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Abstract: Climbing plants require an external support to grow vertically and enhance light acquisition.
Climbers that find a suitable support demonstrate greater performance and fitness than those that
remain prostrate. Support search is characterized by oscillatory movements (i.e., circumnutation), in
which plants rotate around a central axis during their growth. Numerous studies have elucidated
the mechanistic details of circumnutation, but how this phenomenon is controlled during support
searching remains unclear. To fill this gap, here we tested whether simulation-based machine
learning methods can capture differences in movement patterns nested in actual kinematical data. We
compared machine learning classifiers with the aim of generating models that learn to discriminate
between circumnutation patterns related to the presence/absence of a support in the environment.
Results indicate that there is a difference in the pattern of circumnutation, depending on the presence
of a support, that can be learned and classified rather accurately. We also identify distinctive kinematic
features at the level of the junction underneath the tendrils that seems to be a superior indicator for
discerning the presence/absence of the support by the plant. Overall, machine learning approaches
appear to be powerful tools for understanding the movement of plants.

Keywords: plant movement; circumnutation; machine learning; classification; kinematics

1. Introduction

When observing plants, they seem relatively immobile, stuck to the ground in rigid
structures. But for careful observers, as Darwin was in the 19th century, it is quite clear
that plants do produce movement. Darwin was fascinated by the graceful movements of
twining plants revolving in large arcs, winding around a support, and forming a helical
tube of tissue. He described this movement as “a continuous self-bowing of the whole
shoot, successively directed to all points of the compass” [1] and later named this movement
circumnutation [2].

Circumnutation is a common phenomenon in plants but is exaggerated in twining
stems. By circumnutating, twiners increase the probability of encountering a support to
grow vertically and enhance light acquisition. Vines that find a suitable support have
greater performance and fitness than those that remain prostrate [3,4]. Therefore, locating a
suitable support is a key process in the life history of climbing plants. Numerous studies
on climbing plant behavior have elucidated mechanistic details of support searching and
attachment [e.g., 3]. This body of research relies chiefly on field observations reporting on
morphological or physiological responses [4], as well as on laboratory studies focused on the
characterization of kinematical patterning through the use of time-lapse photography [5,6].
Although this body of research provides some quantitative data, the process is admittedly
subjective and rather preliminary. In other words, it does not offer a clear explanation of
what happens in the pattern of circumnutation when climbers perceive a potential support
and decide to orient their movement towards it.
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Machine learning approaches might be an alternative method of addressing this issue
and enabling accurate phenotyping. The application of machine learning to questions
in plant biology is still in its infancy, yet the applicability of these methods to a broad
range of problems is clear. These technologies have recently achieved impressive perfor-
mance on a variety of predictive tasks, such as species identification [7,8], plant species
distribution modeling [9,10], weed detection [11], and mercury damage to herbarium speci-
mens [12]. They are also being applied to questions of comparative genomics [13], gene
expression [14], and to conducting high-throughput phenotyping [15,16] for agricultural
and ecological research. Machine learning methods, however, have never been used for
modeling or predicting the movement of plants. Predicting plant behavior through their
movement is important for several reasons. Realistic predictions could aid in the formation
of conservation strategies to combat the decline in biodiversity. For example, predicting
movement might be important in the context of understanding the spread of infectious
diseases through plant species. Many diseases are spread through different means of
communication between individuals. Realistic predictions of the movement of infected
individuals can suggest interventions that will optimally alleviate the further spread of
diseases.

In this connection, here we use machine learning methods to classify plant movement
behavior, and to predict movement patterns which will enable us to build stochastic move-
ment generators, useful in scenarios where collecting actual movement data is laborious.
Given that predicting plant movement is important when building simulators, we tested
whether simulation-based machine learning methods can capture the movement patterns
nested in actual kinematical data. We compared several machine learning classifiers to
model plants’ movement with the goal of generating models that, on the basis of a binary
labeled dataset, learn to discriminate between the presence/absence of a support in the en-
vironment so as to formulate precise predictions based on an unlabeled dataset. We found
that there is a difference in the pattern of circumnutation that can be learned and classified
rather accurately depending on the presence or absence of the support. Furthermore, we
identified the most distinctive kinematic features that contribute to the classification tasks
and provide additional information for driving future circumnutation studies. Overall,
machine learning appears to be a valid tool for studying the movement of plants.

2. Results
2.1. Classifiers Are Able to Perform Accurate Predictions Depending on the Presence/Absence of
the Support

To test whether the pattern of circumnutation differed depending on the presence/
absence of a support in the environment, we exposed pea plants to a condition in which a
support was not present in the environment (“no support” condition; Figure 1a) and a con-
dition in which a support was present in the environment (“support” condition; Figure 1b).
The plants that grew in the presence of the support oriented their movement towards it
and prepared for grasping. The plants that grew in the absence of the support continued
to circumnutate toward the light source and then fell down. From the 3D reconstruction
of movement trajectories for the considered anatomical landmarks (i.e., the tendrils and
the point where the tendrils tie, from now on “junction”; Figure 1c), we extracted a set of
kinematic features that were used for machine learning classification (see details in Section 4
Material and Methods; also see Supplementary Materials S1–S3). Three classifiers, namely
random forest (RF), logistic regression (LR), and support vector classifier (SVC), were used
as a cross-model validation [17]. These approaches have been optimized and validated
in a variety of fields [18,19]. The classifiers generated models based on a binary-labeled
training set, learned to discriminate between the presence/absence of the support, and
formulated precise predictions based on an unlabeled test set. The performance corre-
sponds to the accuracy of classification (i.e., the rate of discriminating plants growing in the
presence/absence of the support on the test set correctly). When considering the totality of
the circumnutations performed by the plant (i.e., “overall movement classification”), the
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classifiers were able to distinguish between the “support” and the “no support” conditions
with a mean accuracy across all classifiers and all features of 66.80 % (SD 15.39; Table 1).
When considering circumnutations singularly (i.e., “circumnutation classification”), the
mean accuracy was 68.52% (SD 12.63; Table 2). These results demonstrate that the clas-
sifiers were capable of differentiating the pattern of circumnutation depending on the
presence/absence of the support rather accurately above the chance level (>50.00%).
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Figure 1. Experimental conditions and anatomical landmarks. Experimental setup, experimental
conditions and anatomical landmarks considered. Each chamber is equipped with two infrared
cameras on one side, a thermoregulator for controlling the temperature at 26 ◦C, two fans for input and
output ventilation, and a lamp on top of the plant. (a) “No support” condition, n = 19. (b) “Support”
condition, n = 13. (c) The anatomical landmarks of interest were the “tendrils” and the “junction”
developing from the considered leaf. The “tendrils” refers to the tip of the shoot, and the “junction”
refers to the point where the tendrils tie together.

Table 1. Accuracy in “overall movement classification” task. This table shows the mean and standard
deviation of the accuracy for each classifier.

Accuracy %
Mean (Standard Deviation)

Random Forest Logistic Regression SVC Feature Mean
Accuracy

Junction trajectory 71.00 (18.30) 80.50 (13.54) 71.50 (9.89) 74.30 (14.80)
Junction velocity 78.50 (12.24) 78.00 (9.04) 75.50 (12.23) 77.30 (11.19)

Junction acceleration 66.50 (11.81) 72.00 (12.12) 71.00 (11.81) 69.80 (11.99)
Tendril trajectory 67.00 (16.49) 56.50 (14.93) 66.00 (11.13) 63.2 (14.95)
Tendril velocity 75.50 (10.51) 68.00 (15.34) 72.50 (10.21) 72.00 (12.47)

Tendril acceleration 51.00 (11.92) 57.00 (10.87) 63.50 (10.16) 57.20 (12.01)
Tendril aperture 62.50 (15.73) 49.50 (12.23) 60.00 (6.25) 57.30 (13.17)

Movement duration 48.50 (17.43) 65.00 (16.54) 56.50 (10.90) 56.70 (16.48)
All features 76.50 (12.14) 71.00 (13.84) 72.00 (10.38) 73.20 (12.27)

Classifier’s mean
accuracy 66.30 (17.36) 66.40 (16.37) 67.60 (11.94) 66.80 (15.39)

Note. A string of accuracy for each classifier and feature is obtained after repeating the classification task 25
times.
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Table 2. Accuracy in “circumnutation movement”. This table shows the mean and standard deviation
for accuracy for each classifier.

Accuracy %
Mean (Standard Deviation)

Random Forest Logistic Regression SVC Feature Mean
Accuracy

Junction trajectory 71.84 (10.71) 74.87 (12.14) 71.54 (14.03) 72.75 (12.29)
Junction velocity 65.09 (11.09) 71.01 (15.23) 70.42 (14.44) 68.84 (13.78)

Junction acceleration 67.12 (9.50) 70.27 (10.44) 69.33 (12.22) 68.91 (10.72)
Tendril trajectory 59.49 (9.10) 68.65 (14.56) 67.38 (12.01) 65.17 (12.61)
Tendril velocity 67.35 (11.39) 70.84 (15.23) 70.37 (14.28) 69.52 (13.63)

Tendril acceleration 62.87 (10.42) 65.62 (12.31) 66.20 (11.23) 64.90 (11.29)
Tendril aperture 64.82 (11.28) 65.60 (11.80) 64.67 (12.79) 65.03 (11.82)
Circumnutation

movement duration 63.24 (12.18) 72.98 (12.82) 69.92 (12.58) 68.71 (13.02)

All features 73.74 (12.91) 73.37 (10.35) 72.14 (11.54) 73.08 (11.51)
Classifier’s mean

accuracy 66.20 (11.60) 70.29 (12.98) 69.07 (12.96) 68.52 (12.63)

Note. A string of accuracy for each classifier and feature is obtained after repeating the classification task 25 times.

2.2. Specific Contribution of the Considered Features across Classifiers for the Overall
Movement Classification

As shown in Table 1 (also see Supplementary Materials Figure S1), the SVC performs
with a slightly higher average accuracy (mean 67.60%, SD 11.94) compared to the RF (mean
66.30%, SD 17.36) and LR (mean 66.40%, SD 16.37) classifiers. Regarding those features that
contributed to the successful classification, the “junction velocity” (mean 77.30%, SD 11.99),
the “junction trajectory” (mean 74.30%, SD 14.80), and “all features” (mean 73.20%, SD 12.27)
show generally better performance compared with the “tendril aperture” (mean 57.30%,
SD 13.17), the “tendril acceleration” (mean 57.2%, SD 12.01), and “movement duration”
(mean 56.70%, SD 16.48). With a mean accuracy of 80.50% (SD 13.54) obtained with the LR
classifier, “junction trajectory” seems to be the best indicator for distinguishing between
the “support” and “no support” conditions. Overall, this suggests that the plants exhibit
differences in behavioral patterns depending on the presence/absence of the support.

2.3. Specific Contribution of the Considered Features When Considering Single Circumnutations

On the basis of the features derived from a single circumnutation, the classifiers can
reliably predict whether the plants are moving in the presence/absence of a potential
support (Table 2; also see Supplementary Materials Figure S2). In comparison to the RF
(mean 66.20%, SD 11.60) and the SVC (mean 70.29%, SD 12.98), the LR has a slightly
greater average accuracy (mean 69.07%, SD 12.96). As for the contribution of the different
features, “all features” (mean 73.08%, SD 11.51), “junction trajectory” (mean 72.75%, SD
12.29), and “tendril velocity” (mean 69.52%, SD 13.63) exhibit better performance compared
with “tendril trajectory” (mean 65.17%, SD 12.61), “tendril aperture” (mean 65.03%, SD
11.82), and “tendril acceleration” (mean 64.90%, SD 11.29). With a mean accuracy of
74.87% (SD 12.14) obtained with the LR classifier, “junction trajectory” seems to be the best
indicator for distinguishing between the “support” and the “no support” conditions. This
is in accordance with the findings for the “overall movement classification.” Again, this
demonstrates that the classifiers are able to extract from the kinematics of circumnutation
whether the plant is moving in the presence/absence of a potential support.

2.4. The Accuracy of the Classification Depends on Organs and Features

When looking more deeply into the contributory role played by the features considered
for classification, we found that kinematic features for the tendrils appear to be less relevant
with respect to junction-related features for both classification tasks (Tables 1 and 2). When
considering movement duration, this feature appears to be less informative when the
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overall movement classification is considered. However, this very same feature appears to
be a reliable indicator when single circumnutations are considered (68.71%, SD 13.02).

2.5. A Full Kinematic Profile Favors Classification

When we combined all the extracted features, we achieved a high level of accuracy
across all classifiers (overall movement classification: mean 73.20%, SD 12.27; Table 1;
circumnutation classification: mean 73.08%, SD 11.51; Table 2). After the models had been
fitted, the importance of kinematic features was determined by applying permutation
importance (Figure 2a,b). Different feature importance is detected among classifiers when
considering overall movement and single circumnutations separately. For instance, when
the overall movement is considered, “junction velocity”, “junction trajectory”, and “junc-
tion acceleration” appear to be the most crucial classification features, whereas “tendril
acceleration”, “tendril aperture”, “tendril trajectory”, and “movement duration“ appear to
be less essential. The negative value (<0.00) for the less important features mentioned above
indicates that predictions based on shuffled data typically turn out to be more accurate than
real data. “Junction trajectory” and “junction acceleration” appear to be more important
than “tendril acceleration” and “tendril aperture” for classification when single circum-
nutations are considered. Movement duration is an important feature for distinguishing
between the presence/absence of the support when it is referred to single circumnutation,
but not when “overall movement duration” is considered.
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3. Discussion

In this study, we propose a general framework to classify pea plants’ circumnutation
movement. We applied this framework using various machine learning models ‘fed’ with
kinematic data. Our findings show that machine learning techniques have the ability to
unveil how kinematic patterning is modulated in key organs when pea plants ‘hunt’ for a
support.

Nutation kinematics of different organs has served to lay a foundation of several mech-
anisms postulated as responsible for the movement in question with tendrils being amongst
the most investigated [3,20–22]. Tendrils serve climbing plants by providing a parasitic
alternative to building independently stable structural supports, allowing the plant to wend
its way to sunlight and numerous ecological niches [23]. Accordingly, previous evidence
provides a degree of support that some climbing plants can modify their circumnutation
patterns to a greater or lesser extent depending on the presence/absence of a potential
support in the environment [24,25]. Experimental evidence demonstrating that this is the
case has been forthcoming from recent studies that used kinematic analysis to characterize
the movements of the tendrils of pea plants [6,26–28]. Guerra and colleagues [29], for
example, demonstrated that pea plants (Pisum sativum L.) are able to perceive a stimulus
and modulate the kinematics of the tendrils according to the features of a potential support.
Therefore, it seems that the tendrils of climbing plants reaching to grasp a stimulus plays a
pivotal role as far as support detection is concerned.

The findings of the present study, however, seem to suggest that, rather than the
tendrils, the junction underneath them is a superior indicator for discerning the pres-
ence/absence of the support. The fact that the kinematics of the junction is a stronger
predictor than the kinematics of the tendrils for the presence of the support points to this
organ as a navigator guiding the tendrils towards the support. Indeed, if we look carefully
at how circumnutation unfolds once the support has been somewhat detected, it is evident
that the junction of the tendrils modifies its velocity and timing to launch the tendrils
toward the support. In addition, once informed that the ‘take-off’ is approaching, the ten-
drils open and assume a choreography so as to accommodate the thickness and the shape
of the support [29]. All of this corroborates the idea that plant movements are adaptive,
flexible, anticipatory, and goal-directed. Put simply, they are somewhat organized and
structured, with different organs ‘cross-talking’ to accomplish a crucial endeavor for the
plant’s survival. Our study using machine learning techniques illuminates and quantifies
this proposal.

Another novel observation that stems from our study is the classifiers being able to
extract a tremendous amount of information from a single circumnutation, which represents
the smallest unit of the entire movement. The very fact that the classifiers can make accurate
predictions from the emergence of the very first circumnutation reveals that the plants, at
the time they initiated to circumnutate, were already well-aware of their surroundings.

At this stage, a central question that could be asked is whether climbers actually make
‘decisions’ when it comes to support searching and selection. In this respect, our study
supports the notion that climbers do not find support/hosts merely by chance. Apart
from the evidence of oriented growth towards experimental stakes as discussed above, the
methodology used here might be useful to understand climbing plants’ preferences. This
was first described by Darwin for tendrils in B. capreolata initially seizing but then loosing
sticks that were inappropriate [1]. A similar phenomenon is observed when herbaceous
twining vines get in contact with a very thick trunk and wind up on themselves instead of
attempting to twine around it. In the case of annual vines, Darwin remarked that, even
without support diameter constraints, it would be maladaptive to twine around thick—and
hence large—trees, as these vines would hardly reach high-light layers by the end of the
growing season [1].

Further machine learning research should aim at characterizing how circumnutation
changes as far as support characteristics are concerned. Predictions and modeling of the
cost-benefit analysis of climbing plant behavior should be helpful to infer the selective
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pressures that have operated to shape current climber ecological communities. In addition
to plant movement, as a direct reflection of plants’ internal state, other physiological
markers could be added to obtain a more complete, reliable, and consistent picture of how
the environment shapes climbers’ behavior. Such technologies will enable the investigation
of unknown aspects of the helical growth performed by the tendrils and their junction on
an evolutionary scale, shedding some light on the mechanisms involved in the acquisition
and evolution of the climbing habits of terrestrial plants.

4. Materials and Methods
4.1. Subjects and Materials

A total of 32 snow peas (Pisum sativum var. Saccharum cv Carouby de Maussane) were
chosen as study plants. For each pot, 6 seedlings were potted at 8 cm from the pot’s border
and sowed at a depth of 2.5 cm. Once germinated, one healthy-looking sprout was selected
and randomly assigned to the experimental conditions: 19 plants were grown individually
in chambers without the presence of a support (“no support” condition; Figure 1a), while
13 plants were grown individually in chambers where a potential support was present
(“support” condition; Figure 1b). Sprouts were placed 8 cm from the pot’s border and
sowed at a depth of 2.5 cm. The support was a wooden pole (54 cm in height and 1.3 cm in
diameter) inserted 7 cm below the soil surface and positioned 12 cm away from the plant’s
first unifoliate leaf.

4.2. Growth Setup

Each plant was positioned in a thermo-light-controlled growth chamber (Cultibox
SG combi 80 × 80 × 160 cm; Figure 1). The temperature was set at 26 ◦C by means
of an extractor fan equipped with a thermo-regulator (TT125 vents; 125 mm-diameter;
max 280 mc/h) and an input-ventilation fan (Blauberg Tubo 100–102 m3/h). The two-fan
combination allowed for a steady air flow rate with a mean air residence time of 60 s. The
fan was carefully placed so that air circulation did not affect the plants’ movements.

Cylindrical pots (diameter 30 cm, depth 20 cm) were filled with river sand (type 16SS,
dimension 0.8/1.2 mm, weight 1.4) and positioned at the center of the growth chamber. A
cool white led lamp (V-TAC innovative LED lighting, VT-911-100W, Des Moines, IA, USA)
was positioned 50 cm above each seedling, and each plant was grown under an 11:25 h light
regime (5:45 a.m. to 5 p.m.). The Photosynthetic Photon Flux Density at 50 cm under the
lamp in correspondence of the seedling was 350 µmolph/(m2s) (quantum sensor LI-190R,
Lincoln, Nebraska, USA). The plants were watered three times a week and fertilized using
a half-strength nutrient solution (Murashige and Skoog Basal Salt Micronutrient Solution;
see components & organics).

4.3. Data Acquisition and Data Processing

For each growth chamber, a pair of RGB-infrared cameras (IP 2.1 Mpx outdoor varifocal
IR 1080P) were placed 110 cm above the ground, spaced at 45 cm to record stereo images of
the plant (see Figure 1a and Supplementary Materials S1). The two cameras synchronously
acquired a frame every 180 s (frequency 0.0056 Hz). RGB images were acquired during the
daylight cycle and infrared images during the night cycle. The anatomical landmarks of
interest were the “tendrils” and the “junction” (Figure 1c), developing from the considered
leaf. The initial frame was the one corresponding to the appearance of the tendrils and
the junction. The final frame was defined as either the frame in which the tendrils start
to coil for the “support” condition (number of selected images: 699.62, SD 379.28), or the
frame just before the plant fell on the ground for the “no support” condition (number of
selected images: 1617.11, SD 1112.82). Images from both left and right cameras were used
in order to reconstruct 3D trajectories. An ad hoc software (Ab.Acus s.r.l., Milan, Italy)
developed in Matlab was used to identify anatomical points to be investigated by means
of markers, and to track their position frame-by-frame on the images acquired by the two
cameras to reconstruct the 3D trajectory of each marker. The markers on the anatomical
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landmarks of interest, namely the tip of the tendrils and the junction, were inserted post-hoc
(Figure 1c). The tracking procedures were at first performed automatically throughout the
time course of the movement sequence using the Kanade-Lucas-Tomasi (KLT) algorithm on
the frames acquired by each camera, after distortion removal. The tracking was manually
verified by the experimenter, who checked the position of the markers frame-by-frame. The
3-D trajectory of each tracked marker was computed by triangulating the 2-D trajectories
obtained from the two cameras (Figure 1). The 3D coordinates were obtained up to 15 digits
after the decimal. The frames corresponding to the time at which the plants grasped the
support or touched the ground in the absence of the support were removed from the
data set. This was done to prevent classifiers from using these final frames to distinguish
between the two conditions. Therefore, the classifiers were only fed with helical organ
movements (i.e., circumnutation). Moreover, since each plant has its own starting position,
we used the coordinates for the first frame as the origin (0,0,0) for all plants in order to
prevent a location bias that could affect learning by the classification models (Figure 3a–c).
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Figure 3. Data acquisition. Coordinates of junction trajectory and plant vertical development in
time. (a) Junction trajectory for all plants in the x-y dimension for the two experimental conditions.
(b) Junction trajectory for all plants in the y-z dimension. (c) Junction trajectory for all plants in the
x-z dimension. (d) Junction vertical development in time for the “support” condition. (e) Junction
vertical development in time for the “no support” conditions. In panels ‘(d)’ and ‘(e)’, different colors
represent different plants. Note that for the “no support” conditions, the length of the time index
which is indicated as the number of frames has a longer range than the “support” conditions.
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4.4. Derived Features

Kinematic variables (hereafter, ‘features’) were analyzed in order to ascertain whether
they differed for the “support” and the “no support” conditions. This aspect is fundamental
in order to verify the ability of machine learning tools to discriminate across the conditions.
To do this, we used the Wilcoxon rank-sum test in R-studio, and the size of the effect
calculated as r = z

√
N where z is the z-score and N is the total number of observations

was also considered. In line with previous studies [29,30], we found statistically significant
differences between the “support” and the “no support” conditions (Table 3; see also
Figure 4 for a graphical example). On the basis of the obtained results, the features
considered for model classifications were: (a) junction trajectory; (b) tendril trajectory;
(c) junction velocity; (d) tendril velocity; (e) junction acceleration; (f) tendril acceleration;
(g) tendrils aperture; (h) overall movement duration; (i) movement duration for each
circumnutation; (j) all features (i.e., full kinematics). Please refer to Supplementary Materials
S3 for details regarding feature extraction.

Table 3. Kinematic data for the “support” and the “no support” conditions. Statistical values obtained
when comparing the two conditions are also reported.

Median

No Support Support W p r

Junction velocity (mm/min) 1.7488 3.5035 166 0.007 0.299
Junction acceleration (mm/min) 0.0006 −0.0001 51 0.021 0.257

Tendril velocity (mm/min) 2.5289 4.4670 1242 0.000 0.510
Tendril acceleration (mm/min) 0.0008 −0.0001 361 0.000 0.439

Tendrils aperture (mm) 25.2039 14.7132 245 0.000 0.394
Overall movement duration (min) 3744 1683 59 0.013 0.545

Circumnutation movement duration (min) 201.0857 217.000 143 0.103 0.181

Note. mm = millimeters; mm/min = millimeters by minutes.

4.5. Data Pre-Processing

We adopted a z-score as a data normalization method (standard scaling), by using
the formula Z = (x−µ)/σ, where µ stands for the mean value of the feature and σ for
the standard deviation of the features. A value equal to the mean of all the features was
normalized to 0 and the standard deviation to 1. To avoid biases toward features of the
dataset and, at the same time, to prevent the classifiers from learning information from the
test dataset, we utilized the transform method to keep the same features from the training
data to transform the test data.

To split the training and test sets, each derived feature was labeled with two different
conditions, “support” and “no support”, as a binary labeled dataset. The stratified shuffle
split cross-validator was applied to the dataset, which is a merge of StratifiedKFold and
SuffleSplit to return stratified randomized folds [17]. The set number of re-shuffling and
splitting iterations equals 25, test size as 0.25, default random state.
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4.6. Models’ Classifications Tasks

The modeling process was carried out with Python. We performed modelling of
pea plants’ behavior based on supervised classification frameworks. The purpose of a
Machine Learning Classifier is to produce models that, on the basis of a binary-labelled
training set, learn to discriminate between different growth circumstances and to provide
exact predictions on the basis of an unlabeled test set. Random decision forests (RF),
logistic regression (LR), and support vector classifier (SVC) are the classifiers that were
applied and compared through cross-validation (see Supplementary Materials S4) [17].
These approaches are optimized and validated in a wide variety of fields [18,19]. The
percentage of test data that were successfully classified for the two conditions is counted
under the accuracy of classification. The classification task employed each of the generated
kinematic features separately, and the classification accuracy for each feature was evalu-
ated. We also assessed the accuracy of “all features”, where permutation importance was
computed following the fitting of the classifiers [31]; we analyzed feature importance for
all the derived features. The “overall movement classification” and the “circumnutation
classification” are the two broad categories that constitute the model classification task.
Each classification task consists of 25 trials, which include 25 iterations of the training and
test. The absolute movement duration was typically longer for the plants growing in the
presence of a support (Figure 3d) than for the plants growing in the absence of a support.
For the “overall movement classification” task, we considered the features extracted from
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the whole movement for each individual plant (Figure 3e). For the “circumnutation clas-
sification task”, we partitioned the data into circumnutations, smoothing the data set by
generating an approximation function that captured the key patterns, namely the waves
of the movement in coordinates (i.e., circumnutation). Then, by cutting between peaks,
we split between the waves. The features that were extracted from each circumnutation
helped in compensating the dataset for this task. For classifying which condition a single
circumnutation corresponded to, the classifiers were fitted to the dataset.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12040965/s1, Figure S1: Specific contribution of the consid-
ered features across classifiers for the overall movement classification; Figure S2: Specific contribution
of the considered features when considering single circumnutation. References [32–34] are cited in
the Supplementary Materials
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