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Abstract: Kaempferia parviflora Wall. ex Baker (Zingiberaceae), commonly known as Thai ginseng or
black ginger, is a tropical medicinal plant in many regions. It has been traditionally used to treat
various ailments, including ulcers, dysentery, gout, allergies, abscesses, and osteoarthritis. As part of
our ongoing phytochemical study aimed at discovering bioactive natural products, we investigated
potential bioactive methoxyflavones from K. parviflora rhizomes. Phytochemical analysis aided by liquid
chromatography–mass spectrometry (LC-MS) led to the isolation of six methoxyflavones (1–6) from the
n-hexane fraction of the methanolic extract of K. parviflora rhizomes. The isolated compounds were struc-
turally determined to be 3,7-dimethoxy-5-hydroxyflavone (1), 5-hydroxy-7-methoxyflavone (2), 7,4′-
dimethylapigenin (3), 3,5,7-trimethoxyflavone (4), 3,7,4′-trimethylkaempferol (5), and 5-hydroxy-3,7,3′,4′-
tetramethoxyflavone (6), based on NMR data and LC-MS analysis. All of the isolated compounds were
evaluated for their anti-melanogenic activities. In the activity assay, 7,4′-dimethylapigenin (3) and
3,5,7-trimethoxyflavone (4) significantly inhibited tyrosinase activity and melanin content in IBMX-
stimulated B16F10 cells. In addition, structure–activity relationship analysis revealed that the methoxy
group at C-5 in methoxyflavones is key to their anti-melanogenic activity. This study experimentally
demonstrated that K. parviflora rhizomes are rich in methoxyflavones and can be a valuable natural
resource for anti-melanogenic compounds.

Keywords: Kaempferia parviflora; Zingiberaceae; Methoxyflavones; Anti-melanogenesis; B16F10
mouse melanoma cells; SAR

1. Introduction

The amount and distribution of melanin, a pigment present in the skin epidermis, are
decisive factors in determining skin color. Melanin plays an important role in protecting
the skin from ultraviolet rays and harmful external factors [1–3]. However, the excessive
production and accumulation of melanin in the skin causes spots and freckles. In addition,
melanin precursors can cause cell death due to toxicity and diseases, such as skin cancer [4].
The enzymes involved in melanin synthesis include tyrosinase, tyrosinase-related protein-1
(TRP-1), and dopachrome tautomerase (TRP-2). Tyrosinase acts in the initial reaction, the
rate-determining step of melanin synthesis, and oxidizes tyrosine to DOPA-quinone via
3,4-dihydroxyphenylalanine (DOPA) [5–7]. DOPA-quinone is converted to dopachrome
without a catalytic reaction and is converted to 5,6-dihydroxyindole-2-carboxylic acid
(DHICA) by the catalyst TRP-2. DHICA is converted to indole-5,6-quinone-2-carboxylic
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acid by the catalyst TRP-1, which converts it to melanin [5,7,8]. Therefore, the inhibition
of tyrosinase, TRP-1, and TRP-2, which catalyze melanogenesis, is an important target for
anti-melanogenic activities.

Phenol derivatives, such as hydroquinone, resorcinol, L-ascorbic acid and its deriva-
tives, arbutin, lactic acid, glucosamine, and tunicamycin, have been developed as repre-
sentative melanin production inhibitors; however, their use is strictly limited owing to
problems such as skin irritation and safety concerns [9–14]. Therefore, research is being
actively conducted to identify safe and effective natural whitening agents.

Kaempferia parviflora Wall. ex Baker, known as Thai ginseng or black ginger, belongs to
the family Zingiberaceae and is widely distributed in northern Thailand [15]. According
to past efficacy and safety evaluations, traditional medicines derived from the rhizome of
K. parviflora can be used to treat hypertension, inflammation, peptic and colic disorders,
allergy, osteoarthritis, and duodenal ulcers [16–18]. In addition, K. parviflora extract has a
wide range of pharmacological effects, including antioxidant, anti-inflammatory, antitumor,
cardioprotective, antiallergic, and antibacterial activities [19]. Phytochemical investigations
of K. parviflora have led to the identification of several biologically active compounds, such
as isopimarane, labdane- and clerodane-type diterpenoids, phenolic acids, flavonoids, and
steroids [20]. Moreover, K. parviflora rhizome extracts have been highlighted to contain
flavonoids that exhibit potent biological activities, including antioxidant, neuroprotective,
and cognition-enhancing effects [21].

The major components of K. parviflora rhizomes are methoxyflavones, structurally identified
as 5,7-dimethoxyflavone, 5,7,4′-trimethoxyflavone, and 3,5,7,3′,4′-pentamethoxyflavone [18,22,23],
the pharmacokinetic characteristics of which have been investigated [20,24]. In a previous
study, 5,7-dimethoxyflavone was shown to reduce the viability of HepG2 cancer cells
with an IC50 of 25 µM by generating reactive oxygen species and significantly reducing
the mitochondrial membrane potential, suggesting that it might be considered to be an
anti-liver cancer lead compound [25]. In another study, 5,7,4′-trimethoxyflavone exhib-
ited anti-plasmodial activity against Plasmodium falciparum, indicating the possibilities of
development as a treatment agent for the malaria parasite [21]. According to a recent
study, 3,5,7,3′,4′-pentamethoxyflavone had a relaxing effect on isolated human corpus
cavernosum tissue during a sex change operation [26], indicating the potential of this com-
pound as an effective agent to stimulate sexual activity in men. Another methoxyflavone
isolated from this plant, 5-hydroxy-3,7,3′,4′-tetramethoxyflavone, was examined for its
inhibitory activity against nitric oxide production and exhibited potent anti-inflammatory
activity [27]. Considering the biological activities of these methoxyflavones from K. parvi-
flora rhizomes, it is essential to investigate methoxyflavone derivatives from this plant to
develop novel therapeutics.

As part of continuing natural product discovery research for new bioactive con-
stituents from interesting natural resources [28–32], we investigated potential bioactive
flavonoids from K. parviflora rhizomes. In our recent study on K. parviflora rhizomes,
we found that methoxyflavones inhibit tumor necrosis factor-α-induced interstitial col-
lagenase (MMP-1) in human dermal fibroblasts. Among them, 3,5,7-trimethoxyflavone
inhibits the pro-inflammatory cytokines interleukin (IL)-1β, IL-6, and IL-8, thus coun-
teracting skin damage [33]. As part of an ongoing study on the discovery of bioactive
phytochemicals with beneficial cosmetic properties from K. parviflora rhizomes, we isolated
six methoxyflavones (1–6) from the methanolic extract of these rhizomes using column
chromatography and high-performance liquid chromatography (HPLC) purification cou-
pled with liquid chromatography–mass spectrometry (LC-MS) analysis. The isolated
compounds were tested for their anti-melanogenic activity in B16F10 mouse melanoma
cells, and their structure–activity relationships (SARs) were investigated. Herein, we de-
scribe the separation and structural elucidation of Compounds 1–6, the evaluation of their
anti-melanogenic activity, and SARs.
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2. Results and Discussion
2.1. Isolation and Structural Identification of Compounds

The extraction of the rhizomes of K. parviflora with 80% MeOH to give the resultant MeOH
extract, and then the MeOH extract, was effectively partitioned with four different organic
solvents to obtain four main fractions. Each fraction was evaporated to dryness in vacuo
to give the following yields: hexane (1.0 g), dichloromethane (CH2Cl2, 3.2 g), ethyl acetate
(EtOAc, 0.4 g), and n-butanol (BuOH, 0.5 g)-soluble fractions (Figure 1). Each fraction was
analyzed using a house-built UV library database in our LC-MS system, which verified that
the hexane fraction was rich in flavonoids. Column chromatography and semi-preparative
HPLC separation were efficiently applied, leading to the isolation of six structurally related
methoxyflavones (Figure 1). These methoxyflavones were determined to be 3,7-dimethoxy-5-
hydroxyflavone (1) [34], 5-hydroxy-7-methoxyflavone (2) [35], 7,4′-dimethylapigenin (3) [36],
3,5,7-trimethoxyflavone (4) [37], 3,7,4′-trimethylkaempferol (5) [22], and 5-hydroxy-3,7,3′,4′-
tetramethoxyflavone (6) [38] (Figure 2) by comparing their 1D nuclear magnetic resonance
(NMR) spectroscopic data (Figures S1, S3, S5, S7, S9 and S11) with those previously reported
and MS data obtained from LC-MS analyses (Figures S2, S4, S6, S8, S10 and S12).
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2.2. Effects of Methoxyflavones 1–6 on Viability of B16F10 Mouse Melanoma Cells

We evaluated the inhibitory effects of the isolated methoxyflavones 1–6 on 3-isobutyl-
1-methylxanthine (IBMX)-induced melanogenesis in B16F10 cells. Before the evaluation,
the effect of each methoxyflavone on B16F10 cell viability was examined. B16F10 cells were
treated with methoxyflavones at 12.5, 25, 50, and 100 µM for 24 h. No differences in cell
viability were observed between the methoxyflavone-treated and control groups (Figure 3).
Therefore, the concentration range of 25–100 µM was selected for further experiments.
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Figure 3. Effects of methoxyflavones 1–6 on B16F10 cell viability. B16F10 cells were seeded in 96-well
cell culture plates with clear bottoms (5 × 103 cells/well) and were incubated for 24 h. The cells were
then treated with the indicated concentrations of methoxyflavones 1–6 for 24 h. Cell viability was
evaluated using an EZ-Cytox kit. The results are presented as mean ± SEM (n =3).

2.3. Inhibitory Effect of Methoxyflavones 1–6 on Melanogenesis in B16F10 Mouse Melanoma Cells

Melanin increases the L-tyrosine to L-DOPA ratio by activating tyrosinase in melanocytes
and synthesizing L-DOPA-quinone, TRP-2, and TRP-1, which are finally transformed into
red-type eumelanin or brown-type pheomelanin [39,40]. Melanin hyperproduction is
caused by the increased oxidative stress induced by external stimuli.

Oxidative stress oxidizes DNA and proteins and causes lipid peroxidation, which
plays a major role in increasing the proportion of unsaturated fatty acids. In addition, these
stresses excessively increase melanin synthesis and pigmentation in skin melanocytes and
contribute to the development of skin cancer [41,42]. Similarly to these oxidative stresses,
IBMX inhibits phosphodiesterase, increases cAMP levels, and activates the ERK and
PI3K/Akt signaling pathways. These changes promote the production of melanogenesis-
related proteins and induce melanin hyperproduction [43].
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The anti-melanogenic effects of methoxyflavones 1–6 on IBMX-induced melanogenesis
in B16F10 melanoma cells were investigated. As shown in Figure 4, methoxyflavones
3 and 4 decreased cellular tyrosinase activity in IBMX-stimulated B16F10 cells. The
IBMX-stimulated group showed a 3.18 ± 0.06-fold (p < 0.01) increase in tyrosinase ac-
tivity compared to that in the vehicle group. Tyrosinase activity decreased in the positive
control group treated with kojic acid at 12.5 µM (2.13 ± 0.31-fold, p < 0.05) and 25 µM
(1.38 ± 0.06-fold, p < 0.01) compared with that in the IBMX-treated group. Compound
3 significantly decreased the tyrosinase activity at 25–100 µM (25 µM: 2.25 ± 0.29-fold;
50 µM: 1.88 ± 0.08-fold, p < 0.01; 100 µM: 1.78 ± 0.07-fold, p < 0.01) compared to that in
the IBMX-stimulated group. In addition, Compound 4 decreased tyrosinase activity at
50 µM (2.16 ± 0.29-fold, p < 0.05) and 100 µM (1.56 ± 0.13-fold, p < 0.01) compared to
that in the IBMX-stimulated group. These results indicate that 7,4′-dimethylapigenin (3)
and 3,5,7-trimethoxyflavone (4) significantly inhibited the IBMX-stimulated hyperactivity
of tyrosinase.
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Figure 4. Effect of methoxyflavones 1–6 on cellular tyrosinase activity in B16F10 cells. B16F10 cells
were seeded in a 60 mm dish at a density of 5 × 105 cells and incubated for 24 h. The cells were then
incubated with IBMX and the indicated concentrations of methoxyflavones 1–6 for 72 h. Cellular
tyrosinase activity was evaluated using L-3,4-dihydroxyphenylalanine (L-DOPA). Kojic acid was used
as a positive control. The results are presented as the mean ± SEM (n =3). ## p < 0.01 compared with
the untreated group. * p < 0.05 and ** p < 0.01 compared to the IBMX-treated group.

To investigate whether the inhibitory effects of the compounds on cellular tyrosi-
nase influenced melanogenesis, melanin content was measured. As shown in Figure 5,
methoxyflavones 3, 4, and 6 decreased the melanin content in IBMX-stimulated B16F10
cells. The IBMX-stimulated group showed a 4.72 ± 0.15-fold (p < 0.001) increase in melanin
content compared to that in the vehicle group. Melanin content decreased in the positive
control group treated with kojic acid at 12.5 µM (1.29 ± 0.24-fold, p < 0.001) and 25 µM
(0.98 ± 0.06-fold, p < 0.001) compared with that in the IBMX-treated group. Compound
3 significantly decreased the melanin content at 12.5–100 µM (12.5 µM: 3.16 ± 0.28-fold,
p < 0.05; 25 µM: 2.30 ± 0.25-fold, p < 0.01; 50 µM: 1.41 ± 0.08-fold, p < 0.001; 100 µM:
1.21 ± 0.06-fold, p < 0.001) compared to that in the IBMX-stimulated group. In addition,
Compound 4 decreased melanin content at 50 µM (3.03 ± 0.26-fold, p < 0.01) and 100 µM
(2.23 ± 0.16-fold, p < 0.001) compared to that in the IBMX-stimulated group. Compound
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6 weakly inhibited melanin synthesis at 100 µM (3.24 ± 0.31-fold, p < 0.001) compared to
that in the IBMX-stimulated group. These results indicate that 7,4′-dimethylapigenin (3)
and 3,5,7-trimethoxyflavone (4) significantly inhibited IBMX-stimulated melanin overpro-
duction. Therefore, methoxyflavones derived from K. parviflora rhizomes can be said to be
effective in reducing melanogenesis.
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Figure 5. Effect of methoxyflavones 1–6 on melanogenesis in B16F10 cells. B16F10 cells were seeded
in a 60 mm dish at a density of 5 × 105 cells and incubated for 24 h. The cells were then incubated
with IBMX and the indicated concentrations of methoxyflavones 1–6 for 72 h. Melanin content was
evaluated using 1 N sodium hydroxide. Kojic acid was used as a positive control. The results are
presented as the mean ± SEM (n =3). ### p < 0.001 compared to the untreated group. * p < 0.05,
** p < 0.01, and *** p < 0.001 compared to the IBMX-treated group.

2.4. SAR Analysis

A better understanding of SARs can lead to the comprehension of the structural
characteristics of compounds and the discovery of more potent therapeutic agents to treat
and prevent some diseases. SARs have been used to investigate the effects of structural
features of molecules on their biological activities; thus, they are considered to be a key
tool for drug discovery [44–46]. While analyzing the results of anti-melanogenic activity
tests, we found interesting SARs among the six methoxyflavones (Figure 6). First, the
substitution of the methoxy group at C-4′ in the methoxyflavones enhanced the activity;
Compound 3 exhibited the strongest activity, whereas Compound 2 lost its activity without
the methoxy group, indicating that the methoxy group at C-4′ is key to anti-melanogenic
activity. Second, the substitution of the methoxy group at C-5 in methoxyflavones is a key
structural element involved in the activity, based on the moderate activity of Compound 4
and the loss of activity of Compound 1 on substituting a hydroxy group at C-5. Third, the
substitution of the methoxy group at C-3 in the methoxyflavones decreased the activity,
based on the strongest activity of Compound 3 and the loss of activity in Compound 5 upon
substituting a methoxy group at C-3. Lastly, according to the results for Compound 4 and
Compound 5, the methoxy group at C-5 in methoxyflavones had a greater positive effect
on the activity than that of the methoxy group at C-4′. The roles of the methoxy groups
in the biological activities of flavonoid derivatives are well-known [47–49]. Therefore, the
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anti-melanogenic activity of methoxyflavones depends not only on the number of methoxy
groups but also on their position.
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3. Materials and Methods
3.1. Plant Material

K. parviflora rhizomes were purchased at Warorot Market in January 2020 from Chiang
Mai City, Northern Thailand. One of the authors (K. H. Kim) authenticated the materials,
and the voucher specimen (SKKU-BG 1908) was stored in the herbarium at the School of
Pharmacy, Sungkyunkwan University, Suwon, Korea.

3.2. Extraction and Separation of Methoxyflavones

The dried rhizomes of K. parviflora (132 g) were squashed and macerated separately
with MeOH and partitioned with various solvents (n-hexane, CH2Cl2, EtOAc, and n-
BuOH, 700 mL) for 24 h three times at ambient temperature. After that, each organic
solvent was evaporated under reduced pressure using a rotary evaporator to obtain four
fractions. Four fractions with increasing polarity were obtained: hexane (1.0 g), CH2Cl2
(3.2 g), EtOAc (0.4 g), and n-BuOH-soluble fractions (0.5 g). LC-MS analysis of each
fraction indicated that the hexane fraction contained high-quality flavonoids; hence, it was
selected for further isolation. LC-MS analysis was conducted using an Agilent 1200 Series
HPLC system (Agilent Technologies, Santa Clara, CA, USA) equipped with a diode array
detector, 6130 Series ESI mass spectrometer, and an analytical Kinetex C18 100 Å column
(100 × 2.1 mm, 5 µm; flow rate: 0.3 mL/min; Phenomenex, Torrance, CA, USA). Thin-layer
chromatography was carried out on precoated silica gel F254 plates and RP-C18 F254s plates
(Merck, Darmstadt, Germany), and the plates were visualized under UV light (254 and
365 nm) by heating after spraying with anisaldehyde–sulfuric acid reagent. A portion of
the hexane fraction (1.0 g) was chromatographed on a silica gel column with two gradient
solvent systems—n-hexane/EtOAc (10:1, 3:1, 1:1) and CH2Cl2/MeOH (10:1, 1:1)—yielding
six fractions (Fr.1–Fr.6). Fr.1 (31.1 mg) was subjected to semi-preparative reverse-phase
HPLC with 94% MeOH/H2O at a flow rate of 2 mL/min, yielding Compound 1 (1.8 mg)
(Figure 1). Fr.2 (91.5 mg) was subjected to Sephadex LH-20 column chromatography with
an isocratic solvent system comprising CH2Cl2/MeOH (2:8), yielding five subfractions
(Sfr.2.1–Sfr.2.5). Sfr.2.2 (29.2 mg) was further subjected to semi-preparative reverse-phase
HPLC with 78% MeOH/H2O at a flow rate of 2 mL/min, yielding Compound 2 (4.9 mg).
Similarly, Fr.5 (112.7 mg) was also performed on a Sephadex LH-20 column eluting with
the same solvent system with Fr.2, yielding two subfractions (Sfr.5.1 and Sfr.5.2). Sfr.5.2
(28.2 mg) was further purified using semi-preparative reverse-phase HPLC with an isocratic
solvent (83% MeOH/H2O) at a flow rate of 2 mL/min, yielding Compounds 3 (2.2 mg),
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4 (2.5 mg), and 5 (3.4 mg). Finally, Fr.6 (271.8 mg) was also fractionated using Sephadex LH-
20 column chromatography with an isocratic solvent system comprising CH2Cl2/MeOH
(2:8), yielding four subfractions (Sfr.6.1–Sfr.6.4). Sfr.6.4 (46.3 mg) was efficiently purified
using semi-preparative reverse-phase HPLC and eluted with 78% MeOH/H2O at a flow
rate of 2 mL/min, yielding Compound 6 (3.0 mg).

3.3. Cell Culture

Mouse melanoma B16F10 cells (Korean Cell Line Bank, Seoul, Republic of Korea) were
cultured in DMEM medium (Corning, Manassas, VA, USA), supplemented with 10% (v/v)
fetal bovine serum and 1% penicillin/streptomycin, in a humidified atmosphere containing
5% CO2 at 37 ◦C.

3.4. Cell Viability

B16F10 cells were plated in 96-well plates at a density of 5 × 103 cells/well and were
grown for 24 h. The following day, cells were treated with each compound (12.5, 25, 50, and
100 µM). After incubation for 24 h, EZ-Cytox solution was added to the culture medium
and incubated for 2 h at 37 ◦C. The absorbance was measured at 450 nm using a microplate
reader (SPARK 10M; Tecan, Männedorf, Switzerland).

3.5. Measurement of Cellular Tyrosinase Activity

Tyrosinase activity was evaluated using a previous method [50]. B16F10 cells were
plated in a 60 mm dish at a density of 5 × 105 cells/dish and grown for 24 h. The following
day, the cells were treated with each compound (12.5, 25, 50, and 100 µM) and 100 mM
IBMX (Sigma-Aldrich, St. Louis, MO, USA). After incubating for 72 h, the cells were
collected and centrifuged. The supernatant was mixed with L-DOPA and incubated at
37 ◦C for 30 min. The absorbance was measured at 475 nm using a microplate reader
(SPARK 10M).

3.6. Measurement of Cellular Melanin Content

The melanin content was evaluated using a previous method [51]. B16F10 cells were
plated in a 60 mm dish at a density of 5 × 105 cells/dish and grown for 24 h. The following
day, cells were treated with each compound (12.5, 25, 50, and 100 µM) and 100 mM IBMX.
After incubating for 72 h, the cells were collected and centrifuged. The pellet was collected
and lysed with 1 N NaOH containing 10% DMSO at 90 ◦C for 30 min. The absorbance was
measured at 475 nm using a microplate reader (SPARK 10M).

3.7. Statistical Analysis

All experiments were conducted in triplicate and are shown as the mean± SEM. The
differences were calculated using one-way analysis of variance, followed by Tukey’s test
with GraphPad Prism version 8.0.1 (GraphPad Software Inc., La Jolla, CA, USA). Statistical
significance was set at p < 0.05.

4. Conclusions

In summary, six methoxyflavones were isolated from the hexane fraction of the MeOH
extract of K. parviflora rhizomes and characterized using LC-MS analysis. The compounds
were identified as 3,7-dimethoxy-5-hydroxyflavone (1), 5-hydroxy-7-methoxyflavone (2),
7,4′-dimethylapigenin (3), 3,5,7-trimethoxyflavone (4), 3,7,4′-trimethylkaempferol (5), and
5-hydroxy-3,7,3′,4′-tetramethoxyflavone (6) using 1D NMR spectroscopic methods, MS
data, and LC-MS analysis. In the anti-melanogenic activity assays, Compounds 3 and 4
significantly inhibited tyrosinase hyperactivity and melanin overproduction induced by
IBMX. Notably, SAR analysis showed that the methoxy group at C-5 in methoxyflavones is
key to their anti-melanogenic activity and that the previously unappreciated methoxy group
plays a critical role in the anti-melanogenic activity of flavonoid derivatives. This study



Plants 2023, 12, 1183 9 of 11

provides experimental evidence that K. parviflora rhizomes are rich in methoxyflavones and
can be a valuable natural resource for anti-melanogenic compounds.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants12051183/s1: Figure S1: 1H-NMR spectrum of Compound 1 (in CDCl3); Figure S2:
UV chromatogram of LC/MS and UV and MS data for Compound 1; Figure S3: 1H-NMR spectrum
of Compound 2 (in CDCl3); Figure S4: UV chromatogram of LC/MS and UV and MS data for
Compound 2; Figure S5: 1H-NMR spectrum of Compound 3 (in CDCl3); Figure S6: UV chromatogram
of LC/MS and UV and MS data for Compound 3; Figure S7: 1H-NMR spectrum of Compound 4 (in
CDCl3); Figure S8: UV chromatogram of LC/MS and UV and MS data for Compound 4; Figure S9:
1H-NMR spectrum of Compound 5 (in CDCl3); Figure S10: UV chromatogram of LC/MS and UV
and MS data for Compound 5; Figure S11: 1H-NMR spectrum of Compound 6 (in CDCl3); Figure S12:
UV chromatogram of LC/MS and UV and MS data for Compound 6.
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