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Abstract: Global warming is a challenge for plants and pathogens, involving profound changes in
the physiology of both contenders to adapt to the new environmental conditions and to succeed
in their interaction. Studies have been conducted on the behavior of oilseed rape plants and two
races (1 and 4) of the bacterium Xanthomonas campestris pv. campestris (Xcc) and their interaction
to anticipate our response in the possible future climate. Symptoms caused by both races of Xcc
were very similar to each other under any climatic condition assayed, although the bacterial count
from infected leaves differed for each race. Climate change caused an earlier onset of Xcc symptoms
by at least 3 days, linked to oxidative stress and a change in pigment composition. Xcc infection
aggravated the leaf senescence already induced by climate change. To identify Xcc-infected plants
early under any climatic condition, four classifying algorithms were trained with parameters obtained
from the images of green fluorescence, two vegetation indices and thermography recorded on Xcc-
symptomless leaves. Classification accuracies were above 0.85 out of 1.0 in all cases, with k-nearest
neighbor analysis and support vector machines performing best under the tested climatic conditions.

Keywords: artificial intelligence; classifying algorithms; computer vision; deep learning; hyperspectral
reflectance; multicolor fluorescence; thermography; Xanthomonas campestris pv. campestris

1. Introduction

Climate change is one of the most pressing problems facing humanity. Particularly,
the agriculture industry is an alarming sector on a global scale, as irreversible weather
fluctuations threaten food quality, production, and supply [1]. As a consequence of this
direct negative impact on the main source of human food, governments and supra-state
institutions have organized themselves to analyze the consequences of climate change and,
ultimately, to try to curb it. The United Nations established the Intergovernmental Panel on
Climate Change (IPCC) to evaluate potential scenarios of greenhouse gas and air pollutant
emissions and their future concentrations in the atmosphere, publishing Assessment Re-
ports (AR) containing these projections. Based on IPCC estimates, future climate conditions
have been anticipated according to representative concentration pathways (RCPs) [2]. The
main objective of the Paris Agreement [3], promoted by the United Nations and recently
ratified by the Sharm el-Sheikh Climate Change Conference (Egypt, 2022), is to improve
the global response to the urgent threat of climate change and to join efforts to limit the
temperature increase to 1.5 ◦C by 2080–2100. However, according to AR5, this stringent
mitigation scenario is unlikely to occur, and the most likely projection is an intermediate
scenario or RCP 4.5 in which temperature would increase by 3 ◦C. An extreme scenario of
climate change or RCP 8.5 would represent the effects of no further restriction of greenhouse
gas emissions and would result in a 6 ◦C increase in global temperature [2].

Climate change causes serious physiological disturbances in plants by impairing their
growth, disrupting photosynthesis, and reducing their ability to respond to stress [4]. How-
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ever, another problem associated with climate change is that its effects will not be limited
to direct damage to crops, but pathogens and pests (both endemic and newly emerging)
may be exacerbated by global warming [5]. Future climate will affect, among other factors,
the physiology of pathogens and pests and their geographical distribution [6,7], thus acting
as evolutionary forces that could alter their degree of virulence [8]. Therefore, scientific in-
novation is very necessary for the early detection of diseased plants to minimize the risk of
disease spread and to avoid the introduction of new ones under current climate conditions
(CCC), but without losing sight of the challenges associated with climate change [9,10].
In this regard, the development of new technologies, such as high-performance sensors
for pathogen detection together with artificial intelligence (AI) tools, have enabled disease
surveillance, localizing the foci of infection and thus promoting precision agriculture [11].

In the last years, non-invasive optical sensors have been increasingly implemented
to monitor crop fields at proximal and remote sensing scales [12,13]. Thermal imaging
provides information on leaf temperature (T), which is inversely related to leaf transpiration,
and thus it has been used with great success to assess the crops′ water status [14]. Multicolor
fluorescence imaging (MCFI) records blue (F440) and green (F520) fluorescence emitted
by phenolic compounds related to plant defense and covalently bound to cell walls [15].
Measurements of reflected light at different wavelengths allow the calculation of vegetation
indices (VIs) widely used to evaluate different vegetation traits such as development,
productivity, pigment composition, and fitness [16]. Nevertheless, imaging techniques also
have the disadvantage of properly handling the vast and complex amount of information
that could be obtained from images. Deep learning, a subset of AI, has shown great
potential to help the agricultural industry due to the powerful ability of its algorithms to
learn features from massive datasets and make predictions about new samples [17], thus
assisting in the monitoring and decision-making processes of crop management [18]. There
is a wide variety of algorithms for the detection of stressed plants. Among the most broadly
used ones stand out artificial neural networks (ANN), support vector machines (SVM),
binary logistic regression analysis (LRA), and k-nearest neighbors analysis (kNN). ANNs
are networks based on the human nervous system, thus composed of several interconnected
nodes (or neurons) organized in layers that transmit information to each other, learning
from both input and output data. ANNs have been frequently applied in the detection
of stressed plants, as they obtain very reliable results [19,20]. SVM represents samples as
points in a high-dimensional feature space defined by support vectors, and new data are
predicted to belong to a category based on the side of the hyperplanes on which they fall.
The more advanced machine learning technique of SVMs uses a larger number of hidden
units than ANNs and thus performs better in formulating the learning problem [19,21].
LRA is particularly interesting for the life sciences, as it allows estimating the probability of
a dichotomous outcome (“healthy” or “infected”) as a function of the values of one or more
independent variables [22]. Finally, kNN assigns relative weights to the contributions of the
sample neighbors as a function of distances to determine to which category a new sample is
most likely to belong [23]. Computer vision and deep learning algorithms have been widely
applied in precision agriculture in recent years ([24,25] and references therein). ANNs have
been used to detect oilseed rape plants infected by Sclerotinia sclerotiorum [26] or zucchini
plants infected by Dickeya dadantii [27]; SVMs were useful to detect Huanglongbing disease
on citrus leaves [28] or zucchini plants infected with Podosphaera xanthii [29]; LRA was the
best performing algorithm for identifying avocado trees infected by Rosellinia necatrix [30];
whereas kNN was successfully used to identify tomato leaves diseased by gray mold [31],
to cite just a few of the many examples.

Oilseed rape (Brassica napus L.) is the main oilseed crop in Europe. This crop is not
only a source of oil for human consumption but also provides feed for livestock and can
even be used as biodiesel, among other uses [32,33]. With 5.17 million hectares of oilseed
rape cultivated in the European Union (EU) in 2020 and being a crop in expansion in some
countries such as Spain (according to data from DG AGRI EU for the Spanish Ministry
of Agriculture, Fishing and Food; www.mapa.gob.es, accessed on 21 December 2022), it
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is not surprising that the response of this crop-to-climate change has been studied on
several occasions. Thus, abiotic stress triggered by future weather conditions has been
demonstrated to damage photosynthetic structures [34–36], thus reducing crop growth and
production, as well as yield quality, mainly oil properties [37–39]. In addition, oilseed rape is
a plant susceptible to black rot of crucifers, an infection caused by the pathogenic bacterium
Xanthomonas campestris pv. campestris (Xcc), which is responsible for severe economic losses
in crops worldwide [40,41]. Infected seeds are the main source of Xcc infection, although
this bacterium can also live epi- and endophytically in volunteer plants, crop debris, and
even soils. Xcc penetrates the plant cell wall through wounds and natural openings such as
stomata, hydatodes, and lenticels, colonizing the mesophyll [42–44]. The infection becomes
systemic when Xcc reaches the xylem, plugging it and preventing water and nutrients
from reaching it. This results in the appearance of characteristic V-shaped patterns in
leaf margins, initially chlorotic and eventually necrotic, as the infection progresses from
biotrophic to necrotrophic stages. Eventually, plants die [45–47]. In addition, it is thought
that Xcc will become an increasingly important disease due to climate change in the more
northern latitudes of vegetable production, including the warmer regions of Europe [42].
Moreover, the global change would accelerate the Xcc infection progress, at least in broccoli
plants [48]; however, more research is needed, as little is known about the alterations that
will occur at the physiological level of Xcc-infected oilseed rape plants growing under
global warming. It would also be advisable to be prepared in terms of early detection of
Xcc-infected oilseed rape plants under any climatic condition in order to anticipate our
response now and in the near future adequately.

Thus, the main objectives of this work were twofold. The first one is related to the
effects that two possible climate change scenarios for 2100 would produce on the health
status of Xcc-infected oilseed rape plants. For such a purpose, oilseed rape plants were
cultivated under CCC, RCP 4.5, and RCP 8.5 and infected with races 1 and 4 of Xcc.
Then, visual symptoms of Xcc-infected plants, plant oxidative stress, and plant pigment
composition was analyzed by colorimetric biochemical methods. The effects of climate
change on Xcc growth were also tested by analyzing bacterial growth kinetics both in vivo
and in vitro. Evidence was found that climate change harms both plants and bacteria, but
Xcc benefits from the interaction, and its infection accelerates senescence already induced
by climatic stress. The second objective was to develop a method for early detection of Xcc-
infected oilseed rape plants based on computer vision and deep learning algorithms that
were effective regardless of weather conditions. For this purpose, images of F520, T, and two
VIs from asymptomatic Xcc-infected and mock-control leaves were recorded. Inoculated
areas were then selected, and pixel value distributions were obtained for each image,
as well as the parameters defining those histograms. Parameters significantly different
between mock-control and Xcc-infected leaves were selected to train four classifiers (ANN,
SVM, LRA, and kNN) at each climatic condition tested. The obtained results indicate that
computer vision and AI classification algorithms have the ability to detect Xcc infections in
oilseed rape plants at an early stage. Additionally, the significance of taking into account
the impact of environmental conditions on the performance of the classification of these
methods is emphasized.

2. Results
2.1. Development of Symptoms Induced by the Biological and Climatic Treatments Tested

The fourth leaf of oilseed rape plants grown under each climatic treatment was in-
oculated (Xcc race 1 or 4, or mock-inoculated) by clipping in four secondary veins, and
symptoms were followed up to 10 days after inoculation (DAI) (Figure 1). At CCC, mock-
control leaves did not undergo any symptoms except for the dryness of the inoculated
tissues, as did leaves inoculated with Xcc from 3 DAI. However, leaves of plants inoculated
with both Xcc races developed chlorosis of the tissue surrounding the inoculation point on
successive days, being clearly pronounced at 10 DAI (Figure 1a).
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Figure 1. Symptoms developed by the oilseed rape leaves upon the three biological treatments (mock-
control, Xanthomonas campestris pv. campestris (Xcc) race 1-, and Xcc race 4-infected leaves) when
cultivated under the three climatic treatments assessed in this work: (a) current climatic conditions
(CCC); (b,c) representative concentration pathways (RCP) 4.5, and 8.5, respectively. Red arrows
indicate the points where the bacteria were inoculated at doses of 108 cfu·mL−1 on the fourth leaf of
oilseed rape plants. Leaves are shown at 3, 6, and 10 days after inoculation (DAI).

Climate change triggered abiotic stress to mock-control leaves that was more severe
when the climatic treatment imposed was more intense. Whole leaves showed very slight
chlorosis at 6 DAI that progressed thereafter. At 10 DAI, mock controls also showed reddish-
purple pigments. In the case of Xcc-infected leaves, biotic stress introduced additional
damage to that caused by abiotic stress. Mild (RCP 4.5; Figure 1b) or evident (RCP 8.5;
Figure 1c) chlorosis surrounded the inoculation points as early as 6 DAI. In those plants
growing at RCP 8.5, it was also possible to find reddish spots near inoculation sites at
this time point. Chlorosis evolved with a characteristic V-shape, which eventually led to
necrosis in those plants growing at RCP 8.5. The gaps between the chlorotic zones appeared
deep reddish-purple.

It is worth mentioning that the symptoms caused by both races of Xcc on the leaves
of oilseed rape plants were indistinguishable, to the naked eye, in any of the climatic
treatments tested.

2.2. Growth of Races 1 and 4 of Xanthomonas campestris pv. campestris on Oilseed Rape Leaves
from Plants Cultivated under Each Climatic Treatment

Xcc growth was followed in leaf zones concentric to the inoculation point from two
hours after infection until 10 DAI (Figure 2). Growth during the log phase was faster for
race 4 than for race 1 (excepting for RCP 8.5), reaching the plateau at 2 DAI, whereas race 1
rose the stationary phase later, at 3 (RCP 8.5) or 6 DAI (CCC and RCP 4.5). On the other
hand, the longer log phase of race 1 caused this race to reach the highest concentration at
10 DAI, registering 10 times more colony forming units per square centimeter (cfu · cm−2)
than race 4 in each climatic treatment tested. RCP 8.5 treatment accelerated the growth
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of both races of Xcc, as demonstrated by the higher slope in the log phase; in addition, a
higher number of cfu · cm−2 was recovered from Xcc race 4 at the stationary state.
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Figure 2. Growth kinetics of Xcc in the circular area surrounding the inoculation point of oilseed
rape leaves, measured as colony forming units per square centimeter (cfu · cm−2) from two hours
after inoculation until 10 days after inoculation (DAI). Bacterial density found on leaves of plants
grown under CCC (a), RCP 4.5 (b), and RCP 8.5 (c). Data represent means ± standard error of six leaf
disks. Significant differences between biological treatments are indicated by asterisks at p < 0.05 (*),
p < 0.01 (**), and p < 0.001 (***).

Bacterial growth was also tested in vitro for two days. Growth conditions reproduced
those used for each climatic treatment at which plants were grown (Figure S1). Compared
to CCC, RCP 4.5 induced a shorter log phase for both bacteria, as well as a faster growth of
race 4 with respect to race 1; however, the number of cfu per milliliter recovered during the
plateau phase was very similar for both races and climatic treatment. On the other hand,
no bacteria could be recovered when cultures were growing under RCP 8.5 conditions.

2.3. Measurements of Oxidative Stress and Pigment Content in Leaves of Oilseed Rape Plants
Grown under the Biological and Climatic Treatments Assayed

To assess the oxidative stress that biological and climatic treatments caused to oilseed
rape leaves, total antioxidant activity (TAA), lipid peroxidation, and total soluble phenolic
content were quantified (Figure 3). TAA measures the ability of antioxidant substances in
leaves to counteract free reactive oxygen species (ROS); lipid peroxidation is a marker of
oxidative stress; and several phenolic compounds are known to have antioxidant activity.

Climate change (both RCP 4.5 and 8.5) imposed abiotic stress to mock-control oilseed
rape leaves that led to higher TAA at 10 DAI relative to CCC, as well as higher total phenolic
content at 6 DAI (RCP 4.5) or/and 10 DAI (RCP 4.5 and RCP 8.5). In spite of this increase
in antioxidant substances, both climate change treatments induced lipid peroxidation at
10 DAI.

Regarding biological treatments at CCC, race 4 of Xcc caused a decrease in the TAA of
infected leaves at 6 and 10 DAI, whereas race 1-infected leaves did not show significant
changes respecting the mock-controls. The consequence of this reduction in TAA was an
increase in lipid peroxidation of infected leaves relative to mock controls at 10 DAI, which
was also registered in leaves infected with Xcc race 1. Total soluble phenolics were also
increased in leaves infected by Xcc race 4 at 10 DAI but not in those infected with race 1.
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Figure 3. Determination of: (a) total antioxidant activity (TAA), (b) lipid peroxidation, and (c) total
phenolic content in the fourth leaf of oilseed rape plants at 6 and 10 days after inoculation (DAI).
Graphs show means ± standard error of six leaf disks sampled from six plants. Blue, red, and green
colors represent each biological treatment (mock-controls; Xcc race 1-, and Xcc race 4-infected leaves,
respectively), whereas solid-colored, striped, and dotted bars show the results obtained for each
climatic treatment (CCC, RCP 4.5, and RCP 8.5, respectively). For each climatic treatment, different
lowercase letters indicate significance between biological treatments (p < 0.05). In contrast, for
each biological treatment, different uppercase letters show significance between climatic treatments
(p < 0.05). Consequently, lowercase letters should be interpreted vertically, while the interpretation of
uppercase letters should be made horizontally.

Xcc infection added a biotic component to the abiotic stress already caused by climate
change. At RCP 4.5, Xcc-infected plants showed lower TAA than the controls at 10 DAI and
increases in lipid peroxidation from 6 DAI. However, no significant differences in soluble
phenolic content could be found between mock-controls and Xcc-infected leaves at any
DAI assayed. On the other hand, the three biological treatments showed similar TAA and
soluble phenolic content at RCP 8.5, whereas lipid peroxidation of Xcc-infected plants took
place as early as 6 DAI.

In general terms, alterations caused by races 1 and 4 of Xcc on TAA, lipid peroxidation,
and total soluble phenolic content of oilseed rape leaves were very similar. In fact, no
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significant differences could be found between leaves inoculated with race 1 and those
infected with race 4 at RCP 4.5 and RCP 8.5. Contrarily, significant differences were
registered between leaves infected with both races of Xcc in TAA (from 6 DAI) and soluble
phenolic content (at 10 DAI) but not in lipid peroxidation at CCC.

Pigment composition was also analyzed based on the color changes observed in oilseed
rape leaves. The progression of chlorosis and the appearance of red-purple pigments can be
quantified by measuring the Chl a/b (chlorophyll a/b) ratio, the total Chl amount over the
sum of Xanth (xanthophylls) and Car (carotenoids), and the content of Anth (anthocyanins;
Figure 4).
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Figure 4. Measurements of: (a) the ratio of chlorophyll a over chlorophyll b (Chl a/b), (b) the ratio of
total chlorophyll content over the xanthophylls and carotenoids content (Total Chl/(Xanth + Car)),
and (c) anthocyanins content (Anth) in the fourth leaf of oilseed rape plants at 6 and 10 days after
inoculation (DAI). Graphs show means ± standard error of six leaf disks sampled from six plants.
Bars features (colors, patterns) and well as lower and uppercase letters should be interpreted as in
Figure 3. Please, note that the scale of the graph shown in (c) is different for 6 than for 10 DAI.
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As a consequence of climate change, mock-control leaves showed decreases in the Chl
a/b and total Chl/(Xanth + Car) ratios respecting the levels registered for CCC from 6 DAI,
which were more pronounced for plants growing at RCP 8.5. On the other hand, Anth
increased considerably at 10 DAI as a consequence of climate change.

With respect to biological treatments, Xcc infection reduced the Chl a/b and total
Chl/(Xanth + Car) ratios from 6 DAI at each climatic treatment assayed. Races 1 and 4
induced similar decreases with respect to the mock controls, except for those leaves of
plants growing at RCP 4.5 at 10 DAI, where race 4 induced a greater decline than race 1.
At CCC, but not in RCP 4.5 and RCP 8.5, Anth levels increased as a consequence of the
infection with both races of Xcc at 10 DAI.

2.4. Computer Vision Coupled to Classifying Algorithms to Identify Healthy and Xanthomonas
campestris pv. campestris-Infected Leaves

To identify Xcc-infected plants at an early stage by deep learning algorithms, the
fourth leaf of oilseed rape plants were imaged by MCFI, thermography, and hyperspectral
reflectance cameras before the Xcc symptoms appearance: 6 DAI for CCC and 3 DAI for
RCP 4.5 and RCP 8.5. To feed classifying algorithms, it is crucial to obtain parameters
from images that unambiguously define categories to be classified. Thus, the first task was
to identify those parameters that would best show the differences between mock-control
leaves and those infected with both races of Xcc. The workflow will be described using
F520 images as an example, but it was extensible to the rest of the images taken.

To simplify the work, whole leaf images were used at first, as they were easy to isolate
from the image background. Figure 5a shows the F520 emission of leaves of plants grown
at CCC at 6 DAI. Main veins, as well as inoculation points, appeared red, indicating higher
F520 emission. However, this increased F520 level was restricted to areas affected by the
mechanical damage caused by the tweezers in the case of mock-control leaves, whereas the
area affected by Xcc infection was wider. Moreover, some yellow pixels appeared outside
the main veins on Xcc-infected leaves, while they were not visible on mock-control leaves.
Despite this, when averaging the F520 registered across the whole leaves, no significant
differences were found between mock-control and Xcc-infected leaves (Figure 5b). The
offset between high and low pixel values of a parameter when averaging whole leaf
measurements that resulted in a loss of spatial information not only occurred with F520 but
was common to most of the parameters recorded by sensors.

Therefore, two decisions were made to work with images. The first was to use regions
of interest (ROIs) concentric to the inoculation point instead of entire leaves, as these were
the areas where the greatest changes between biological treatments were concentrated. In
addition, by having four inoculation points per leaf, the sample size was multiplied by
four. The second decision was to work with histograms displaying the distributions of
pixel values instead of simple averages to avoid loss of spatial information. Thus, Figure 5c
displays the histograms of the ROIs drawn in Figure 5a. The pixel value distributions of
the F520 corresponding to ROIs of Xcc-infected leaves were very different in width and
height to the ROIs of the control leaf, as well as being shifted to the right. Those differ-
ences can be quantified using parameters describing histograms: maximum, minimum,
extent = maximum −minimum, mean, mode, median, standard deviation, skewness, and
kurtosis. Several of these parameters defining histograms were significantly different
(p < 0.05) between mock-control and Xcc-infected leaves but not between leaves of plants
infected with races 1 and 4 (Figure 5d). This was true not only for F520 but also for many
other parameters registered by imaging techniques. Therefore, it seemed reasonable to work
with only two categories of leaves when classifying them: “healthy” (or mock-controls)
and “Xcc-infected”.
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Figure 5. (a) Images of green fluorescence (F520) emitted by representative mock-control, Xcc race 1-,
and race 4-infected oilseed rape leaves of plants grown under CCC at 6 days after inoculation (DAI).
Black circles indicate selected regions of interest (ROIs) concentric to inoculation points. (b) F520
emission averaged for the whole leaf. Graphs show the mean ± standard error of 11 leaves per
biological treatment. (c) Histograms showing the distribution of F520 pixel values of the ROIs
indicated in (a). (d) Parameters defining the histograms. Graphs display the mean ± standard error
of 44 ROIs per biological treatment. Lowercase letters show significant differences at p < 0.05.

Thus, for each climatic condition and before the onset of the symptoms, histograms
from ROIs of F520, T, water balance index (WBI), and disease broccoli index number 3
(DBI3) images were obtained, as these images showed a spatial pattern characteristic for
Xcc infection. The parameters defining the histograms were then calculated and compared
between the three biological treatments for each climatic condition using a two-tailed
Student t-test. Only those parameters that showed significant differences between healthy
and Xcc-infected leaves at p < 0.05 at each climatic treatment were incorporated into a
database to be implemented in classifying algorithms (Table 1).
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Table 1. List of parameters defining the histograms of the selected images that have been incorporated
into the databases to feed the classifiers for each climatic treatment. DBI3: diseased broccoli index
3; F520: green fluorescence; T: temperature; T_extent = T_maximum − T_minimum; WBI: water
balance index.

CCC RCP 4.5 RCP 8.5

F520_mean F520_mean F520_standard deviation
F520_standard deviation F520_minimum F520_skewness

F520_mode F520_mode F520_kurtosis
F520_median F520_median T_maximum

F520_skewness F520_skewness T_standard deviation
F520_kurtosis F520_kurtosis T_extent
T_maximum T_maximum WBI_mean
T_minimum T_minimum WBI_median

T_mean T_mean WBI_skewness
T_standard deviation T_standard deviation WBI_kurtosis

T_extent T_extent DBI3_mean
WBI_mean WBI_kurtosis DBI3_standard deviation

WBI_median DBI3_mean DBI3_median
DBI3_skewness DBI3_mode DBI3_skewness
DBI3_kurtosis DBI3_median DBI3_kurtosis

DBI3_skewness
DBI3_kurtosis

The classification performances of four algorithms were tested in each climatic treat-
ment: ANN, SVM, LRA, and kNN. All the fitted models successfully classified healthy
and Xcc-infected leaves in any climatic treatment. The ability to correctly identify healthy
leaves (specificity) and Xcc-infected leaves (sensitivity), as well as the capacity to make
right guesses (overall accuracy), was always higher than 0.85 out of 1 in all cases, i.e., for
the four models and the three climatic treatments (Figure 6).
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Figure 6. Results of the cross-validation of the four algorithms used to classify healthy and Xcc-
infected oilseed rape leaves for each climatic treatment: (a) CCC, (b) RCP 4.5, and (c) RCP 8.5. ANN:
multilayer perceptron based-artificial neural networks; SVM: support vector machines; LRA: logistic
regression analysis; kNN: k-nearest neighbors analysis.

For a better evaluation of the fitted models, other statistics have been computed. F-
measure is a way of combining precision and sensitivity into a single harmonic calculation
that captures the properties of both to return a more general measure of model quality. On
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the other hand, Cohen’s kappa indicates the proportion of correct classifications that are
not due to chance. F-measure and Cohen’s kappa can take values between 0–1, and the
performance of classifications of the fitted models will be better the closer these statistics are
to 1. Following these criteria, SVM and kNN were the algorithms with the best classification
performance at CCC (Figure 6a), obtaining the highest scores in the five statistics evaluated,
whereas kNN would be the most successful algorithm at RCP 4.5 (Figure 6b). Concerning
RCP 8.5, the classification performance of the four algorithms worsened, and the chance
hit capacity increased, as indicated by the lower Cohen’s kappa values. SVM and kNN
rendered a similar classification performance that outperformed the other models at RCP
8.5 (Figure 6c).

3. Discussion

Climate change could have a significant impact on plant diseases depending on
whether environmental conditions are conducive to diseases [49]. It is known that oilseed
rape plants grown under climate change conditions underwent premature leaf senescence
that is directly proportional to the severity of the climatic treatment imposed [34]. Thus, this
premature senescence experienced by plants growing under RCP 4.5 and especially RCP
8.5 climatic treatments may have made them more vulnerable to Xcc infection, as evidenced
by earlier onset and worsening of symptoms observed in these plants compared to those
grown under CCC. Higher disease severity associated with increased ambient temperatures
was also found in other plants [50–52]. In turn, increased CO2 levels have different impacts
on pathogen severity depending on the host–pathogen system analyzed: it can lower the
pathogen incidence [53], or contrarily, it can raise the pathogen aggressiveness [54–56].
However, the combination of elevated temperature and CO2, which is expected to occur
due to climate change, increases the severity of numerous plant diseases, as reviewed
by [57].

To understand the mechanisms underlying Xcc infection in oilseed rape plant metabolism
and how they may be influenced by climate change, experiments to measure oxidative
stress and pigment composition were conducted. The imbalance between the production
of ROS and antioxidant capacity causes oxidative stress leading to damage to cellular
components, including thylakoid membranes, and thus modifies the pigment composition
of chloroplasts [58]. Oxidative stress was evaluated in terms of TAA, lipid peroxidation,
and total phenolic content. TAA measures the capacity of antioxidant substances present
in leaf samples to scavenge free ROS, whereas lipid peroxidation is a marker of oxidative
stress [34]. Xcc infection, especially that produced by race 4, reduced the TAA and increased
lipid peroxidation in the leaves of plants grown under CCC. This is in agreement with other
studies that also measured decreases in TAA [59,60], increases in lipid peroxidation [61–63],
or both [64] in plants upon pathogen infections. Regarding climatic treatments, mock-
control plants grown under RCP 4.5 and RCP 8.5 displayed an increase in TAA at 10 DAI
that, in turn, could not prevent plants from suffering damages in membranes, as measured
by the increment in lipid peroxidation with respect to plants grown under CCC at this time
point. Lipid peroxidation is thought to be responsible for the premature leaf senescence
observed in plants grown under climate change conditions [34]. Thus, Xcc enhanced and
accelerated the oxidative stress already triggered by climate change, as lipid peroxidation
could be detected in infected plants as early as 6 DAI, reinforcing the hypothesis that climate
change increases the oilseed rape plants’ susceptibility to Xcc. On the other hand, phenolic
compounds synthesized by secondary plant metabolism are involved in the defense of
plants against stress due to their antioxidant properties, among other functions [65–67].
Climatic treatments RCP 4.5 and RCP 8.5 induced slight increments in soluble phenolic
content of mock controls, probably to try to counteract the negative effects of oxidative
stress [34]. However, there was no correlation between the severity of Xcc infection and the
measured soluble phenolic content in any of the climatic treatments tested. This seems to
be the general trend in the brassica’s response to Xcc [68]. Indeed, it has been suggested
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that secondary metabolism would play a less prominent role in defense against Xcc in
cabbage plants (another brassica) than primary metabolism [69].

Chlorosis is a marker of leaf senescence, a process associated with leaf aging but which
can also be induced by environmental stress [70,71], such as elevated temperatures and high
atmospheric CO2 levels [72–74]. Moreover, the composition and content of leaf pigments
change in plants infected with pathogens that induce chlorotic and necrotic symptoms [75],
probably due to lipid peroxidation-induced breakdown of thylakoid membranes [76].
In healthy leaves, the Chl a/b ratio is fine-tuned to ensure the correct development of
photosynthesis; however, Chl b is less sensitive to oxidative stress than Chl a. Thus, it is
frequent to find decreases in the Chl a/b ratio in stressed plants [77]. Declines in the total
Chl/(Xanth + Car) ratio are also common in chlorotic plants, as Xanth and Car catabolism
occurs to a lesser extent than Chl degradation [78–80]. Mock-control oilseed rape plants
grown under climate change treatments registered decreases in both ratios, with respect to
those grown under CCC that was proportional to the severity of the imposed climate change
projection. Therefore, climate change accelerates the appearance of chlorosis (and thus, the
senescence process) in leaves of oilseed rape plants as a consequence of membrane damage
induced by lipid peroxidation [34]. On the other hand, Xcc infection also unbalanced the
pigment composition of infected plants, as indicated by lower measured values of Chl a/b
and total Chl/(Xanth + Car) ratios, as in the case of rice plants infected with Xanthomonas
oryzae pv. oryzae [81] and tomato leaves infected with X. campestris pv. vesicatoria [82]. The
cumulative effects of climate change and bacterial infection caused oilseed rape plants
growing under RCP 8.5 to be most affected by oxidative stress. In contrast, the effects of
climatic and biological treatments were not cumulative in the case of Anth. These red-
purple pigments are involved in abiotic stress tolerance and resistance to herbivores and
pathogens, helping plants to scavenge free ROS, among other functions [83,84]. Anth is also
synthesized during leaf senescence when Chl degradation makes them more noticeable [85].
Thus, mock-control oilseed rape plants produced more Anth when grown under RCP 4.5
and RCP 8.5 with respect to those cultivated under CCC, probably as a part of a strategy to
avoid lipid peroxidation [34,86]. On the other hand, Xcc infection produced an increment
in Anth content when plants were grown under CCC, as in the case of apple trees infected
with cedar-apple rust [87]. However, the combined effect of climate change and bacterial
infection did not enhance the accumulation of Anth in infected leaves. The only notable
feature was the different visual pattern of Anth accumulation between mock-controls and
Xcc-infected leaves. The mock controls did not show a specific pattern of Anth distribution,
accumulating throughout the whole leaf. Instead, leaves of Xcc-infected plants accumulated
Anth mainly in the areas surrounding the V-shaped lesions, probably in an attempt to
alleviate the symptoms caused by the spreading bacteria. The movement of the Brassica
yellows virus also caused the accumulation of Anth during its spreading through tomato
plants [88].

Interestingly, visual symptoms caused by biological treatments in oilseed rape plants
did not differ from one Xcc race to another under any climatic condition, unlike broccoli [48]
or Arabidopsis [89] plants, where it was possible to see differences in symptoms caused
by races 1 and 4. This could compromise the ability of the classifying algorithms to
distinguish plants infected with both races, as will be discussed later. Furthermore, the
lack of significant differences between the two races of Xcc in most of the physiological
parameters measured (regardless of climatic treatment assayed) seems to be in line with the
absence of differences in symptoms caused by both races. This was true even though the
number of bacteria recovered from live tissues was clearly different for both races. From the
growth graphs it could be deduced that a minimum concentration above 106 cfu · cm−2 is
sufficient to produce symptoms and that, thereafter, the number of cfus is not proportional
to the degree of symptomatology. As this critical concentration is reached earlier under
climate change conditions, especially under RCP 8.5 treatment, the onset of symptoms is
consequently brought forward. Moreover, physiological alterations induced by climate
change could make plants more vulnerable to Xcc, as discussed above. Additionally, the
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bacterium could also be favored by higher temperatures and increased levels of atmospheric
CO2 [51]. To test this hypothesis, races 1 and 4 of Xcc were grown in vitro under the three
climatic treatments. Both races grow similarly in vitro, except under RCP 8.5, where no
live cells could be recovered. Thus, the plant seems to make a difference for Xcc growth,
and the epiphytic subsistence of this bacterium could be threatened under RCP 8.5 growth
conditions, which could instead favor the crops.

Overall, these findings highlight the complex interplay between the bacterial pathogen,
the host plant, and the environment in determining the outcome of an infection. However,
it can be concluded that climate change may exacerbate the negative effects of Xcc infection
on oilseed rape plants. This information could be useful in the development of strategies to
mitigate the negative impacts of pathogen infection on crops and to adapt to the challenges
of climate change in agriculture.

The second objective of this work was to develop an effective method for the de-
tection of Xcc-infected oilseed rape plants based on computer vision and deep learning
algorithms in each climatic condition. This method has been used with great success in the
last few years due to the reduction in the cost of image sensors and the development of
deep-learning classification methods [90–92]. In this work, thermal, MCFI, and hyperspec-
tral reflectance measurements of mock-control and Xcc-infected oilseed rape leaves were
taken using imaging sensors. To ensure the identification of Xcc-infected plants at an early
stage, measurements were performed just before the symptoms appeared in each climatic
condition (6 DAI for CCC and 3 DAI for RCP 4.5 and RCP 8.5). Histograms from areas
surrounding the inoculated points were used to avoid the offset between high and low
pixel values when averaging whole leaf measurements. Histograms showing the frequency
of pixel values for a parameter of interest are convenient tools to find differences between
treatments [93], and the parameters defining those histograms have been previously shown
to be useful to feed algorithms able to detect bacterial and fungal infections on cucur-
bits [29]. Thus, histograms of ROIs were extracted from F520, T, WBI, and DBI3 images.
Not surprisingly, images of these parameters revealed a characteristic spatial pattern for
Xcc-infected leaves that images of leaves from mock-control plants did not show. F520
comes from defensive phenolic compounds covalently bound to cell walls [15], and plants
may be accumulating them in an attempt to contain the bacterial spreading. Xcc is known
to plug the xylem vessels [94], and parameters such as T and WBI are sensitive to changes in
leaf water status [14,95]. Moreover, DBI3 (a VI that was specifically designed to detect Xcc
infection on broccoli plants [48]) is related to lipid peroxidation [34]. Relevant parameters
describing histograms were incorporated into three databases, one for each climatic treat-
ment. Data were organized into two categories: “healthy” and “Xcc-infected”, as it was not
possible to find differences between leaves of plants infected with both races of Xcc. This is
consistent with the lack of differences in most of the measured physiological parameters,
as well as visual symptoms, between Xcc race 1 and race 4 treatments, as discussed above.
Distinguishing between plants infected by one race or another is irrelevant in practice since
treatments against Xcc do not depend on the infecting race.

The classification performance of all tested algorithms was very successful in every
climatic treatment, demonstrating the effectiveness of the chosen method. For plants grown
under CCC, the classification performance of ANN, SVM, LRA, and kNN at CCC were
similar in terms of the five indicators evaluated. However, SVM and kNN performed
best since they showed the higher F-measure and Cohen’s kappa values. Nevertheless,
kNN displayed slightly higher sensitivity than SVM and, therefore, low false negative
rates, which can be considered more convenient when detecting diseased plants [30,96].
These results were comparable to that recently reported by Zhang et al. [97], who found
that convolutional neural networks were able to detect peach leaf disease produced by
X. campestris with 100% accuracy, and to those informed by Shahoveisi et al. [26], who
reported accuracies above 89% when applying ANNs to the detection of tomato or oilseed
rape plants infected by Sclerotinia sclerotiorum. On the other hand, the model described here
considerably outperformed the maximum mean average precision (56.9%) obtained when
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different classifying algorithms were applied to detect aphid colonies in Brassica napus
crops [98].

According to previous results reported for broccoli plants growing under climate
change conditions and infected by races 1 and 4 of Xcc [48], the performance of the classify-
ing models was affected differentially by growing conditions. Whereas the classification
capability of the algorithms may increase slightly for oilseed rape plants grown at RCP 4.5,
the predictive ability would decrease if the worst predictions of climate change (RCP 8.5)
were to come true, as lower Cohen′s kappa values showed. However, the decrease in
the predictive capability of the models developed for oilseed rape was not as marked as
that recorded for the broccoli models. Thus, the approach employed in this work (use of
ROIs and histograms, classification into two categories: “healthy” and “Xcc infected”),
although more laborious, seems to be more efficient compared to that used for broccoli
(parameters averaged for whole leaves, classification into three categories: “healthy”, “Xcc
race 1-infected“ and “Xcc race 4-infected”). As in the case of plants grown under CCC, kNN
would be the model of choice, followed by SVM, in the projected future climate conditions.

In conclusion, climate change has a significant impact on Xcc infection in oilseed rape
plants, as premature senescence caused by elevated temperatures and high atmospheric
CO2 levels make plants more vulnerable to bacterial infection. Moreover, Xcc enhances
and accelerates the oxidative stress already triggered by climate change in oilseed rape
plants. On the other hand, this study developed an effective method for the early detection
of Xcc-infected oilseed rape plants using computer vision and deep learning algorithms.
The classification performance of all tested algorithms (fed with parameters describing
histograms obtained from regions of interest) was successful in every climatic treatment,
with kNN and SVM being the best performers. However, the predictive ability of the devel-
oped models may decrease under the extreme climate conditions projected for the future.
Overall, these findings highlight the importance of understanding the mechanisms under-
lying plant–pathogen interactions and the effects of climate change on plant physiology
to develop effective strategies for managing plant diseases in a changing environment. It
also emphasizes the potential of computer vision and AI classification algorithms for early
disease detection of crop diseases, noting the importance of considering environmental
conditions in the performance of these techniques. Thus, the results of this research could
potentially be used to improve disease surveillance and precision agriculture today and in
the future.

4. Materials and Methods
4.1. Plant and Bacterial Growth

Oilseed rape plants (Brassica napus L. var. napobrassica; Franchi Sementi, Grassobbio,
Italy) were subjected to two types of treatments: biological and climatic treatments. Mock-
controls and two races (1 and 4) of the pathogenic bacterium Xcc constituted the three
biological treatments. Race 1 (HRI 3811; originally isolated from B. oleracea in USA) and race
4 (HRI 1279A; originally isolated from Brassica oleracea capitata in UK) are conserved in the
Warwick University (Coventry, UK) [99]. On the other hand, three climatic treatments were
selected to evaluate the impact of climate change on plants and pathogens: intermediate
and extreme projections of climate change (RCP 4.5 and RCP 8.5, respectively), the CCC
the control treatment (Table 2). For each experiment, plants were kept in the corresponding
climatic treatment from the moment of sowing until the end of the experiment. Ambient
temperature and CO2 concentration shown in Table 2 were selected according to the data
regionalized for Castilla y León by the AEMet for CCC and those matching to RCP 4.5
and RCP 8.5 in years 2081–2100. Day and night temperatures correspond to the aver-
age values during September, the sowing, and the first stages of the growth season. In
addition, the growth chamber was set to a 16/8 h day/night regime with 60% relative
humidity and 200 µmol photon m−2 s−1 of photosynthetically active radiation light for
each climatic treatment.
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Table 2. Climatic treatments used in this work. CCC represents the current climatic conditions
registered for September (sowing season and early stages of oilseed rape growth) in Castilla y
León, the main oilseed rape growing region in Spain. RCP 4.5 and RCP 8.5 are the representative
concentration pathways 4.5 and 8.5, respectively, i.e., projections of potential future climatic conditions
in the same region for the years 2080–2100. Ppm: parts per million; T: temperature.

Climatic Treatment Day T (◦C) Night T (◦C) CO2 Concentration (ppm)

CCC 26 12 408
RCP 4.5 29 15 650
RCP 8.5 32 18 1000

4.2. Inoculation of Leaves with Races 1 and 4 of Xanthomonas campestris pv. campestris and
Kinetics of Bacterial Growth

When plants were approximately 3.5 weeks old, the fourth leaf was inoculated with
the pathogen by clipping four secondary veins with rat tooth tweezers previously dipped
in the corresponding bacterial suspension (Figure 1). To prepare this suspension, Xcc races
1 and 4 were grown for 24 h at 28 ◦C on LB plates (5 g/L sodium chloride; 10 g/L tryptone;
5 g/L yeast extract; 14 g/L bacteriological agar at final pH 7.0 ± 0.2) and washed with
sterile 10 mM MgCl2; the optical density was then adjusted at 600 nm to 0.1, corresponding
to 108 cfu·mL−1. The mock control was performed by clipping the leaves with the tweezers
dipped in a 10 mM MgCl2 solution without bacteria. At least two experiments per climatic
treatment were evaluated, providing similar results.

Determination of bacterial density per leaf area was performed by extracting bacteria
from six 4.15 cm2 leaf disks ground in 10 mM MgCl2. Serial dilutions of the bacteria
in 10 mM MgCl2 were plated onto LB plates, and cfu counts were performed after 48 h,
according to [100].

4.3. Physiological Determinations Using Biochemical Methods

For TAA, lipid peroxidation and soluble phenolic content measurements, as well
as pigments determinations, six leaves were sampled per biological treatment at 6 and
10 DAI by cutting out a 4.15 cm2 disk concentric to an infection point. Samples were
immediately frozen in liquid nitrogen and stored at −80 ◦C until processing. Shimadzu
UV1800 spectrophotometer (Shimadzu Corporation, Tokyo, Japan) was used to perform all
spectrophotometric measurements.

Colorimetric assays were performed as in [34]. Briefly, the method developed by [101]
was used to determine TAA, which is based on the ability of the samples to scavenge
the oxidative radical 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) (−.+) present in the
spectrophotometer cuvette. The results are expressed as ascorbic acid equivalents re-
ferred to in the sampled area (nmol ascorbic acid · cm−2). The malondialdehyde (MDA)
content obtained using the thiobarbituric acid reaction described by [102] was used to
measure lipid peroxidation. Results are expressed as MDA equivalents per leaf area
(nmol MDA · cm−2). The measurement of total soluble phenolic content was carried out
using the Folin–Ciocalteu method [103,104], and results are expressed as caffeic acid equiv-
alents referred to sampled area (µg caffeic acid · cm−2). Measurements of Chl, Car, and
Xanth needed to calculate the ratios Chl a/b and total Chl/(Car + Xanth) were performed
following the method described by [105], whereas Anth quantification was performed
using the protocol described by [106].

4.4. Statistics

Graphs (averages ± standard errors) and statistical analysis were performed with
Microsoft Office Excel 2016 (Microsoft Corporation, Redmond, WA, USA). Two-tailed
Student t-test was used to compare bacterial growth, as well as biological and climatic
treatments at each DAI assayed. Differences were considered significant at p < 0.05 (*),
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p < 0.01 (**), or p < 0.001 (***) and were indicated by different lowercase or uppercase letters
in the corresponding figures.

4.5. Computer Vision

Measurements using imaging sensors were acquired on inoculated but still symptom-
free leaves of oilseed rape plants at 3 (RCP 4.5 and RCP 8.5) or 6 DAI (CCC). Leaves
remained attached to the plant during the whole experiment. Eleven or twelve leaves per
biological treatment were sequentially imaged using three different cameras, according
to [34,48].

Thermal images were acquired using a FLIR A305sc camera (FLIR Systems, Wilsonville,
OR, USA). Inside de growth chamber, the thermal camera was placed vertically 50 cm above
the leaves, and 10 thermal images were recorded at a rate of one image per second [27,29].
Images of leaf T were adjusted to a fixed scale using the FLIR ResearchIR v. 3.4 software
and saved for further analysis.

The customized Open FluorCam FC 800-O (Photon Systems Instruments, Brno, Czechia)
was used to record MCFI. Each leaf was placed 50 cm below the camera. According
to [100,103], the fluorescence emission of the leaf was excited for 2 min using a 355 nm
UV lamp, and F440, F520, F680, and F740 (blue, green, red, and far-red fluorescence,
respectively) were sequentially acquired for 30 s using appropriate cutoff filters. FluorCam
v. 7.1.0.3 software averaged nine images per fluorescence region to obtain black-and-white
images of each MCFI parameter. The software then applied a fixed scale to all images and
saved them. F520 images were selected for further analysis.

Hyperspectral reflectance of leaves was registered with a Pika L hyperspectral imaging
camera (Resonon, Bozeman, MT, USA) in the visible (400–700 nm) to near-infrared spectral
range (700–1000 nm). According to [48], dark and light corrections were performed prior
to leaf measurements. Dark correction was made in darkness. For light correction, a
homogenous white calibration tile provided by Resonon was illuminated with four xenon
lamps, providing homogeneous light intensity between 400 and 1000 nm. The leaves
were then placed on a translation stage 50 cm below the sensor. The leaves remained
homogeneously illuminated while the camera composed the images. Spectronon v. 2.134
software was used for dark and light corrections, as well as to save the images of selected
VIs (WBI and DBI3) at a fixed scale for further analysis. The equations for calculating
WBI [95] and DBI3 [48] are as follows:

WBI = R970/R900 (1)

DBI3 = R578/R529 (2)

4.6. Image Analysis to Obtain Parameters Used in Machine Learning Classifying Algorithms

For the early diagnosis of infected plants in each climatic treatment, the images of
T, F520, WBI, and DBI3 were chosen. The main goal was to find parameters from those
images that would serve to differentiate healthy from Xcc-infected oilseed rape leaves when
implemented in classifying algorithms. Four ROIs approximately 4.15 cm2 in extent and
concentric to the clipping points practiced in the fourth leaf were selected using FIJI, a free
processing package that facilitates scientific image analysis (https://imagej.net/software/
fiji/ (accessed on 12 July 2022); [107]). The sample size when using ROIs for image analysis
is shown in Table 3. For each ROI, the pixel value distribution as well as the parameters
defining those histograms (maximum, minimum, extent = maximum −minimum, mean,
mode, median, standard deviation, skewness, and kurtosis), were obtained by FIJI. For each
image (T, F520, WBI, and DBI3), all these variables were compared by two-tailed Student
t-test, and those showing significant differences between healthy and Xcc-infected leaves
were organized in databases (Microsoft Excel), one per climatic treatment, and used as
input data for several classifying algorithms (Table 1).

https://imagej.net/software/fiji/
https://imagej.net/software/fiji/
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Table 3. Sample size (n) used for training and cross-validation of the classifying algorithms in each
climatic treatment.

Climatic Treatment n for Healthy n for Xcc-Infected Total n

CCC 44 88 132
RCP 4.5 48 96 144
RCP 8.5 48 92 140

4.7. Plant Classification Using Machine Learning

Classification analyses were made by KNIME free version 4.5.2 (KNIME AG, Zurich,
Switzerland; www.knime.com (accessed on 13 July 2022); [108]). Each database was firstly
rescaled from zero to one to ensure comparison between biological treatments, according
to the equation: rescaled value = (x −minimum)/maximum. Classifying algorithms were
trained and then cross-validated using stratified sampling, applying the same random seed
for each algorithm and 10 validations. Four models were built for each one of the three
climatic treatments by analyzing the corresponding databases with four supervised classi-
fying algorithms: ANN, SVM, LRA, and kNN. The best algorithms fit for the prediction
of healthy and Xcc-infected oilseed rape leaves are provided in Table S1. Any modifica-
tion of these parameters worsened the classification performance, which was evaluated
against five indicators: (i) the true negative rate or specificity; (ii) the true positive rate or
sensitivity; (iii) the percentage of total right guesses or accuracy; (iv) F-measure, which is
the weighted harmonic mean of precision and sensitivity; where precision is the number
of correct healthy samples divided by the number of all plants classified as ‘healthy’; and
(v) Cohen’s kappa, which indicates the proportion of correct classifications that are not
due to chance.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants12061322/s1. Figure S1: In vitro growth kinetics
of Xanthomonas campestris pv. campestris (Xcc) measured as colony forming units per milliliter
(cfu · cm−2) during 48 h. Bacterial density found in liquid LB medium grown under CCC (a) and
RCP 4.5 (b). No bacteria could be recovered from LB at RCP 8.5. Races 1 and 4 of Xcc were cultivated
in the growth chamber to ensure they were grown in the same climatic treatments as plants. The
cotton plug of the tubes guaranteed proper gas exchange with the growth chamber atmosphere. In
the graphs, the sequence of days and nights is indicated by white and gray rectangles, respectively.
Daytime and nighttime temperatures, as well as CO2 concentrations, are indicated for each climatic
treatment. Data represent means ± standard error of four samples. Significant differences between
biological treatments are indicated by asterisks at p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***). Table S1.
Best algorithms fit for the prediction of healthy and Xanthomonas campestris pv. campestris-infected
oilseed rape leaves.
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change; RCP 8.5: extreme scenario of climate change; ROI: region of interest; ROS: reactive oxygen
species; SVM: support vector machine: T: temperature; TAA: total antioxidant activity; VI: vegeta-
tion index; WBI: water balance index; Xanth: xanthophylls; Xcc: Xanthomonas campestris pv. campestris.
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characterization of succulent plant Tacitus bellus response to Fusarium verticillioides infection in vitro. J. Plant Physiol. 2020,
244, 153086. [CrossRef] [PubMed]

61. Rahou, Y.A.; Boutaj, H.; Boutasknit, A.; Douira, A.; Benkirane, R.; El Modafar, C.; Meddich, A. Colonization of tomato
roots with arbuscular mycorrhizal fungi changes of antioxidative activity and improves tolerance to Verticillium dahliae.
Plant Cell Biotechnol. Mol. Biol. 2021, 22, 65–81.

62. Sofy, A.R.; Sofy, M.R.; Hmed, A.A.; Dawoud, R.A.; Alnaggar, A.E.-A.M.; Soliman, A.M.; El-Dougdoug, N.K. Ameliorating the
adverse effects of Tomato mosaic tobamovirus infecting tomato plants in Egypt by boosting immunity in tomato plants using zinc
oxide nanoparticles. Molecules 2021, 26, 1337. [CrossRef] [PubMed]

63. Sofy, A.R.; Dawoud, R.A.; Sofy, M.R.; Mohamed, H.I.; Hmed, A.A.; El-Dougdoug, N.K. Improving regulation of enzymatic and
non-enzymatic antioxidants and stress-related gene stimulation in Cucumber mosaic cucumovirus-infected cucumber plants treated
with glycine betaine, chitosan and combination. Molecules 2020, 25, 2341. [CrossRef] [PubMed]

64. Bruno, G.L.; Sermani, S.; Triozzi, M.; Tommasi, F. Physiological response of two olive cultivars to secondary metabolites of
Verticillium dahliae Kleb. Plant Physiol. Biochem. 2020, 151, 292–298. [CrossRef] [PubMed]

65. Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of
polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [CrossRef]

66. Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Chapter 2-Phenolic compounds: Structure, classification, and antioxidant power.
In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 33–50.

67. Dixon, R.A.; Achnine, L.; Kota, P.; Liu, C.J.; Srinivasa Reddy, M.S.; Wang, L. The phenylpropanoid pathway and plant defence-a
genomics perspective. Mol. Plant Pathol. 2002, 3, 371–390. [CrossRef] [PubMed]

68. Aires, A.; Dias, C.S.P.; Carvalho, R.; Oliveira, M.H.; Monteiro, A.A.; Simões, M.V.; Rosa, E.A.S.; Bennett, R.N.; Saavedra, M.J.
Correlations between disease severity, glucosinolate profiles and total phenolics and Xanthomonas campestris pv. campestris
inoculation of different Brassicaceae. Sci. Hortic. 2011, 129, 503–510. [CrossRef]

69. Vega-Álvarez, C.; Francisco, M.; Cartea, M.E.; Fernández, J.C.; Soengas, P. The growth-immunity tradeoff in Brassica oleracea-
Xanthomonas campestris pv. campestris pathosystem. Plant Cell Environ. 2022, 1–13. [CrossRef]

70. Mayta, M.L.; Hajirezaei, M.-R.; Carrillo, N.; Lodeyro, A.F. Leaf senescence: The chloroplast connection comes of age. Plants 2019,
8, 495. [CrossRef] [PubMed]

http://doi.org/10.1038/s41438-019-0186-7
http://doi.org/10.3390/plants10122705
http://doi.org/10.3389/fpls.2022.790268
http://doi.org/10.1016/j.cub.2018.03.054
http://doi.org/10.1111/jph.12484
http://doi.org/10.1038/s41467-017-01674-2
http://www.ncbi.nlm.nih.gov/pubmed/29180698
http://doi.org/10.3390/pathogens11020200
http://doi.org/10.1093/jxb/erp147
http://doi.org/10.1007/s10658-019-01706-1
http://doi.org/10.1094/PHYTO-96-0425
http://www.ncbi.nlm.nih.gov/pubmed/18943425
http://doi.org/10.1007/s42161-018-0125-8
http://doi.org/10.1155/2019/9732325
http://www.ncbi.nlm.nih.gov/pubmed/31205950
http://doi.org/10.24193/subbchem.2022.1.10
http://doi.org/10.1016/j.jplph.2019.153086
http://www.ncbi.nlm.nih.gov/pubmed/31812905
http://doi.org/10.3390/molecules26051337
http://www.ncbi.nlm.nih.gov/pubmed/33801530
http://doi.org/10.3390/molecules25102341
http://www.ncbi.nlm.nih.gov/pubmed/32429524
http://doi.org/10.1016/j.plaphy.2020.03.029
http://www.ncbi.nlm.nih.gov/pubmed/32251954
http://doi.org/10.3390/molecules24132452
http://doi.org/10.1046/j.1364-3703.2002.00131.x
http://www.ncbi.nlm.nih.gov/pubmed/20569344
http://doi.org/10.1016/j.scienta.2011.04.009
http://doi.org/10.1111/pce.14454
http://doi.org/10.3390/plants8110495
http://www.ncbi.nlm.nih.gov/pubmed/31718069


Plants 2023, 12, 1322 21 of 22

71. Thakur, N.; Sharma, V.; Kishore, K. Leaf senescence: An overview. Indian J. Plant Physiol. 2016, 21, 225–238. [CrossRef]
72. Rossi, S.; Burgess, P.; Jespersen, D.; Huang, B. Heat-induced leaf senescence associated with chlorophyll metabolism in bentgrass

lines differing in heat tolerance. Crop Sci. 2017, 57, S-169–S-178. [CrossRef]
73. Jochum, G.M.; Mudge, K.W.; Thomas, R.B. Elevated temperatures increase leaf senescence and root secondary metabolite

concentrations in the understory herb Panax quinquefolius (Araliaceae). Am. J. Bot. 2007, 94, 819–826. [CrossRef]
74. Agüera, E.; De la Haba, P. Leaf senescence in response to elevated atmospheric CO2 concentration and low nitrogen supply.

Biol. Plant 2018, 62, 401–408. [CrossRef]
75. Mahlein, A.K.; Oerke, E.C.; Steiner, U.; Dehne, H.W. Recent advances in sensing plant diseases for precision crop protection.

Eur. J. Plant Pathol. 2012, 133, 197–209. [CrossRef]
76. Dhindsa, R.S.; Plumb-Dhindsa, P.; Thorpe, T.A. Leaf senescence: Correlated with increased levels of membrane permeability and

lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [CrossRef]
77. Kasajima, I. Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis.

BMC Res. Notes 2017, 10, 168. [CrossRef]
78. Kusaba, M.; Tanaka, A.; Tanaka, R. Stay-green plants: What do they tell us about the molecular mechanism of leaf senescence.

Photosynth. Res. 2013, 117, 221–234. [CrossRef] [PubMed]
79. Ougham, H.; Hörtensteiner, S.; Armstead, I.; Donnison, I.; King, I.; Thomas, H.; Mur, L. The control of chlorophyll catabolism and

the status of yellowing as a biomarker of leaf senescence. Plant Biol. 2008, 10, 4–14. [CrossRef] [PubMed]
80. Biswal, B. Carotenoid catabolism during leaf senescence and its control by light. J. Photochem. Photobiol. B 1995, 30, 3–13.

[CrossRef]
81. Kumar, A.; Gul, M.Z.; Zeeshan, A.; Bimolata, W.; Qureshi, I.A.; Ghazi, I.A. Differential antioxidative responses of three different

rice genotypes during bacterial blight infection. Aust. J. Crop Sci. 2013, 7, 1893–1900.
82. Kocal, N.; Sonnewald, U.; Sonnewald, S. Cell wall-bound invertase limits sucrose export and is involved in symptom development

and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria.
Plant Physiol. 2008, 148, 1523–1536. [CrossRef]

83. Gould, K.S. Nature’s Swiss army knife: The diverse protective roles of anthocyanins in leaves. J. Biotechnol. Biomed. 2004,
2004, 314–320. [CrossRef] [PubMed]

84. Steyn, W.J.; Wand, S.J.E.; Holcroft, D.M.; Jacobs, G. Anthocyanins in vegetative tissues: A proposed unified function in
photoprotection. New Phytol. 2002, 155, 349–361. [CrossRef]

85. Lee, D.W. Anthocyanins in autumn leaf senescence. Adv. Bot. Res. 2002, 37, 147–165. [CrossRef]
86. Tallis, M.J.; Lin, Y.; Rogers, A.; Zhang, J.; Street, N.R.; Miglietta, F.; Karnosky, D.F.; De Angelis, P.; Calfapietra, C.; Taylor, G.

The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence.
New Phytol. 2010, 186, 415–428. [CrossRef]

87. Lu, Y.; Chen, Q.; Bu, Y.; Luo, R.; Hao, S.; Zhang, J.; Tian, J.; Yao, Y. Flavonoid accumulation plays an important role in the rust
resistance of Malus plant leaves. Front. Plant Sci. 2017, 8, 1286. [CrossRef]

88. Chen, X.-R.; Wang, Y.; Zhao, H.-H.; Zhang, X.-Y.; Wang, X.-B.; Li, D.-W.; Yu, J.-L.; Han, C.-G. Brassica yellows virus’ movement
protein upregulates anthocyanin accumulation, leading to the development of purple leaf symptoms on Arabidopsis thaliana.
Sci. Rep. 2018, 8, 16273. [CrossRef]

89. Távora, F.T.P.K.; Moura, D.R.; Cury, N.F.; Mendes, P.N.; Quezado-Duval, A.M.; Mehta, A. Pathogenicity assays on
Arabidopsis thaliana infected with Xanthomonas campestris pv. campestris seize aggressiveness variation at the race and
isolate levels. Eur. J. Plant Pathol. 2022, 164, 139–145. [CrossRef]

90. Li, Z.; Guo, R.; Li, M.; Chen, Y.; Li, G. A review of computer vision technologies for plant phenotyping. Comput. Electron. Agric.
2020, 176, 105672. [CrossRef]

91. Roitsch, T.; Cabrera-Bosquet, L.; Fournier, A.; Ghamkhar, K.; Jiménez-Berni, J.A.; Pinto, F.; Ober, E.S. Review: New sensors and
data-driven approaches—A path to next generation phenomics. Plant Sci. 2019, 282, 2–10. [CrossRef]

92. Pineda, M. An overview of the special issue on plant phenotyping for disease detection. Remote Sens. 2021, 13, 4182. [CrossRef]
93. Delalieux, S.; Auwerkerken, A.; Verstraeten, W.; Somers, B.; Valcke, R.; Lhermitte, S.; Keulemans, J.; Coppin, P. Hyperspectral

reflectance and fluorescence imaging to detect scab induced stress in apple leaves. Remote Sens. 2009, 1, 858–874. [CrossRef]
94. Sutton, J.; Williams, P. Relation of xylem plugging to black rot lesion development in cabbage. Can. J. Bot. 2011, 48, 391–401.

[CrossRef]
95. Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Savé, R. The reflectance at the 950–970 nm region as an indicator of plant water status.

Int. J. Remote Sens. 1993, 14, 1887–1905. [CrossRef]
96. Sankaran, S.; Maja, J.M.; Buchanon, S.; Ehsani, R. Huanglongbing (citrus greening) detection using visible, near infrared and

thermal imaging techniques. Sensors 2013, 13, 2117–2130. [CrossRef]
97. Zhang, K.; Xu, Z.; Dong, S.; Cen, C.; Wu, Q. Identification of peach leaf disease infected by Xanthomonas campestris with deep

learning. Eng. Agric. Environ. 2019, 12, 388–396. [CrossRef]
98. Amrani, A.; Sohel, F.; Diepeveen, D.; Murray, D.; Jones, M.G.K. Deep learning-based detection of aphid colonies on plants from a

reconstructed Brassica image dataset. Comput. Electron. Agric. 2023, 205, 107587. [CrossRef]
99. Vicente, J.G.; Conway, J.; Roberts, S.J.; Taylor, J.D. Identification and origin of Xanthomonas campestris pv. campestris races and

related pathovars. Phytopathology 2001, 91, 492–499. [CrossRef]

http://doi.org/10.1007/s40502-016-0234-3
http://doi.org/10.2135/cropsci2016.06.0542
http://doi.org/10.3732/ajb.94.5.819
http://doi.org/10.1007/s10535-018-0798-z
http://doi.org/10.1007/s10658-011-9878-z
http://doi.org/10.1093/jxb/32.1.93
http://doi.org/10.1186/s13104-017-2489-9
http://doi.org/10.1007/s11120-013-9862-x
http://www.ncbi.nlm.nih.gov/pubmed/23771643
http://doi.org/10.1111/j.1438-8677.2008.00081.x
http://www.ncbi.nlm.nih.gov/pubmed/18721307
http://doi.org/10.1016/1011-1344(95)07197-A
http://doi.org/10.1104/pp.108.127977
http://doi.org/10.1155/S1110724304406147
http://www.ncbi.nlm.nih.gov/pubmed/15577195
http://doi.org/10.1046/j.1469-8137.2002.00482.x
http://doi.org/10.1016/S0065-2296(02)37048-4
http://doi.org/10.1111/j.1469-8137.2010.03184.x
http://doi.org/10.3389/fpls.2017.01286
http://doi.org/10.1038/s41598-018-34591-5
http://doi.org/10.1007/s10658-022-02544-4
http://doi.org/10.1016/j.compag.2020.105672
http://doi.org/10.1016/j.plantsci.2019.01.011
http://doi.org/10.3390/rs13204182
http://doi.org/10.3390/rs1040858
http://doi.org/10.1139/b70-056
http://doi.org/10.1080/01431169308954010
http://doi.org/10.3390/s130202117
http://doi.org/10.1016/j.eaef.2019.05.001
http://doi.org/10.1016/j.compag.2022.107587
http://doi.org/10.1094/PHYTO.2001.91.5.492


Plants 2023, 12, 1322 22 of 22

100. Pérez-Bueno, M.L.; Granum, E.; Pineda, M.; Flors, V.; Rodríguez-Palenzuela, P.; López-Solanilla, E.; Barón, M. Temporal
and spatial resolution of activated plant defense responses in leaves of Nicotiana benthamiana infected with Dickeya dadantii.
Front. Plant Sci. 2016, 6, 1209. [CrossRef]

101. Miller, N.J.; Diplock, A.T.; Rice-Evans, C.A. Evaluation of the total antioxidant activity as a marker of the deterioration of apple
juice on storage. J. Agric. Food Chem. 1995, 43, 1794–1801. [CrossRef]

102. Rodríguez-Serrano, M.; Romero-Puertas, M.C.; Sanz-Fernández, M.; Hu, J.; Sandalio, L.M. Peroxisomes extend peroxules in a fast
response to stress via a reactive oxygen species-mediated induction of the peroxin PEX11a. Plant Physiol. 2016, 171, 1665–1674.
[CrossRef]

103. Pérez-Bueno, M.L.; Pineda, M.; Díaz-Casado, E.; Barón, M. Spatial and temporal dynamics of primary and secondary metabolism
in Phaseolus vulgaris challenged by Pseudomonas syringae. Physiol. Plant. 2015, 153, 161–174. [CrossRef] [PubMed]

104. Chun, O.K.; Kim, D.O. Consideration on equivalent chemicals in total phenolic assay of chlorogenic acid-rich plums. Food Res. Int.
2004, 37, 337–342. [CrossRef]

105. Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. In
Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Acree, T.E., An, H., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz,
S.J., Shoemaker, C.F., et al., Eds.; John Wiley and Sons: New York, NY, USA, 2001; p. 4.

106. Solfanelli, C.; Poggi, A.; Loreti, E.; Alpi, A.; Perata, P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in
Arabidopsis. Plant Physiol. 2005, 140, 637–646. [CrossRef] [PubMed]

107. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.;
Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [CrossRef] [PubMed]

108. Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Ohl, P.; Sieb, C.; Thiel, K.; Wiswedel, B. KNIME: The Konstanz
Information Miner; Springer: Berlin/Heidelberg, Germany, 2008; pp. 319–326.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3389/fpls.2015.01209
http://doi.org/10.1021/jf00055a009
http://doi.org/10.1104/pp.16.00648
http://doi.org/10.1111/ppl.12237
http://www.ncbi.nlm.nih.gov/pubmed/24871330
http://doi.org/10.1016/j.foodres.2004.02.001
http://doi.org/10.1104/pp.105.072579
http://www.ncbi.nlm.nih.gov/pubmed/16384906
http://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772

	Introduction 
	Results 
	Development of Symptoms Induced by the Biological and Climatic Treatments Tested 
	Growth of Races 1 and 4 of Xanthomonas campestris pv. campestris on Oilseed Rape Leaves from Plants Cultivated under Each Climatic Treatment 
	Measurements of Oxidative Stress and Pigment Content in Leaves of Oilseed Rape Plants Grown under the Biological and Climatic Treatments Assayed 
	Computer Vision Coupled to Classifying Algorithms to Identify Healthy and Xanthomonas campestris pv. campestris-Infected Leaves 

	Discussion 
	Materials and Methods 
	Plant and Bacterial Growth 
	Inoculation of Leaves with Races 1 and 4 of Xanthomonas campestris pv. campestris and Kinetics of Bacterial Growth 
	Physiological Determinations Using Biochemical Methods 
	Statistics 
	Computer Vision 
	Image Analysis to Obtain Parameters Used in Machine Learning Classifying Algorithms 
	Plant Classification Using Machine Learning 

	References

