M+——–Step 1

O2
•−+ 2H+-SOD −M→ H2O2 + M2+——-Step 2

The overall reaction is presented as the following equation:

O2
•−+ O2

•−+ 2H+ → 2H2O2 + O2
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Figure 3. Antioxidant defense machinery in plants: (A) different types of antioxidants and (B) intricate
regulatory mechanisms of enzymatic and non-enzymatic antioxidants. TRX, thioredoxin; SOD, super-
oxide dismutase; CAT, catalase; AA, ascorbic acid; AsA, ascorbate; APX, ascorbate peroxidase; DHAR,
dehydroascorbate reductase; DHA, dehydroascorbate; GPX, glutathione peroxidase; H2O2, hydro-
gen peroxide; GSH, reduced glutathione; GR, glutathione reductase; GSSG, oxidized glutathione;
MDHAR, monodehydroascorbate reductase; MDHA, monodehydroascorbate; GST, glutathione
S-transferase; NADPH, nicotinamide adenine dinucleotide phosphate; DHA, dehydroascorbate;
AsA, ascorbate; AA, ascorbic acid; AsA-GSH, ascorbate-glutathione; GLA-I, glyoxalase-I; GLA-II,
glyoxalase-II; PPO, polyphenol oxidase; POD, peroxidases; PRX, peroxiredoxins; O2

−•, superoxide
anion; 1O2, singlet oxygen; HO•, hydroxyl radical.

Superoxide free radicals are produced at any location of the ETC; hence, SOD activation
is evident in mitochondria, peroxisomes, and chloroplasts [52]. The Haber–Weiss reaction
is ten thousand times faster than the natural process [14].

The abundance of different SOD isoenzymes in plants is influenced by climatic con-
ditions and the growth phase of the plant [50]. Compounds such as ABA influence the
expression of antioxidant enzymes such as GR, APX, and SOD [53]. Corpas et al. [54] noted
that SOD has inconsistent transcript-level expression, which varied between cell types.
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SOD compartmentalization and activation in different cell structures are essential for the
protection of plants against abiotic stress-induced oxidative stress as well as for the optimal
development of plant signaling [55]. H2O2 and molecular oxygen are both byproducts of
the enzymatic reaction catalyzed by SOD. H2O2 regulates different signaling activities. It is
an essential signal during plant-microbe interactions, the response to inflammation, the
closing of the stomata, and osmotic and excessive light stress [56]. Abiotic stress leads to
SOD upregulation in different plant species [57].

3.1.2. CAT

CAT (E.C.1.11.1.6) is a tetrameric iron-containing redox enzyme present in all organ-
isms exposed to O2 [58]. This enzyme catalyzes the conversion of H2O2 into water and O2.
The iron prosthetic group of the enzyme is essential for its catalytic activity. This enzyme
shows higher reduction activity toward H2O2 than toward organic peroxides (R-O-O-R).
CAT eliminates H2O2 with minimal energy use [59] and a very high rate of conversion
(6 × 106 molecules per min). It has a reaction pattern highly distinct from other antioxidant
enzymes as it does not need a reducing agent [58]. β-oxidation, photorespiration, oxidative
stress, and purine catabolism are the processes that produce most H2O2 [51]. Based on
subunit size, function, structure, type of prosthetic groups, and sequences CAT is classified
into three main groups: monofunctional CAT (group-1), catalase-peroxidase (group-II), and
nonheme CAT (group-III) [60]. Most of the plants possess group I CAT, which is widely
dispersed in different compartments of the plant cell, such as the cytosol, chloroplasts, and
mitochondria [61]. However, angiosperms contain all three different isoforms of CAT.

CAT1 is critical for the elimination of H2O2 produced during photorespiration and is
widely present in pollen and seeds [62], but less so in roots. CAT2 is prevalent in typical
photosynthetic cells. This isoform protects different cells from oxidative stress damage.
CAT3 is widely found in vascular tissues and leaves and scavenges H2O2 produced by the
β-oxidation of lipids in the glyoxysomes [63]. Stressful conditions require higher energy
generation and expenditure. Subsequently, catabolism increases, leading to the generation
of higher amounts of H2O2 [64].

CAT isoforms act in two modes: catalytic and peroxidatic. In the former, they catalyze
the direct conversion of H2O2 to water and O2 or other oxidized compounds such as lower
alcohols (methanol, ethanol), aldehydes (formaldehyde), etc. In the latter, they convert
lower amounts of H2O2 by oxidizing various hydrogen donors such as small-molecule
alcohols, aldehydes, and ascorbic acid (AA) as follows [65]:

RH2 + H2O2 → R + 2H2O
CAT-Fe-OOH + C2H5OH→ CAT-Fe-OH + H2O + CH3CHO (peroxidatic reaction)
CAT-Fe-OOH + H2O2 → CAT-Fe-OH + H2O + O2 (catalytic reaction)

Thus, CATs generate useful compounds and water from harmful compounds and
H2O2. Depending on the reaction mode, catalases may be further classified as

HPI catalase: comprises isoenzymes with dual function, participating in both catalytic
and peroxidative reactions.

HPII catalase: comprises isoenzymes that only participate in peroxidative reactions;
these CATs play a crucial role in protecting plants from abiotic stress caused by different
factors [66]. Plants exposed to normal levels of abiotic stress factors such as ozone, sulfur
dioxide, and UV-B radiation presented a quick reduction in the expression of CAT1 and a
rapid increase in the expression of CAT2.

Gondim et al. [67] reported that in corn, H2O2 pretreatment enhanced CAT activity
and prevented the deleterious effects of salinity. Furthermore, a higher CAT activity was
essential for the existence of plants under reasonable metal stress. However, Spartan metal
stress causes the permanent impairment of CAT. The function of CAT is taken over by other
enzymes, which ensure abiotic stress is managed [68].
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3.1.3. APX

APX (E.C.1.1.11.1) is a key enzyme found abundantly in plants and algae [69]. It is
distributed in five different cellular components: stomata (sAPX), thylakoid membrane
(tAPX), the membrane (mAPx) and cytosol (cAPX) of microbodies, and mitochondria
(mitAPX) [70]. APX is present in every part of the plant and scavenges H2O2 through the
AsA-GSH pathway (or Asada–Halliwell–Foyer pathway) [71]. APX mostly scavenges H2O2
in the cytosol and chloroplasts, while CAT primarily acts in the peroxisomes. APX, in the
presence of a reducing agent such as AA, reduces H2O2 to water while the other reactant is
oxidized (e.g., AA to dehydroascorbate, DHA). This enzyme is very unstable in the absence
of AA. At concentrations AA < 20 µM, the activity of APX drastically decreases [72]. Under
stress conditions, APX is a more effective H2O2 scavenger than CAT because it is more
extensively distributed and has a stronger affinity for H2O2. APX acts as an antioxidant by
the following reaction:

H2O2 + AA→2H2O + DHA

To provide significant protection during oxidative stress, the enzymatic and non-enzymatic
antioxidant molecules closely coordinate their actions. By keeping the redox equilibrium
under stress, APX connects the two pathways. Furthermore, it has a particular affinity
for H2O2 [71]. Plants lacking APX1 have delayed growth and development. In the
absence of APX1, H2O2 levels increase and cause aberrant stomatal closure [73]. In
APX1-deficient plants, light stress results in H2O2-mediated-enhanced activation of heat
shock proteins [51,74]. Furthermore, APX and CAT at least partially complement each
other’s shortcomings [75]. Moreover, the activities of SOD, CAT, reduced glutathione
(GSH) reductase, and APX typically increase in response to various environmental
stresses [72].

3.1.4. MDHAR

MDHAR (E.C.1.6.5.4) restores AA from MDHA in the presence of NADPH as a reduc-
ing agent [76]. Subsequently, AA concentrations in plant cells return to normal. MDHAR
co-exists with APX in different organelles, as APX scavenges H2O2 and concomitantly
oxidizes AA [51]. MDHAR has several isoforms that are present in organelles such as
mitochondria, chloroplasts, glyoxysomes, peroxisomes, and the cytosol [77].

MDHA + NADPH→AA + NADP+

The monovalent oxidation of AA results in MDHA. In the absence of MDHAR, MDHA
will convert non-enzymatically to AA and DHA. Then, DHA is converted to AA by
DHAR as GSH oxidizes [78]. A rapid regeneration of AA is essential for its function as an
antioxidant. As the restoration of AA levels is controlled by NADPH-dependent MDHAR,
this enzyme is critical for conserving an optimal level of AA and thus its antioxidant
function [79].

3.1.5. DHAR

DHAR (M.C.1.8.5.1) is an enzyme that catalyzes the reduction of DHA to AA in the
presence of GSH as an electron contributor [78]. Together with MDHAR, DHAR ensures the
renewal of the cellular AA pool. DHAR regulates AA levels in the symplast and apoplast
of plant cells and simultaneously maintains the redox capacity of the cells [80]. It is found
in high amounts in green, etiolated shoots, roots, and seeds [81]. Isoforms DHAR1 (in
the cytosol) and DHAR3 (in the chloroplasts) play similar roles and account for nearly
all the enzymatic activity. Conversely, DHAR2 is only a minor contributor to the overall
antioxidant action [82].

DHA + 2GSH→AA + GSSG

The catalytic mechanism of DHAR involves three steps [83]. In the first step, DHA is
attached to the catalytic cysteine molecule of DHAR by nucleophilic substitution (DHAR-
S–). In the second step, the reactive cysteine molecules in sulfonic form bind to GSH and
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produce various disulfides (DHAR-S-SG). Consequently, GSH is deprotonated to GS–. In
the final step, the GS– residue attached to the active cysteine is eliminated via nucleophilic
substitution. Thus, a catalytic cysteine molecule is reduced, and one glutathione disul-
fide (GSSG) molecule is released. Together with the other antioxidant enzymes, such as
SOD, APX, MDAR, and GR, DHAR ensures the completion of the Foyer-Asada-Halliwell
pathway and the removal of ROS in chloroplasts and cytoplasm [84]. Furthermore, DHAR
overexpression improves the tolerance of plants to various types of abiotic stress, such as
exposure to ozone, high salinity, and water scarcity [85,86].

3.1.6. GR

GR (E.C.1.6.4.2) belongs to the oxidoreductase class of enzymes and needs NADPH as
a reducing agent to convert GSSG to GSH. The isoforms of GR are abundant in chloroplasts,
cytosol, and mitochondria [87]. In various plant species, GR exists mostly as a homodimer;
however, it may also exist as a monomer or heterodimer. Its conversion to a tetrameric form
or other higher molecular mass aggregates depends more on pH and temperature than on
the amount of reactants or product [88]. GSH is effectively involved in the restoration of
AA levels from MDHA and DHA, which subsequently leads to the transformation of GSH
to its oxidized state, GSSG. The same amount of NADPH is required for both the reduction
of GSSG to GSH and the formation of GSSG [89]. GR is a vital enzyme for the AsA-GSH
cycle and involves the establishment of a bond between two sulfur atoms in two molecules
of glutathione [90]. The three isoforms of GR are situated in the mitochondria, chloroplasts,
and cytosol of plant cells [91]. The exposure of plants to diverse agroclimatic conditions
determines the development of different isoforms of GR [92]. The activity of GR depends
on the availability of the substrate, and this factor influences extremely the redox changes
in the GR. The reduced state of GR demonstrates higher resistance than the oxidized
conditions [93]. GR is essential for cell protection against ROS by converting GSSG to GSH
with the complementary oxidation of NADPH and restoring GSH concentration [94]. It is
mainly found in chloroplasts; however, small quantities are also present in the cytosol and
mitochondria. GSH plays an essential role in preventing protein thiol groups from getting
oxidized and also counteracts HO• and 1O2 [8].

GSSG + NADPH→ 2GSH + NADP+

GR exists mostly as a homodimer with a molecular weight ranging from 100 to 150 kDa.
It comprises a single FAD molecule per monomer. In the absence of thiols, GR tends to
aggregate into tetramers and even larger forms [95]. The catalytic activity of GR consists of
two stages: first, the flavin molecule is reduced by NADPH. Simultaneously, the flavin is
oxidized, and a redox-active disulfide bond is reduced to form a thiolate negative ion and a
Cys molecule. Second, GSSG is reduced through a thiol disulfide interchange. Similarly,
GR controls GSH/GSSG quantities and facilitates the formation of GSH for DHAR and
GPX. The DHAR and GPX convert H2O2 and DHA to H2O and AA [96]. An enhanced
activity of GR denotes stress leniency and might change the redox nature of significant
constituents of the ETC. Such enhanced activity was reported under temperature, metal,
salt, and drought stress in different plant varieties [16]. The GR enzyme is also responsible
for plant adaptation and signaling during cold stress. Likewise, plant resistance to lower
temperatures was associated with greater GR activity in cereal crops [97].

3.1.7. GPX

GPX (E.C.1.11.1.7) is composed of 40–50 kDa molecular weight monomers. It actively
decomposes H2O2 generated by regular metabolism and by exposure to different stress
conditions. Hence, it is also called the “stress enzyme” [98]. It contains Ca2+ and four
disulfide bridges. It is dynamically involved in the biological production of lignin and
contributes to the defense against biotic stress by breaking the indole acetic acid (IAA) and
consuming the H2O2 in the process [99,100]. Plants contain GPX in various tissues and
subcellular compartments and during the numerous stages of development. GPX is mostly
localized in the chloroplast; however, various isoforms are located in the mitochondria,
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cytosol, and peroxisomes [101]. This enzyme contains cysteine in the active site and
actively transforms H2O2 and lipid peroxides to water and fatty alcohols, using GSH as the
cofactor. Subsequently, GSH is oxidized to GSSG. The enzyme GPX possesses cysteine in
the active location instead of selenocysteine; thus, GPX may present selenium-dependent
and -independent forms [102].

The GPX enzyme is considered the primary enzyme in the elimination of H2O2 as it
functions both outside and inside the cell, in the organelles (the cytosol and vacuole).

H2O2 + GSH→ H2O + GSSG

GPX is engaged in different biosynthetic pathways, such as the synthesis of lignin,
which contributes to cell wall strengthening, the catalytic breakdown of IAA, and the
production of ethylene (ET). It contributes to the rehabilitation of the biotic and abiotic
stress-induced lesions. In plant cells, its activity is enhanced by exposure of the plant to
different stress factors [103]. Around 90% of the peroxidase activity in plants is attributed
to GPX. Conversely, Mika and Luthje [98] showed that exposure of plants to other types of
environmental stress, such as heavy metals, high salinity, and ozone, does not increase the
activity of GPX.

3.2. Non-Enzymatic Antioxidants

The non-enzymatic antioxidants, which include AA, GSH, alpha-tocopherol, carotenoids,
different phenolics, flavonoids, and the amino acids and osmolyte proline, make up the
other half of the antioxidant machinery in plants. They play a crucial role in plant devel-
opment and growth by adjusting cellular processes including cell division, cell expansion,
maturity, and death. Moreover, they serve to protect various cell components from in-
jury [104].

3.2.1. AA

AA is the most prevalent, water-soluble, and extensively researched antioxidant
agent [105]. Approximately 40% of the AA is found in the stomatal regions and chloroplasts,
with concentrations reaching 20–300 mM. Approximately 90% of the AA is localized in the
cytosol, and only small amounts are localized in the apoplast. Thus, AA is the first line of
defense against ROS damage [106]. In plants, AA is mainly produced in the mitochondria
via the Smirnoff–Wheeler pathway, catalyzed by L-galactano-γ-lactone dehydrogenase.
The remaining amount is formed from D-galacturonic acid [107]. Ascorbate is transported
from the mitochondria to other cell organelles by facilitated and passive diffusion [108].
AA regulates various physiological functions, including plant growth, diversification, and
metabolism [109].

The highest concentration of AA is found in the leaves. Furthermore, a linear rela-
tionship exists between the amounts of chlorophyll and AA. AA represents one of the
most effective antioxidant agents; it counteracts ROS by donating electrons in different
enzymatic and non-enzymatic pathways. AA directly scavenges H2O2, HO•, and O2

−•
and restores α-tocopherol from tocopheroxyl free radicals produced through metabolism or
induced by various types of stress. Thus, it contributes to the protection of cell membranes
and the regeneration of the lipoproteins in their structure [110]. AA also plays a crucial role
in the AsA-GSH cycle, maintaining the metal ions of the related enzymes in a reduced form
to exert their activity [111]. The first stage in the two-step oxidation of AA is the oxidation
of MDHA, which, if not immediately converted to ascorbate, non-enzymatically transforms
to AA and DHA. AA in its reduced state functions as the cofactor of violaxanthine de-
epoxidase, ensuring the disposal of the surplus of excitation energy [112]. Additionally,
AA has been linked to the synthesis of zeaxanthine and the pH-mediated control of PSII
activity, preventing photo-oxidation [113]. Amplification of MDAR increased the tolerance
of tobacco plants to ozone, high salinity, and polyethylene glycol. This was attributable to
the subsequent increase in AA levels [78]. Furthermore, drought and an increased intensity
of light dramatically boosted the amount of AA in plants [114].
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3.2.2. GSH

Nearly all subcellular compartments, including the mitochondria, chloroplasts, vac-
uoles, endoplasmic reticulum, peroxisomes, cytosol, and apoplasts, contain high amounts of
glutathione, a hydrosoluble antioxidant thiol tripeptide (γ -glutamyl-cysteinyl-glycine) [115].
Among the different cell organelles, the highest concentrations of glutathione are observed
in chloroplasts (1–4 mM) [116]. In its reduced state, glutathione comprises three amino acid
residues: cysteine, glutamic acid, and glycine [117]. Owing to its high reduction potential,
GSH is involved in various reactions [118] and participates in diverse biological processes,
such as cell proliferation, differentiation, senescence, and death; control of sulfate transport;
xenobiotic detoxification; conjugation of metabolites; regulation of the enzymatic activity;
synthesis of nucleotides, amino acids, and phytochelatins; and regulation of the expression
of stress-responsive genes [119]. GSH is the main source of non-protein thiols for most plant
cells; its thiol group makes GSH especially suited for a broad number of metabolic tasks.
The nucleophilic character of the thiol group is crucial for the interaction with minerals and
generation of mercaptide, as well as for the reaction with specific electrophiles [120].

GSH is one of the most important antioxidants, as it helps maintain a low level of
ROS [111]. It acts as an antioxidant through various mechanisms. Thus, GSH is essential
in the antioxidant defense as it can replenish AA through the AsA-GSH cycle [121]. GSH
directly scavenges different ROS, such as 1O2, O2

−•, HO•, and H2O2, protecting diverse
biomolecules. Subsequently, glutathione-derived derivatives, or GSSG, are formed as
byproducts. GSH also plays an important role in reproducing AA to yield GSSG using
NADPH as the reducing power [111]. The cellular supplies of GSH are restored either
by the conversion of GSSG by GR or through de novo synthesis. Besides acting as an
enzymatic co-substrate and reducing aging, GSH might sense redox changes and convey
them to specific target proteins [122]. ROS-induced modifications of proteins may impact
metabolism directly (by specific redox modifications of key amino acids) or indirectly (by
early redox-reliant alterations of TFs and subsequent changes in gene expression). Besides
chelating heavy metal ions and counteracting the formation of ROS in plants, GSH also
participates in the production of phytochelatins by phytochelatin synthase [123]. Thus, the
fine equilibrium between the levels of GSSG and GSH is essential for preserving the redox
homeostasis of the cell.

3.2.3. α-Tocopherol

Among the four existing isomers (α-, β-, γ-, δ-), α-tocopherol has the strongest antiox-
idant properties. Tocopherols are exclusively produced by photosynthetic organisms and
are only found in the fresh tissues of plants [124]. α-tocopherol is converted to γ-tocopherol
by γ-tocopherol-methyl-transferase, an enzyme encoded by VTE4 [116]. Tocopherols are
a group of lipophilic antioxidants that effectively remove ROS and fatty radicals; thus,
they are vital elements and important defenders of cell membranes [125,126]. The major
function of α-tocopherol is to prevent photo-oxidative damage. It decreases the levels of
singlet oxygen through a charge transfer mechanism [120]. By interacting with oxygen
and quenching its surplus energy, tocopherols are renowned for their capacity to protect
fatty molecules and related organelle barriers, as well as the structure and function of
the PSII center [127]. Additionally, tocopherol effectively traps free radicals, preventing
the initiation of lipid peroxidation [128]. At the membrane-water interface, it reduces the
lipid radicals RO*, ROO•, and RO•, transforming into a free radical (TOH•) in the process.
TOH• interacts with GSH and AA, which convert into its reduced form [129]. Yu and
Tang [130] found that one molecule of α-tocopherol can successfully counteract 120 singlet
oxygen molecules. Additionally, α-tocopherol acts as a chain reaction inhibitor, scaveng-
ing the free radicals produced during the oxidation of polyunsaturated fatty acids [131].
Subsequently, α-tocopherol is converted to a tocopheroxyl radical that is converted back
into α-tocopherol through interactions with several other antioxidants [129]. Tocopherols
play a large role in several different systems that prevent the oxidation of polyunsaturated
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fatty acids. Various abiotic stressors increase the amount of α-tocopherol in the tissues of
photosynthetic plants [128].

3.2.4. Carotenoids

Carotenoids, a class of phytonutrients generated by plants, algae, certain bacteria,
and fungi, are pigments also known as tetraterpenoids [132]. They are located in the
chloroplasts and are a class of lipophilic antioxidants [133]. There are more than eleven
thousand carotenoids. They have been mainly divided into two groups: xanthophylls
(oxygen-containing carotenoids) and carotenes (hydrocarbon carotenoids). All carotenoids
are tetraterpene derivatives, being formed from eight isoprene units and having a total
of forty carbon atoms [134]. They are members of a class of molecules called sensors that
collect light between 450 and 570 nanometers and send that energy to the chlorophyll
molecule [135]. Carotenoids have a long conjugated alkyl chain, which makes them fat-
soluble. They are the most prevalent lipid-soluble antioxidants and play a critical role in
protecting lipoproteins and cell membranes from lipid peroxidation. They scavenge peroxyl
radicals more effectively than any other ROS [136]. The peroxyl radicals are reduced by
carotenoids, leading to the formation of a resonance-stabilized carbon-centered radical
intermediate. Among the carotenoids, lycopene, and carotene are the most prevalent and
effective antioxidants [137]. Owing to the substantial number of conjugated double-bonds
in trans-configuration that its molecule contains, carotene is a notably potent detoxifier of
the singlet oxygen molecule. The expanded conjugated framework in carotenoids is highly
reducing, allowing easier extraction of hydrogen atoms from the allylic sites and facilitating
free-radical addition processes [138]. Lycopene lowers the level of peroxyl radicals through
electron transfer, creating an inert, resonance-stabilized carbon-centered radical [139]. β-
carotene has an excellent ability to neutralize 1O2 without deterioration. The chemical
reactivity of β-carotene with free radicals, such as O2

−•, HO•, and ROO•, arises from
the conjugated double-bonded structure, which allows the delocalization of unpaired
electrons and is the primary cause of its antioxidant capacity [134]. Higher concentrations
of carotenoids protect lipids from peroxidative injury [140]. Carotenoids demonstrate their
antioxidative action in the photosynthetic equipment in four ways: (a) they react with lipid
peroxidation products to end chain reactions; (b) they remove 1O2, which produces heat
as a by-product; (c) they inhibit the formation of 1O2 by counteracting 3Chl* and Chl*;
and (d) they release energy when it exceeds the required amount through the xanthophyll
cycle [141].

3.2.5. Flavonoids

Flavonoids are mostly distributed throughout the plant world and are particularly
abundant in the leaves, floral organs, and pollen [142]. Based on their structural charac-
teristics, flavonoids can be divided into four groups: flavones, flavonols, anthocyanins,
and isoflavones. They are largely responsible for the coloring of flowers, fruits, and
seeds and are important for plant fertilization, pollen propagation, and defense against phy-
topathogens [143]. Over 8000 flavonoid derivatives were identified and analyzed. The main
structural component of flavones is a backbone consisting of two phenyl rings connected by
a heterocyclic ring [144]. Compared with flavones, flavonols contain an additional hydroxyl
group [145]. Quercetin is the most prevalent polyphenolic flavonoid. It protects DNA from
the oxidative degradation caused by H2O2, HO•, and O2

−•. Furthermore, anthocyanidin
acts as a strong inhibitor of fatty acid oxidation [146]. The ability of anthocyanidin to
chelate metal ions has been linked to its ability to reduce fatty acid peroxidation [147]. Due
to their ability to prevent highly energetic wavelengths from reaching ROS-generating
cells, flavonoids were thought to be a supplemental ROS-neutralizing system in plants
suffering from injuries to the photosynthetic apparatus. Furthermore, flavonoids scavenge
1O2, reducing its damaging consequences on the external layers of the chloroplasts. The
concentration of flavonoids in plant cells typically exceeds 1 mM. Various flavonoids act as
possible regulators of lipoxygenase, the enzyme that converts polyunsaturated fatty acids
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into corresponding peroxides and hydroperoxides [148]. Owing to their advantageous
reduction potential, flavonoids are extremely effective neutralizing agents for H2O2 and
good inhibitors of lipid oxidation. This is one of the most actively researched features of
flavonoids.

3.2.6. Proline

Proline is a potential non-enzymatic antioxidant that counteracts the negative con-
sequences of various ROS in the components of different plant species [149]. Proline is
synthesized from glutamic acid via the intermediate pyrroline 5-carboxylate. In plants,
two enzymes, pyrroline-5-carboxylate reductase and 1-pyrroline-5-carboxylate synthetase,
catalyze this process [150]. Proline can prevent lipoperoxidation-related damage and is an
effective scavenger of HO• and 1O2. In plants, it builds up significantly under stress, either
as a result of enhanced production or decreased breakdown [151]. Plants respond to exter-
nal and internal stimuli by accumulating free proline. Szabados and Savouré [152] reported
the diverse roles of proline in plant cells. Owing to its properties as a scavenger of singlet
oxygen molecules and hydroxyl radicals, proline is essential for avoiding ROS-induced
oxidative impairment. Proline may relieve stress on DNA, various cell barriers, and protein
complexes throughout the recovery process. Additionally, following stress reduction, it
serves as a source of nitrogen and carbon for growth [41]. Proline biosynthesis contributes
to the modulation of cellular redox potential as well as the storage and transportation of
energy. An increase in proline synthesis is highly beneficial for plants’ lenience to ecological
stresses. However, the literature on the relationship between the metabolism of ROS and
proline is scarce.

4. Downstream Redox Signaling during Oxidative Stress in Plants

Redox reactions are ubiquitous in all living organisms and regulate the generation of
ROS in plant cells [153]. The existence of an equilibrium between the generation of ROS
and their eradication by the antioxidant enzymes is critical for maintaining an appropriate
level of ROS in plant cells [154]. This level of ROS is below the cytotoxic concentration and
is essential for precise redox signaling [9,19]. Plant scientists use the term “redox biology”
for ROS acting as a signaling molecule to regulate and maintain fundamental cellular
processes in plants [19,21,153,154]. Redox signals maintain the homeostasis between basal
levels of ROS, which function as signals to stimulate downstream signaling pathways
that regulate diverse cellular processes; however, increased concentrations of ROS cause
oxidative damage [153]. Hence, a steady equilibrium between ROS production and their
quenching dynamically coordinates redox sensitive constituents activating specific down-
stream cascades [155]. Conversely, environmental stresses may disrupt the balance between
the production and scavenging of ROS by antioxidants, leading to the overaccumulation of
ROS and oxidative stress [16]. Oxidative stress damages nucleic acids, proteins, and lipids
and interferes with carbohydrate metabolism, leading to cell dysfunction and death.

5. Oxidative Stress under Salt Stress

Exposure of plants to several abiotic stresses under field conditions resulted in the
generation of oxidative stress via the overproduction of ROS. ROS are produced mainly
in chloroplasts and, to a lesser extent, in PMs, mitochondria, apoplasts, and peroxi-
somes [15,23]. Most of the environmental stresses affect the availability of CO2 and inhibit
its fixation, resulting in a decrease in molecular oxygen and an overgeneration of ROS. The
activity of the chloroplasts is impaired, thereby hindering the process of photosynthesis [14].
However, the production of ROS significantly differs between different plant species, culti-
vars, stress types, stress tolerance levels, and the time of exposure to stress. High salinity
stress affects plants by altering numerous cellular processes and inducing osmotic stress,
ion toxicity, genotoxicity, and nutritional deficiency, leading to overgeneration of ROS [6].
Rehman and colleagues [156] reported that, compared with control plants, plants exposed
to high salinity stress (NaCl 100 and 200 mM) presented higher levels of H2O2 and a 2- to
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3-fold increase in the levels of thiobarbituric acid. Furthermore, the impact of the salinity
stress on the generation of ROS differed between different developmental stages and tissues.
For example, the root is more sensitive to salinity-induced oxidative stress than young
and mature leaves. Cheng et al. [157] found that in rice, compared with a control, salinity
stress increases the total electrolyte leakage, lipid peroxidation, and ROS levels more than
2-fold in the root. Additionally, Ahanger et al. [158] showed that in tomato, compared
with a control, salinity stress increases oxidative stress by increasing the levels of H2O2
and O2

−• (176% and 157%, respectively), electrolyte leakage (158%), and malondialdehyde
(MDA, 94%). Compared with control, salinity stress induced a 2-fold increase in electrolyte
leakage and MDA levels in sweet peppers and in the levels of electrolyte leakage, MDA,
H2O2, and O2

−• in mung bean (100 mM NaCl) [159]. Furthermore, compared with control,
maize exposed to 120 mM NaCl also presented increased levels of MDA (25%) and H2O2
(50%) [160]. The degree of oxidative stress differed between different genotypes of the
same plant species. When two sunflower genotypes, FH-572 and FH-621, were exposed to
120 mM NaCl, the level of H2O2 increased by 78% in FH-572, whereas it reduced by 20% in
FH-621, indicating that FH-621—not FH-572—is a salt-tolerant genotype [161]. Similarly,
when two sesame genotypes, TS-5 and TH-6, were exposed to 70 mM NaCl, TS-5 showed
better salt tolerance than TS-6 [162]. Moreover, Mhadhbi et al. [163] revealed a genotype-
dependent association between salt tolerance and ROS content (H2O2 and MDA) during
high salinity stress in Medicago truncatula. Ailanthus altissima exposed to 150 mM NaCl had
a higher level of antioxidant activity than non-stressed Ailanthus altissima. However, the
level of H2O2 did not differ significantly between the two groups, indicating a connection
between the antioxidant defense machinery and the enhanced insensitivity of plants in
harsh environmental conditions [164]. Collectively, these studies demonstrated that plants
might respond differently to salt-induced oxidative stress.

6. Antioxidant Defense System in Plants under High Salinity Stress

In adverse environmental conditions, plants activate their antioxidant defense ma-
chinery to minimize the damage induced by oxidative stress. The antioxidant defense
response differs depending on the species, genotype, stress type, and duration of exposure
to stress. Various plant species have different methods to increase their antioxidant capacity.
Regulation of the antioxidant defense system counteracts the effects of high salinity stress
and increases stress tolerance in various plant species. The response and the potency of the
antioxidant activity vary depending on the developmental stage, type of tissue, salinity
degree, and duration of exposure to stress [165].

For example, Vighi et al. [166] reported that the salt-tolerant (BRS Bojuru) and the
salt-sensitive (BRS Pampa) rice cultivars have distinct responses to high salinity stress.

OsSOD3-Cu/Zn, OsGR2, OsGR3, and OsAPX3 are the distinct markers of the salt-
tolerant rice cultivar, not the salt-sensitive one. Furthermore, the salt-tolerant wheat cultivar
Suntop presented higher activities of the antioxidant enzymes CAT, APX, SOD, POD, and
GR than the salt-tolerant wheat cultivar Sunmate. Additionally, the barley salt-tolerant
cultivar, CM72, presented higher activities of the antioxidants than the sensitive cultivar.
These results indicate that an elevated level of antioxidants or enhanced antioxidant activity
contributes to salt tolerance in plants [167]. Another study reported that in salt-stressed
Vicia faba, when the levels of H2O2 exceeded 90%, the expression of CAT, SOD, and GR
at the mRNA level and that of AsA at the protein level were elevated, demonstrating the
regulation of the antioxidant response by high salinity and its mitigation [168].

The role of the antioxidant “defense system” in improving salinity tolerance was
demonstrated by using natural or chemical protective compounds to regulate the antioxi-
dant activity. For instance, Alsahli et al. [169] reported that salicylic acid (SA) application
resulted in a 2-fold increase in APX, CAT, and SOD activity and a 3-fold reduction in H2O2
level in salt-stressed wheat seedlings (compared with not-stressed wheat seedlings). Simi-
larly, combinatorial treatment with humic acid and jasmonic acid (JA) also enhanced APX
activity in sorghum, improving its salt tolerance [170]. In salinity-stressed sour orange, sup-
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plementation with polyamines enhanced the antioxidant response [171]. Furthermore, in
salinity-stressed wheat (100 mM NaCl), nitrogen enhanced SOD, APX, GR, CAT, MDHAR,
and DHAR activities and GSH and AsA biosynthesis, decreased H2O2 levels (2.5-fold),
and increased O2

−• levels (1.7-fold) [172]. Exogenous application of silicon also increased
the antioxidant response while reducing electrolyte leakage and MDA and ROS levels in
salinity-stressed mung beans [159]. In soybean, silicon upregulated GmAPX1 (8-fold), Gm-
CAT1 (3-fold), and GmCAT2 (4-fold), resulting in enhanced tolerance to salinity stress [173].
Similarly, in salinity-stressed strawberries cultivated in hydroponic conditions, the tran-
script levels of CAT, cAPX, Mn-SOD, and GR decreased 0.4-fold [174]. Santander et al. [175]
showed that arbuscular mycorrhizae enhanced the activities of SOD, APX, and CAT in
salinity-stressed cucumber (40 and 80 mM NaCl). In Phaseolus vulgaris and Triticum aes-
tivum, Glycyrrhiza glabra root extract or 6% Moringa oleifera leaf extract ameliorated the
salinity stress by enhancing the antioxidant activity [176,177]. Lastly, supplementation with
penconazole (15 mg/L) modified the CAT, SOD, PPO, and POD expression and antioxidant
activity to mitigate the effect of salt stress on Sesamum indicum [178]. These results demon-
strate the important role played by the antioxidant defense machinery in the mitigation of
salt stress.

Exogenous application of proline enhanced stress tolerance (Figure 4) and plant growth
by protecting the structure and function of PSII, reducing lipid peroxidation, and quenching
ROS during stress conditions [179]. Proline plays a vital role in plants under different stress
conditions, defending the PM from oxidative destruction by enhancing the activities of
antioxidant enzymes (including POD and SOD). The increased activities of POD and SOD
seem to improve salt stress tolerance in soybeans [180]. Under high salinity stress, the salt-
tolerant cultivars of Cucumis melo and Solanum tuberosum have a higher level of proline than
salt-sensitive cultivars [181]. Similarly, salinity-stressed Solanum lycopersicum exhibited a
higher accumulation of proline than non-stressed Solanum lycopersicum [182]. Additionally,
external application of proline determined enhanced plant growth in salinity-stressed
Calendula sp. and Vicia faba [183,184]. Conversely, a few studies reported that proline acts
as a stress indicator; however, it does not improve salt stress tolerance [185,186]. Usually,
proline plays an essential role in preventing oxidative injury of subcellular structures, PM,
and proteins by scavenging ROS [187].

The biosynthesis of proline through the glutamate pathway uses two molecules of
NADPH for one molecule of proline, removing the electrons from the chloroplast and
buffering the redox potential of the cell [188]. Proline accumulation in the leaves under
high salinity stress allows the continuous reduction of carbon dioxide by regulating ROS
production and preventing photoinhibition. Furthermore, mitochondrial proline is me-
tabolized, and the decreasing power could be dissipated by respiratory electron transport
coupled to alternative oxidase to avoid complex III and IV. Studies of the transcriptional
regulation of specific genes in knockout mutants of Arabidopsis showed that P5CS1 regulates
proline synthesis, with its expression being highly elevated under high salinity stress [189].
Knockout mutations of P5CS1 lead to a severe decrease in salinity stress-induced proline
expression. Subsequently, growth is impaired, and the levels of ROS increase, indicating
that these mutants are hypersensitive to high salinity stress [189]. Glycine betaine is an or-
ganic osmolyte similar to proline, synthesized by numerous plants to maintain the osmotic
equilibrium of the intracellular compartments during high salinity stress [190]. The effect
of glycine betaine and proline on the antioxidant defense system during high salinity stress
was studied using tobacco cells suspended in bright yellow-2 [191,192]. High salinity stress
significantly decreased GSH levels and reduced ABA levels and the activities of water cycle
enzymes. The external supplementation of glycine betaine or proline restored the activities
of these enzymes [191]. These results demonstrate that proline and glycine betaine regulate
the expression and function of the antioxidant enzymes during salt stress.
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7. Crosstalk between Different Signaling Molecules during Salt Stress

Salinity tolerance is regulated by an intricate gene network and affects diverse cellular
processes in plants. Different signaling molecules such as NO, H2O2, and other ROS, H2S,
calcium (Ca2+), and phytohormones crosstalk and control diverse biological processes and
the expression of genes implicated in salt stress tolerance [9–11]. The crosstalk between the
different signaling molecules leading to salt stress tolerance is summarized in Figure 5.

7.1. H2O2

H2O2 formation results in oxidative stress, and its accumulation causes cellular and
molecular damage, activating programmed cell death [193]. Its generation is induced by
exposure to various types of environmental stress in plants. Additionally, in plants, H2O2
serves as a signal to regulate various biological processes and the crosstalk among different
signaling pathways [194]. H2O2 and NO signaling pathways are strongly correlated with
the plant response to various environmental stimuli [195]. High salinity stress induces
alterations in the generation of H2O2 and NO. Zhao et al. [196] found that high salinity
stress decreased the transcript-level expression of AtNOA1 in Arabidopsis, resulting in a
subsequent reduction in NO levels. Conversely, high salinity stress moderately elevated
the transcript-level expression of OsNOA1, a homolog of AtNOA1 in rice [197]. Further-
more, treating wheat seeds with H2O2 enhanced salt tolerance [198]. Besides influencing
transcription, the crosstalk between NO and H2O2 also regulates translation and post-
translational changes. In Bermuda grass, NO and H2O2 stimulated the activities of CAT
and SOD via ABA [199], affecting the expression and antioxidant activity during high salin-
ity stress [200]. Subsequently, SA induced H2O2 by regulating the expression of SOD. Thus,
SA and H2O2 work together in a self-amplifying manner. H2O2 at higher concentrations
causes nitrosative or oxidative stress, whereas at basal levels it functions as a signaling
molecule, regulating plant response under diverse stress conditions.
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7.2. NO

NO is a key gasotransmitter that regulates various signaling pathways and a range of
physiological processes during salt stress in plants [201]. The crosstalk between NO and
different signaling molecules and plant hormones improves salt stress tolerance [202,203].
ABA, auxin, and ET are important phytohormones that travel from the salt-exposed roots
to the leaves, enhancing the biosynthesis of NO [204]. Additionally, NO mitigates oxidative
damage during salt stress by increasing antioxidant activity and reducing the activity of
thiobarbituric acid [205]. In cotton, exogenous application of NO suppressed salt-induced
leaf senescence by downregulating the genes associated with ABA biosynthesis (2- and
9-cis-epoxycarotenoid- dioxygenase) [206]. Arabidopsis callus exposed to salt stress (100 mM
NaCl) triggered the accumulation of NO and a subsequent increase in the expression of
H+-ATPase in the PM [207]. However, in a suspension culture of salt-stressed tomato (100
and 200 mM NaCl), an antagonistic relationship was observed between the formation of ET
and NO. Thus, enhanced synthesis of ET induces the generation of ROS, thereby increasing
the ratio of dead cells, while NO production decreases the ratio of dead cells. The cultures
of suspension cells and apical root fragment were both deficient in ET and NO-generated
ionic imbalance (Na+/K+), resulting in enhanced susceptibility to salt stress [203]. The
supplementation of sodium nitroprusside (SNP), SA, and their accumulation decrease
NaCl-stimulated toxicity by increasing proline levels and GPX, CAT, and APX activity
in soybean seedlings [208]. SA interacts with the NO signaling cascade, reducing H2O2
accumulation, which increases the H+-ATPase influx into the PM. The combined effect
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of NO and SA enhances the absorption of Mg2+/Ca2+ and reduces the uptake of Na+ in
conditions of salt stress [209].

Sulfur is a primary biocomponent and is present in methionine, GSH, cysteine (Cys),
coenzyme A, thioredoxin, sulfo-lipids, and iron–sulfur (Fe–S), which control cellular pro-
cesses in high salinity conditions [210,211]. Additionally, NO induces S-assimilation, which
is associated with ET biosynthesis via the production of cysteine. Under salt stress, NO
and sulfur interact to control ET and ABA concentrations in plant cells, ensuring their
protection and regulation of stomatal activities and photosynthesis [212]. NO functions
as a central regulatory signal, triggering different biochemical activities. Furthermore, its
interaction with sulfur assimilation improves salt stress tolerance [212]. NO and other
signaling molecules such as H2S help counteract the effects of salt stress in plants. In
cucumber, NO application under saline stress modulates proline metabolism, increasing
the accumulation of free proline ratio; thus, it maintains the turgor potential and protects
cucumber seedlings [213]. The exogenous application of sodium nitroprusside and CaCl2
improves the salt tolerance of mustard by enhancing the antioxidant activity and the
accumulation of proline and glycine betaine. Subsequently, a decline in thiobarbituric acid-
reactive substances, electrolyte leakage, and H2O2 is observed [214]. In Lactuca sativa, NaCl
application activates ionic, osmotic, and oxidative stress, leading to hormonal imbalances
and reduced plant growth. Supplementation of NO results in decreased Na+ accumulation
and the maintenance of mineral balance, thereby improving the photosynthetic rate and
growth [215]. NO signaling interacts with phytohormones, regulating osmotic stress, acti-
vating the antioxidant defense machinery, and enhancing salt stress tolerance. Crocus sativus
treated with NO displays vigorous growth during high salinity. NO application induced
the biosynthesis of secondary metabolites, enhanced the deposition of compatible solutes,
and enhanced the activities of antioxidant enzymes, while exogenous application of SA did
not ameliorate the growth of plants under salt stress [216]. In salt-stressed Brassica napus
L. seedling roots, concomitant application of NO-releasing substances and of melatonin
neutralized the inhibitory effect of NaCl on seedling growth and reestablished redox and
ion homeostasis, which was demonstrated by a decrease in the overproduction of ROS, the
ratio of Na+/K+, and the synthesis of thiobarbituric acid-reactive substances. Melatonin
inhibited the effects of salinity stress via a NO-dependent mechanism [202]. Thus, NO
serves as a positive regulator in a complex signaling network regulating the plant defense
machinery during salinity stress.

7.3. ROS

Salt overly sensitive (SOS) pathway plays a crucial role in the response to salt stress. It
regulates the membrane conductance in the epidermal cells of the root when exposed to
high salinity. Thus, it helps detoxification by the epidermal cells of the root by removing
the ions from the root [217]. The SOS pathway is key to maintaining ion homeostasis when
plants are exposed to salt stress [218]. During salt stress, the generation and quenching
of ROS act as distress indicators. Maintaining cellular redox homeostasis and adequate
concentrations of antioxidants is critical for ensuring adequate levels of ROS, which partici-
pate in stress perception, activate downstream signaling pathways, and determine plant
adaptation and response to salt stress. Nevertheless, accumulation of ROS in plants impairs
essential metabolic pathways [14,31]. Oxidants release electrons, which act as a signaling
clue, alerting plant cells that they need to adapt to the high salinity conditions [19]. Salt
stress also causes ROS-mediated harm to nucleic acids, proteins, and lipids, leading to
apoptosis [203]. However, Ca2+ and ROS are well-known intracellular signals. Under
severe salt stress conditions, the concentration of cytosolic Ca2+ is significantly elevated,
activating specific signaling pathways [36]. Salt stress tolerance in plants is also ensured by
mechanisms such as regulation of ion transport including K+ and Na+, accumulation of
compatible solutes, and an increase in the expression of stress-related genes [219].

The production of ROS in plant organelles is unavoidable as they are byproducts of
metabolic processes [17,19,31]. However, oxidative stress-induced programmed cell death
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via apoptosis is avoidable and preventable by antioxidant enzymes. Numerous plants often
go through necroptosis, even in the absence of a stressful environment [220]. Singlet oxygen
is used as a substrate by LOX to prompt a metabolic cascade that generates essential stress
signals such as JA. Additionally, ROS stimulate ABA biosynthesis [5]. Salt stress determines
the closure of the stomata, decreasing moisture loss and the influx of CO2. Consequently,
reduction of carbon and utilization of photosynthetic NADPH in the Calvin cycle decrease,
leading to electron holes in PS I and electrolyte leakage [165]. Glycolate oxidase is the main
source of ROS in peroxisomes in both normal and stress conditions [51]. The quenching
of ROS can be achieved by various components, including NO, which abolishes oxida-
tive stress by activating SOD and increasing the concentrations of GSH; thus, it interferes
with the effect of oxidizing factors in restoring redox homeostasis [212]. Other signaling
molecules contributing to the regulation of oxidative stress in various plant species include
H2S and GSH, which crosstalk with NO [196,212]. Phytohormones influence the production
of NO, which acts as an intermediate between different signaling pathways. ROS formed
by NADPH oxidase in the PM activate the ABA signaling pathway in plants [221]. The
negative effect of ROS on stress-induced protein aggregation is influenced by the capacity
of ROS recycling via the scavenging system. The accumulation of diverse forms of ROS
contributes to the adaptation to stress conditions and programmed cell death. The exoge-
nous application of SA via the root resulted in an increased concentration of H2O2 in the
root tissue and young leaves, which killed the plant [208]. Szepesi et al. [222] reported
that in salt stress conditions, plants supplemented with SA contain more Na+ than non-
supplemented plants. Furthermore, leaves did not display any symptoms of salt injury,
and the integrity of the membrane was maintained. Owing to the above-mentioned roles
of abiotic-stress-induced intracellular ROS, a question was raised on whether intracellular
amounts of NO and ROS can contribute to the protection of the distressed leaf protoplasts.
ROS also activate Ca2+-permeable channels such as respiratory burst oxidase homolog
(Rboh), which is assumed to represent a positive feedback loop that induces Ca2+ and
ROS signals in root cells. In Arabidopsis, RHD2/RbohC influenced the generation of ROS,
regulating root hair elongation in a Ca2+-dependent manner [223].

Salt stress increases cytosolic Ca2+ levels via depolarization and activation of
hyperpolarization-activated Ca2+ permeable channels in the PM. This increase plays an
important role in ROS signaling and salt stress tolerance [36]. Besides increasing ROS
levels, salt stress stimulates the synthesis of polyamines. The polyamines and hydroxyl
radical (HO•) might eventually influence the Ca2+ pathway in plants [224]. This could
be a unique mechanism by which ROS increase salt stress acclimation. Xu et al. [225]
demonstrated that the Ca2+/Calmodulin-dependent Protein Kinases (CDPKs) were more
evident in halophytes compared with glycophytes under salt stress. The calcium-binding
proteins play an important role as amplifiers in early calcium influx during salinity stress.
Ca2+ signaling has a significant impact on signaling mechanisms in salt stress. Two-pore
channel 1 is involved in the dissemination of the signal (Ca2+) in salt stress and the activa-
tion of the plant defense [226]. Furthermore, NO manifests potential antioxidant activity
by minimizing and inhibiting protein oxidation and lipid peroxidation. In salt stress, an
elevated level of NO minimizes salt stress-induced injuries [212]. The protective role of NO
during salt stress is ensured by the enhancement of the antioxidant activity in different
plant species [129,212,215].

7.4. H2S

H2S serves as a signaling molecule and plays an important role in seed germination,
postharvest senescence, and adventitious rooting. Furthermore, it also has a protective role
in multifactorial stress conditions, including biotic and abiotic stresses [74,174]. It increases
salt tolerance by increasing the content of chlorophyll and soluble proteins and preventing
the accumulation of ROS [227]. Furthermore, H2S donors such as phosphinodithioate,
morpholin-4-ium 4 methoxyphenyl, NOSH-aspirin, CaS2, AP39, sodium hydrosulfide, dial-
lyl trisulfide, and dialkyldithiophosphate, have been identified and characterized. NOSH-
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aspirin simultaneously released two gasotransmitters, for instance, NO and H2S [228].
Furthermore, the levels of ROS are controlled by two mechanisms: scavenging the surplus
of ROS by non-enzymatic antioxidants (ascorbate and glutathione) and by antioxidant
enzymes associated with the AsA-GSH cycle. In Chinese cabbage, the accumulation of
ROS was minimized by the exogenous application of H2S, as this enhanced the activity of
the antioxidant enzymes CAT and SOD [229]. Hence, we can speculate that the activity
of antioxidant enzymes is regulated by H2S through post-translational changes. By regu-
lating the antioxidant defense system, H2S also preserves membrane integrity and ROS
homeostasis, increasing the tolerance level under saline conditions. Mostofa et al. [227]
demonstrated that H2S contributes to the maintenance of the Na+/K+ ratio during salt
stress. In rice, salt stress increases Na+ concentration and decreases K+ concentration,
resulting in an increased Na+/K+ ratio in the root and leaves. Exogenous application of
H2S maintained K+/Na+ homeostasis during salt stress. Furthermore, under high salinity
stress, H2S acts synergistically with NO in response to salt stress [230]. The downstream
and upstream connection between NO and H2S revealed that in stressful conditions, NO
induces H2S accumulation in plants and increases stress tolerance; H2S further functions as
a downstream signal. Nitrosothiol is a newly identified signal molecule generated when
H2S responds to NO Cys and plant hormones and contributes to NO-mediated salt stress
tolerance.

7.5. Ca2+

Calcium is one of the key signaling molecules and secondary messengers that crosstalks
with other signaling molecules to minimize the impact of salt stress. The activities of pheny-
lalanine ammonia lyase (PAL) and flavonoids were increased after the incorporation of
calcium chloride or an ionophore into the culture medium [231]. Further, Ca2+ also mediates
the production of special metabolites induced in response to SA, ABA, and JA [36,170,222].
The functions of Ca2+ and MT—and how they influence the development of phenolic
compounds under salt stress—were examined in Dracaena kotschyi. Exogenous applica-
tion of NaCl decreases the dry biomass of shoots; however, it enhances H2O2 production,
electrolyte leakage, the scavenging capacity of 2,2-diphenyl-1-picrylhydrazyl, and the
expression of TAL, PAL, and RAS (compared with non-exposure to high salinity). Pretreat-
ment of D. kotschyi with an inhibitor of the melatonin pathway had no influence on the
Ca2+-induced generation of phenolic compounds in salt-treated plants [232]. However,
treatment of D. kotschyi with a PM channel blocker during salt stress had the opposite effect.
These results indicate that melatonin induces the biosynthesis of phenolic compounds only
when there is an influx of Ca2+.

NO and H2O2 work together with Ca2+ to form an intricate regulatory network to
mitigate the effect of salinity stress [194,230,233]. Hajihashemi et al. [233] reported that
pretreatment of quinoa seeds with calcium chloride, H2O2, and sodium nitroprusside
exhibits a positive linear relationship with the germination rate and germination index,
while under salt stress, a negative linear relationship was observed with the mean germina-
tion time. Pretreatment of seeds enhanced their germination and the quick establishment
of the seedling in the saline soil. Additionally, pretreatment with NaCl reduced α- and
β-amylase activities. This inhibited starch hydrolysis, impairing seed germination. The
above-mentioned pretreatment reduced the negative effect on these enzymes. Another
study demonstrated that external application of calcium chloride and H2O2 might decrease
the harmful effect of multifactorial abiotic stress on the activity of amylase and rescue seed
germination [234]. Interestingly, Hajihashemi et al. [233] observed that the existence of
Ca2+, NO, and H2O2 induced the activity of amylase. The increased starch degradation
enhanced seed germination and sprouting in quinoa, minimizing the negative impact of
salt stress.

Polyamines such as putrescine, spermine, and spermidine have been implicated in a
wide range of plant developmental processes. They also regulate the adaptive response
to various stress conditions [235]. Additionally, polyamines play an essential role in apop-
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tosis. Stress conditions significantly alter the expression of genes involved in polyamine
biosynthesis [236]. The differential response of the arginine decarboxylase gene in the
biosynthesis of polyamines contributes to the acclimation of plants during salt stress. The
analysis of genes involved in the biosynthesis of polyamines in different rice cultivars
showed that transcript-level expression of ADC was elevated under salt stress conditions
(compared with normal conditions) [237]. The metabolic pathway of polyamines crosstalks
with various signaling pathways such as those of gamma-aminobutyrate (GABA), H2O2,
and ABA [171,235,237]. GABA improved the salt tolerance in Lactuca sativa [238]. Addition-
ally, polyamines also increase the production of NO and its crosstalk with various stress
intermediaries, including protein kinases and Ca2+. They regulate ion channel activity by
modulating their conductivity under salt-stress conditions [239]. Moreover, polyamines
control the activities of different ion channels indirectly by increasing the binding of 14–3–3
proteins. Elevated levels of cytoplasmic Ca2+ might have a detrimental effect on the stan-
dard cellular metabolism in stressful conditions. Polyamines trigger the efflux of Ca2+ by
activating the membrane Ca2+-ATPase and the PM channel. Thus, they play an impor-
tant role in maintaining intracellular Ca2+ homeostasis and sustaining a steady plasmatic
level [224]. However, the underlying mechanism linking polyamine metabolism and Ca2+

signaling is poorly understood.
Numerous studies have demonstrated the tight regulation of NO metabolism under

salt stress [212,216]. In plants and animals, NO is mainly produced by NO synthase [235].
Its production is correlated with polyamines through the common precursor L-arginine.
Thus, polyamines, including spermine and spermidine, might be involved in the generation
of NO in plants [240]. Additionally, the function of NO in signaling might be affected by
the movement of intracellular Ca2+. Furthermore, it may influence calcium ion channels,
eventually activating Ca2+ signaling. The mechanisms underlying this crosstalk are largely
unknown. The activation of NO synthase, which catalyzes NO synthesis, involves activa-
tion of calmodulin and Ca2+ signaling [197,206]. Moreover, NO plays a critical role in the
activation of PM channels, following the release of Ca2+ during salt stress recovery [204].
Therefore, Ca2+ signaling plays an essential role in the response and adaptation of plants
under salt stress.

7.6. Phytohormones

In agriculture worldwide, the quality and yield of crops are significantly affected by
high salinity stress. The capacity of plants to tolerate this type of stress can be enhanced by
the exogenous application of H2O2, NO, and H2S. For instance, supplementation of NO in
salinity-stressed lettuce reduces the accumulation of Na+ and regulates the concentrations
of mineral nutrients, thereby maintaining the photosynthetic rate and restoring vegetative
growth. Furthermore, NO also restored the osmotic balance, stimulated the antioxidant sys-
tem, and reinstalled the equilibrium of plant hormones, improving the plant’s tolerance to
high salinity stress [215]. High salinity stress impairs plant development by increasing the
levels of ABA and MDA and the expression of proline-encoding genes and reducing elec-
trolyte leakage and the K+/Na+ ratio. Exogenous application of 24-epibrassinolide, sodium
nitroprusside (SNP), or their combination enhanced endogenous ABA levels in Brassica
juncea via nitrogen and proline metabolism [241]. High salinity stress has a detrimental
effect on plants via a shortage of water and a decrease in the K+/Na+ ratio. By generating
ROS such as hydroxyl radicals (HO•), superoxide (O2

−•), and H2O2, it also modulates
the cellular redox pathways. The formed free radicals negatively impact cellular processes
by inducing lipid peroxidation and damaging nucleic acids and proteins. Therefore, they
impair fundamental processes such as plant growth and development, gaseous exchange,
nitrogen, carbon, and proline metabolism [241,242]. The crosstalk under high salinity
stress between phytohormones and other signaling molecules is presented in Table 2. NO
controls the homeostasis of the ABA and different biochemical pathways—including leaf
senescence, seed germination, maturation, dormancy, seedling growth, regulation of stom-
ata, fruit ripening, and response to diverse biotic and abiotic types of stress—in plants.
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Furthermore, NO is implicated in post-translational modifications, including nitration and
nitrosylation of sulfur and tyrosine residues of proteins that control ABA signaling in plants.
NO impaired the plant antioxidant machinery by altering the levels of ascorbate, GSH, CAT,
and SOD and also influenced the ABA-mediated ROS production [243]. Phytohormones
play a crucial role in adjusting to harsh environment conditions including salt stress by
altering the physiological response of plants [3,5,244]. Gibberellins (GAs) and ET play a
critical role in alleviating salt stress by inducing the expression of stress-related genes and
enhancing plant growth. GAs and ET are interrelated, as GA induces the biosynthesis
of ET and GA signaling relies on ET [245]. Furthermore, whole-genome transcriptome
profiling studies revealed that in plants, salt stress significantly upregulated genes related
to GA and ET metabolism. The precursor of ET, 1-aminocyclopropane-1-carboxylic acid
(ACC), might also be involved in the biosynthesis of GA. Exogenous application of GA3
and ethephon suppressed the negative effect of salt stress on seed germination in Amaran-
thus caudatus [246]. Furthermore, ethephon exhibited a more stimulatory effect on seed
germination than GA3 during salt stress. In pea, ET synthesis was negatively regulated by
other plant hormones. The study also revealed that ET inhibits the production of GA [247].
In Arabidopsis, GA and ET positively regulate hypocotyl elongation. GA alone is inefficient;
however, it acts synergistically with ET and enhances the growth of emerging roots. These
results suggest that GA and ET do not have additive results but rather act synergistically.

In plants under salt stress, seed germination is influenced by NO and RT. In Arabidopsis,
the exogenous application of sodium nitroprusside and ACC counteracts the negative
impact of salt stress on seed germination [248]. Conversely, their stimulatory effect is
repressed by NO or 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide. These results
suggest that ET and NO have a combined effect on seed germination during salt stress.
Additionally, the production of NO was induced by ACC. ACS2 expression was elevated by
sodium nitroprusside. These findings demonstrate the significance of NO and ET during
salt stress. Supplementation of ACC enhances seed germination under oxidative stress;
seed germination is activated by H2O2. Nevertheless, NO-treated Arabidopsis was not
substantially affected, while the seeds of the ET-insensitive mutant were not affected in
any way.

SA plays a crucial role in various physiological and biochemical processes and has
significant effects on the tolerance to biotic and abiotic stress [249–251]. It acts as an endoge-
nous signal molecule and activates the defense machinery in plants [252]. It significantly
improves seed germination under salinity stress; furthermore, in Matricaria chamomilla,
external application of SA (500 µM/L) markedly enhanced plant growth under salt stress
and normal conditions [253]. However, some studies report contradicting results. For in-
stance, Li et al. [254] and Arfan et al. [255] showed that foliar spray of SA prevented salinity
stress-induced growth inhibition at certain concentrations of salt, while no improvement
was reported at higher levels of salinity stress. Cao and colleagues [256] reported that
insufficient levels of SA can protect against modest salinity stress in Arabidopsis. These
findings demonstrate that the beneficial effect of SA on salinity stress might depend on the
concentration of salt and may vary between different plant species. The detailed mechanism
underlying the effect of SA on plants exposed to salt stress remains unknown.

Auxin regulates diverse physiological and developmental processes in plants [257–259].
Reduced levels of auxin are linked with decreased distribution and transport along the
root [260,261]. In normal conditions, auxin mediates the development of the lateral root,
which is impaired in response to higher concentrations of salt [262]. Song et al. [263]
reported that almost all OsIAAs respond to different abiotic stresses, suggesting a link
between abiotic stresses and plant growth. Additionally, the expression of OsIAA18 in
rice was induced by phytohormones and various abiotic stresses, including high salinity,
drought, and treatment with abscisic and IAA treatments [263]. Overexpression of OsIAA18
enhanced the tolerance to salinity and osmotic stress in Arabidopsis [264]. Overexpression of
OsIAA6/OsIAA20 improves the tolerance to salinity and drought in rice [265,266], while the
overexpression of VvIAA18 increases the tolerance to salinity in tobacco [267]. Therefore,



Plants 2023, 12, 864 23 of 37

the effect of high salinity stress (or various types of abiotic stress) on other genes related to
auxin transport should be elucidated.

8. Transgenic Approach to Improve the Antioxidant System in Plants under Salt Stress

In the past few years, biotechnology approaches have been extensively used to de-
velop cultivars with better nutritional quality, yield, and stress tolerance. Omics are the
most prominent and efficient approaches to improving plant tolerance against various
biotic and abiotic stresses. Plant biologists can utilize the omic tools, including genomics,
transcriptomics, proteomics, metabolomics, phenomics, and ionomics, to identify genes,
RNAs, proteins, metabolites, phenotypes, and ions belonging to the intricate regulatory
mechanisms activated during the response to internal and external stimuli and during
various developmental stages of plants (Figure 6).
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Furthermore, deciphering the underlying mechanisms by which plants perceive and
transduce signals that initiate adaptive responses is a prerequisite for the identification
of key genes and pathways to cope with future challenges. Furthermore, decoding and
understanding such a regulatory network of genes would help gain insight into plant
biology and could be practically applied to improve the quality, productivity, resistance
to disease, and stress resistance of crops. This will allow us to feed the ever-increasing
human population. Hence, plants can be genetically engineered to increase their tolerance
to oxidative stress and improve the response and activities of the antioxidant defense
system. An overview of genetically engineered plants with increased activities of the
antioxidant enzymes under salt stress is presented in Table 2. Transgenic Chrysanthemum



Plants 2023, 12, 864 24 of 37

overexpressing DgNAC1 exhibited improved salt tolerance by reducing the content of
O2
−•, H2O2, and MDA and increasing the activities of CAT, POD, and SOD [268].

Table 2. Genetic engineering methods—recent advances to improve the antioxidant defense machin-
ery under salt stress.

Gene Name Source of Genes Transgenic Plants

Stress Characteristics
(Concentration of Salt
Solution and Duration

of Exposure)

Mode of Action Reference

DgNAC1 Dendronthema
grandiflorum Chrysanthemum 100, 200, and 400 mM

NaCl; 1, 5, 10, 15 days

Reduced levels of O2
−•, H2O2,

and MDA; increased activities
of CAT, POD, and SOD

[268]

RaAPX and
PaSOD

Rheum australe and
Potentilla

atrosanguinea
Solanum tuberosum 0, 50, 100, and 150 mM

NaCl; 7 and 15 days

Enhanced activities of SOD and
APX in both the transgenic

variants of potatoes
[269]

OsMYB6 Oryza sativa Oryza sativa 150 mM NaCl; 6 days

Increased concentration of
proline, elevated activities of

SOD and CAT, decreased
content of MDA and REL

[270]

StCYS1 in Solanum tuberosum Solanum tuberosum 0.17 mol/L NaCl; 0, 3, 5,
and 7 days

Enhanced accumulation of
proline and increased
scavenging of H2O2

[271]

OsSTAP1 Oryza sativa Oryza sativa 150 mM NaCl; 5 days Increased activities of SOD,
POD, and CAT [272]

DnWRKY11 Dendrobium nobile Nicotiana tabacum 200 mM NaCl; 20 days
Enhanced activities of SOD,

CAT, POD; reduced content of
MDA

[273]

GmMYB84 Glycine max Glycine max
150 and 200 mM NaCl;

until the seed
germination

Higher activities of antioxidant
enzymes POD, CAT, and SOD
and accumulation of proline

[274]

OsEXPA7 Oryza sativa Oryza sativa 150 mM NaCl; two to
three weeks

Increased activity of SOD and
POD, reduced accumulation of

ROS and MDA, increased
accumulation of proline

[275]

MsWRKY11 Medicago sativa Glycine max 100 and 200 mM NaCl;
7 days

Increased contents of soluble
sugar, chlorophyll, proline;

enhanced activities of CAT and
SOD; reduced contents of O2

−•,
H2O2, MDA

[276]

nbexo70d1 Nicotiana benthamiana Nicotiana benthamiana 100, 200, and 300 mM
NaCl; 5 days

Declined accumulation of ROS
and decreased activity of

NADPH oxidase
[277]

VvIAA18 Vitis vinifera Nicotiana tabacum 200 mM NaCl; every
2 days for 8 weeks

Induced the expression of salt
stress-responsive genes LEA5,

P5CS, POD, and SOD; increased
activities of POD and SOD

[278]

VvWRKY30 Vitis vinifera Arabidopsis thaliana 150 mM NaCl; 3, 6, 9, 12,
and 24 h

Increased activities of
antioxidant enzymes CAT, SOD,

and POD
[279]

SsMAX2 Sapium sebiferum Arabidopsis thaliana 100 and 150 mM NaCl;
15-day-old seedlings

Enhanced activities of SOD,
POD, and APX [280]

MfWRKY70 Myrothamnus
flabellifolia Arabidopsis thaliana 50, 100, or 150 mM NaCl;

treated to seed

Reduced levels of H2O2 and
differential activities of POD,

SOD, and CAT
[281]

PeHSF Populus euphratica Nicotiana tabacum 150 mM NaCl; 1, 8, 15,
and 23 days

Increased activities of APX,
GPX, and GSH [282]

ThHSFA1 Tamarix hispida Populus trichocarpa 200 mM NaCl; every
2 days for 10 days

Reduced levels of ROS,
increased activities of
antioxidant enzymes

[283]
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Similarly, transgenic potatoes overexpressing PaSOD (Potentilla atrosanguinea) and
RaAPX (Rheum austral) displayed increased activity of APX and SOD. APX and SOD might
be functioning as positive regulators, enhancing salt tolerance by the regulation of ROS
signaling and by the stimulation of lignin biosynthesis [270]. Rice overexpressing OsMYB6
exhibited enhanced tolerance to salt and drought stress compared with control rice. Under
salt and drought stress, transgenic plants showed higher proline levels, higher SOD and
CAT activities, and lower MDA and REL levels than wild-type plants [271]. Potatoes
overexpressing StCYS1 had a significantly higher salt tolerance than wild-type potatoes.
Transgenic potatoes presented higher levels of proline, better scavenging of H2O2, and
a superior integrity of the cell membrane than non-transgenic plants [271]. Rice overex-
pressing OsSTAP1 presented enhanced salt stress tolerance, demonstrating higher CAT,
POD, and SOD activities and lower Na+/K+ ratios in the shoots than wild-type rice [272].
Xu et al. [273] overexpressed DnWRKY11 in tobacco; transgenic tobacco displayed longer
root length, a higher germination rate, higher CAT, SOD, and POD activities, and lower
MDA concentrations than wild-type tobacco. Soybean plants overexpressing GmMYB84
displayed a higher germination rate, longer root elongation, higher antioxidant enzyme
activities, and higher proline content compared with wild-type plants [274].

Overexpression of OsEXPA7 significantly increased the salt tolerance of rice. Trans-
genic rice presented reduced levels of Na+ and increased levels of K+ in the leaves and
roots of the plant. Compared with wild-type rice, transgenic rice presented higher activ-
ity of antioxidant enzymes (POD and SOD), lower accumulation of ROS and MDA, and
higher proline accumulation. These findings indicate that OsEXPA7 plays a critical role
in enhancing the tolerance to salt stress by regulating the transport of Na+ and scaveng-
ing ROS [275]. Under high salinity stress, transgenic plants overexpressing MsWRKY11
showed a better tolerance to salt stress and longer hypocotyls than non-transgenic plants.
Additionally, transgenic plants had higher contents of soluble sugar, chlorophyll, proline,
CAT, and SOD, lower contents of O2

−•, H2O2, and MDA, and lower relative electrical con-
ductivity [276]. Tobacco overexpressing NbExo70D1 had lower accumulation of ROS than
control. Pretreatment with diphenylene iodonium, an inhibitor of NADPH oxidase, caused
a reduction in salt stress-induced ROS production in the roots of both transgenic and wild-
type plants. However, the activity of NADPH oxidase was lower in the transgenic plants
than in wild-type plants under salt stress, suggesting NbExo70D1 participates in NADPH
oxidase-mediated production of ROS [277]. Further, Li et al. [278] overexpressed VvIAA18
in tobacco and E. coli; salt stress tolerance significantly improved in transgenic tobacco and
E. coli. Quantitative reverse transcription PCR revealed that overexpression of VvIAA18
induced the expression of salt stress-responsive genes, such as LEA5, P5CS, POD, and SOD,
under salt stress. In addition, transgenic tobacco had higher activities of POD and SOD
and higher levels of proline and lower levels of MDA and H2O2 than wild-type tobacco.
Zhu et al. [279] overexpressed VvWRKY30 in Arabidopsis. This significantly improved the
salt stress tolerance at different developmental stages, increased antioxidant activity, and
decreased the ROS levels. Additionally, the concentrations of soluble sugar and proline
and the transcript-level expression of genes involved in antioxidant biosynthesis and pro-
line synthesis were also higher in salt-stressed transgenic plants than in wild-type plants.
Overexpression of SsMAX2 in Arabidopsis resulted in decreased degradation of chlorophyll
and enhanced accumulation of proline and soluble sugar. The antioxidant activities of
SOD, APX, and POD were higher in transgenic plants than in wild-type plants, resulting
in a significant decrease in H2O2 levels [279]. Xiang et al. [280] overexpressed MfWRKY70
in Arabidopsis, significantly improving the tolerance to salt, osmotic, and drought stress,
enhancing the root growth, increasing the antioxidant activities of CAT, SOD, and POD,
and maintaining ROS homeostasis. Tobacco overexpressing PeHSF displayed better control
of the ROS homeostasis under salt stress than wild-type tobacco. Transgenic plants showed
increased activities of APX, GPX, and GSH. These results indicate that PeHSF plays an
essential role in the detoxification of ROS and in the transactivation of antioxidant genes un-
der high salinity stress [281]. Transgenic poplar plants overexpressing ThHSFA1 exhibited
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increased tolerance to salt stress, reduced ROS levels, and enhanced antioxidant enzyme
activities under salt stress [282]. Moreover, compared with wild-type tomatoes, tomatoes
overexpressing SlGGP-LIKE presented higher levels of reduced AsA, the xanthophyll cycle,
and the AsA/DHA ratio in normal conditions, and higher levels of reduced AsA, reduced
GSH, total GSH, higher AsA/DHA and GSH/GSSG ratios, and the xanthophyll cycle
under salt stress conditions. Thus, transgenic plants showed better salt stress tolerance,
higher photosynthetic, antioxidant, and D1 protein activities, and lower levels of ROS
and membrane damage than wild-type plants. Overexpression of SlGGP-LIKE increases
tolerance to salt stress by inducing the synthesis of AsA in tomatoes [283]. Taken together,
these results demonstrated that transcriptional factors might be prominent candidates to
develop genetically engineered cultivars with increased salt stress tolerance. However,
rigorous screening and time-consuming preliminary studies are required before leveraging
these genes for generating salt-stress-tolerant cultivars.

9. Conclusions and Future Perspectives

The frequency and intensity of multifactorial stresses have perturbed plant health
through ROS generation. Changing climate is a major challenge for food security, par-
ticularly when considering the ever-growing world population. Furthermore, ROS are a
double-edged sword. Basal concentrations activate signaling pathways that sustain cellular
homeostasis and help plants adapt to diverse stresses; however, when the concentration
of ROS surpasses a particular threshold, oxidative stress is triggered. Antioxidants are
essential to maintain the equilibrium between the generation of ROS and their quenching,
reducing the impact of stress. Inventing techniques that prevent the ROS-induced losses
during stress and elucidating the underlying mechanism will contribute to the development
of crops adapted to environmental conditions. Recently, molecular priming has shown
huge potential to enhance plant tolerance against environmental stresses; however, some
gaps in knowledge still exist. Furthermore, identification of putative candidate genes, pro-
teins, and metabolites regulating diverse signaling pathways using the “-omics” approach
will help find new approaches (Figure 6). Remarkably, the identification and mapping
of quantitative trait loci will contribute to our understanding of the intricate regulatory
network of genes and metabolites. Additionally, the impact of crosstalk between different
signaling molecules and phytohormones is critical for developing plants tolerant to diverse
types of stresses. Thus, there is an urgent need for intensive research on the generation
of climate-smart crops through the application of different molecular biology techniques,
including CRISPR/CAS. Moreover, elucidating and improving the functioning of the plant
regulatory networks and their effective integration with crop modeling and phenomics
are crucial to achieving the sustainability of ecosystems in changing climate scenarios.
Integrated research projects can contribute to the generation of climate-smart crops with
lifelong tolerance to stress, thereby increasing agricultural production and productivity.
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