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Abstract: This study investigated the protective effects of exogenous ascorbic acid (AsA,
0.5 mmol·L−1) treatment on salt-induced photosystem inhibition in tomato seedlings under salt stress
(NaCl, 100 mmol·L−1) conditions with and without the AsA inhibitor lycorine. Salt stress reduced
the activities of photosystem II (PSII) and PSI. AsA treatment mitigated inhibition of the maximal
photochemical efficiency of PSII (Fv/Fm), maximal P700 changes (Pm), the effective quantum yields
of PSII and I [Y(II) and Y(I)], and non-photochemical quenching coefficient (NPQ) values under salt
stress conditions both with and without lycorine. Moreover, AsA restored the balance of excitation
energy between two photosystems (β/α-1) after disruption by salt stress, with or without lycorine.
Treatment of the leaves of salt-stressed plants with AsA with or without lycorine increased the
proportion of electron flux for photosynthetic carbon reduction [Je(PCR)] while decreasing the O2-
dependent alternative electron flux [Ja(O2-dependent)]. AsA with or without lycorine further resulted
in increases in the quantum yield of cyclic electron flow (CEF) around PSI [Y(CEF)] while increasing
the expression of antioxidant and AsA–GSH cycle-related genes and elevating the ratio of reduced
glutathione/oxidized glutathione (GSH/GSSG). Similarly, AsA treatment significantly decreased
the levels of reactive oxygen species [superoxide anion (O2

−) and hydrogen peroxide (H2O2)] in
these plants. Together, these data indicate that AsA can alleviate salt-stress-induced inhibition of PSII
and PSI in tomato seedlings by restoring the excitation energy balance between the photosystems,
regulating the dissipation of excess light energy by CEF and NPQ, increasing photosynthetic electron
flux, and enhancing the scavenging of reactive oxygen species, thereby enabling plants to better
tolerate salt stress.

Keywords: ascorbic acid; tomato; salt stress; photosystem inhibition; photoprotection

1. Introduction

Soil salinization and secondary salinization threaten sustainable agriculture and eco-
logical integrity throughout the world [1,2]. Salinization is also aggravated by climate
change, over-fertilization, and over-irrigation. Tomatoes (Solanum lycopersicum L) are
widely grown in open-field and facility production settings. While tomato plants do show
some degree of salt tolerance, they are nevertheless susceptible to salt stress, which inhibits
both photosynthesis and production [3,4]. Thus, new approaches are needed to alleviate
the effects of salt stress on tomatoes to ensure the efficient production of tomato crops.

Photosynthesis is driven by light energy, but stress conditions can reduce the conver-
sion of absorbed light energy and associated CO2 assimilation, resulting in the generation
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of excess light energy. If not dissipated, this excess energy can trigger the accumulation of
reactive oxygen species (ROS), leading to photo-oxidative damage to the photosystem and
contributing to increasingly severe photoinhibition. Plants have evolved a series of photo-
protective mechanisms that can help mitigate such damage. For example, plants can reduce
absorption of light energy by altering the leaf angle or leaf area, decreasing the antenna
pigment content, and altering the numbers of reaction centers [5]. Non-photochemical
quenching (NPQ) can also facilitate thermal dissipation, while cyclic electron flow (CEF)
around photosystem I (PSI)can maintain an appropriate proton gradient (∆pH) across the
thylakoid membrane necessary to facilitate the dissipation of excessive excitation energy [6].
Plants can also reduce photoinhibition through photorespiration, enhanced Mehler’s re-
action, state transition of the photosystem, and ROS scavenging mechanisms to regulate
the distribution of excitation energy in the photosystem [7,8]. As an alternative electron
pathway, CEF around PSI can regulate electron transfer rates, maintain the balance between
ATP and NAPDH, and protect against excessive PSI receptor reduction, thereby decreasing
rates of hydroxyl radical (·OH) formation to prevent photodamage to PSI [9,10]. This
mechanism can also aid in the repair of photodamage to photosystem II (PSII) [11].

Plants can engage a range of exogenous substances to augment salt tolerance in re-
sponse to increased salinity. The application of exogenous substances thus represents a
promising means of improving plant salt tolerance. Ascorbic acid (AsA), also known as
vitamin C, is a small-molecule antioxidant that is present at high levels in the chloroplast
stroma and in other parts of plant tissues, wherein it functions as a key electron donor in re-
dox reactions and can regulate photosynthesis by preserving photosystem integrity [12,13].
The synthesis of AsA is mediated by the enzyme L-Galactono-1, 4-lactone dehydrogenase
(L-GalLDH), and the overexpression of this gene in rice leads to significant increases in
endogenous AsA production and levels of the ribulose-1, 5-bisphosphate (RuBP) and
carboxylase/oxygenase (Rubisco) proteins [14], while silencing of L-GalLDH reduced en-
dogenous AsA production by 30–50%. The resultant AsA deficiency rendered rice plants
more susceptible to H2O2 production and lipid peroxidation in addition to reducing total
antioxidant capacity and the overall photosynthetic capacity of plants [15]. In addition,
exogenous AsA was found to play a vital role in abiotic stress responses, increasing the
antioxidant properties of sweet pepper and thus improving the drought resistance of the
plant [16]. Moreover, exogenous AsA can increase endogenous AsA, proline, and photo-
synthetic pigment levels, thus improving heat tolerance in tomato seedlings [17]. AsA can
also reduce cold-associated oxidative damage by reducing lipid peroxidation, electrolyte
leakage, and hydrogen peroxide (H2O2) production [18]. The benefits of AsA have also
been detected under stress conditions induced by heavy metals [19], high nitrate levels [20],
and high salt levels [21], showing that AsA can directly influence the antioxidant capacity
and photosynthetic activity of plants.

Our previous study using fast OJIP fluorescence kinetics and JIP-test analyses showed
that exogenous AsA treatment increased endogenous AsA levels and alleviated PSII pho-
toinhibition, thus promoting tomato seedling growth under salt stress conditions [22].
However, these findings reflected PSII photochemical changes before the start of the dark
reaction, and little is known of the utilization of light energy by the photosystems after
carbon assimilation is initiated. PSII is generally regarded as being more sensitive than PSI,
and it is thus considered the primary site of photoinhibition. Despite this, some reports
have found that low-temperature and low-light conditions damage PSI more severely
than PSII. Indeed, Terashima et al. [23] reported that in cucumber leaves exposed to low
temperatures, PSI, rather than PSII, was the primary site of photoinhibition. Little research
has been conducted on how PSI functions in tomato seedlings under salt stress [24], and
the role of AsA as a regulator of photoinhibition in this setting is not well understood.
Thus, the present study investigated the effects of exogenous AsA application and an
inhibitor of AsA synthesis, lycorine, on tomato seedlings, examining the activity, light
energy partitioning, and electron transport in PSI and PSII under conditions of salt stress.
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PSII electron flow partitioning, CEF around PSI (CEF-PSI), and ROS scavenging activity
were also investigated.

2. Results
2.1. PSI and PSII Activity Levels

As shown in Figure 1A, NaCl treatment led to significant reductions in Fv/Fm ratios
throughout the study period. In Figure 1B, Fv/Fm also were shown in false-color code-
based images. Under NaCl treatment, leaf colors shifted from blue to green, representing a
reduction in the Fv/Fm ratios. The false-color images of Fv/Fm showed a trend that was
consistent with the Fv/Fm ratios, indicating inhibition of PSII. The Y(II) and qP values also
declined throughout the study period relative to the controls, while the 1–qP, Y(NPQ), and
Y(NO) values showed the opposite trend. The false-color images of Y(II), Y(NPQ), and
Y(NO) (Figure 2C,F,I) were consistent with their value (Figure 2B,E,H). On day three, the
NPQ of the NaCl-treated plants was increased relative to control plants but decreased on
days six and nine post-treatment. Seedlings in the NaCl + AsA treatment group showed
significant increases in leaf Fv/Fm, Y(II), and qP values of 3.7–19.2%, 10.4–21.6%, and
6.5–12.1%, respectively, compared with the NaCl-treatment group, together with significant
decreases in NPQ (on day three), 1–qP, Y(NPQ), and Y(NO). Significant decreases in Fv/Fm,
qP, NPQ, and Y(II) in NaCl + lycorine-treated plants relative to those treated with only
NaCl were observed on days six and nine, while NaCl + lycorine + AsA treatment reversed
the effects of NaCl + lycorine on these indices. NaCl treatment was also associated with
significant increases in Y(NA) and significant reductions in Pm, Y(I), and Y(ND) relative to
control seedlings, indicating PSI inhibition (Figures 1 and 2). NaCl + lycorine treatment
significantly decreased Y(I) and Y(ND) by 7.6–15.8% and 31.1–44.6%, respectively, relative
to NaCl treatment, whereas Y(NA) remained elevated relative to NaCl treatment at all time
points. However, AsA treatment was sufficient to reverse the decreases in Y(I) and Y(ND)
values, while AsA further reduced Y(NA) values in these seedlings relative to the NaCl
and NaCl + lycorine treatment groups.
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Figure 1. Values of the maximal photochemical efficiency of PSII (Fv/Fm) (A), false-color images of 
Fv/Fm (B), maximal P700 changes (Pm) (C), non-photochemical quenching coefficient (NPQ) (D), pho-
tochemical quenching coefficient (qP) (E), and PSII excitation pressure (1–qP) (F) in leaves of salt-
stressed tomato seedlings with or without exogenous reduced ascorbic acid (AsA) and lycorine 
(AsA synthesis inhibitor) spraying. Abbreviations 3d, 6d, and 9d represent the third, sixth, and ninth 
day after treatment, respectively. Control, no added NaCl and sprayed with distilled water; NaCl, 
added 100 mmol·L–1 NaCl and sprayed with distilled water; NaCl + AsA, added 100 mmol·L–1 NaCl 
and sprayed with 0.5 mmol·L–1 AsA; NaCl + lycorine, added 100 mmol·L–1 NaCl and sprayed with 
0.25 mmol·L–1 lycorine; NaCl + lycorine + AsA, added 100 mmol·L–1 NaCl and sprayed with 0.25 
mmol·L–1 lycorine plus 0.5 mmol·L–1 AsA. Values are means ± SD (n = 3). Values with a different 
letter within a sampling date are significantly different (p < 0.05). 
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Figure 1. Values of the maximal photochemical efficiency of PSII (Fv/Fm) (A), false-color images of
Fv/Fm (B), maximal P700 changes (Pm) (C), non-photochemical quenching coefficient (NPQ) (D),
photochemical quenching coefficient (qP) (E), and PSII excitation pressure (1–qP) (F) in leaves of
salt-stressed tomato seedlings with or without exogenous reduced ascorbic acid (AsA) and lycorine
(AsA synthesis inhibitor) spraying. Abbreviations 3d, 6d, and 9d represent the third, sixth, and
ninth day after treatment, respectively. Control, no added NaCl and sprayed with distilled water;
NaCl, added 100 mmol·L–1 NaCl and sprayed with distilled water; NaCl + AsA, added 100 mmol·L–1

NaCl and sprayed with 0.5 mmol·L–1 AsA; NaCl + lycorine, added 100 mmol·L–1 NaCl and sprayed
with 0.25 mmol·L–1 lycorine; NaCl + lycorine + AsA, added 100 mmol·L–1 NaCl and sprayed with
0.25 mmol·L–1 lycorine plus 0.5 mmol·L–1 AsA. Values are means± SD (n = 3). Values with a different
letter within a sampling date are significantly different (p < 0.05).
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The application of AsA resulted in significant improvements in α and p as well as signifi-
cant reductions in β, β/α−1, Ex, and D in these NaCl-exposed plants on days three, six, and 
nine. Conversely, NaCl + lycorine treatment reduced the α and p values in tomato leaves, 
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Figure 2. Values of the effective quantum yield of PSI (Y(I)) (A), effective quantum yield of PSII (Y(II))
(B), false-color images of Y(II) (C), fraction of over P700 that is oxidized in a given state (Y(ND))
(D), the quantum yield of regulated non-photochemical energy dissipation of PSII (Y(NPQ)) (E),
false-color images of Y (NPQ) (F), fraction of over P700 that cannot be oxidized in a given state
(Y(NA)) (G), the quantum yield of non-regulated energy dissipation of PSII (Y(NO)) (H), and false-
color images of Y(NO) (I) in leaves of salt-stressed tomato seedlings with or without exogenous
reduced ascorbic acid (AsA) and lycorine (AsA synthesis inhibitor) spraying. Abbreviations 3d, 6d,
and 9d represent the third, sixth, and ninth day after treatment, respectively. Control, no added
NaCl and sprayed with distilled water; NaCl, added 100 mmol·L–1 NaCl and sprayed with distilled
water; NaCl + AsA, added 100 mmol·L–1 NaCl and sprayed with 0.5 mmol·L–1 AsA; NaCl + lycorine,
added 100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1 lycorine; NaCl + lycorine + AsA, added
100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1 lycorine plus 0.5 mmol·L–1 AsA. Values are
means ± SD (n = 3). Values with a different letter within a sampling date are significantly different
(p < 0.05).

2.2. The Allocation of Absorbed Light Engery between PSI and PSII

Relative to the control, NaCl stress was associated with significant reductions in α and
p and significant increases in β, β/α−1, Ex, and D in tomato seedling leaves (Figure 3). The
application of AsA resulted in significant improvements in α and p as well as significant
reductions in β, β/α−1, Ex, and D in these NaCl-exposed plants on days three, six, and nine.
Conversely, NaCl + lycorine treatment reduced the α and p values in tomato leaves, while
the β, β/α-1, and Ex values in leaves under NaCl + lycorine + AsA treatment conditions were
decreased relative to the NaCl + lycorine treatment conditions at all analytical time points.



Plants 2023, 12, 1379 6 of 24Plants 2023, 12, x FOR PEER REVIEW 6 of 25 
 

 

 
Figure 3. Values of the photon activity distribution coefficients of PSI (α) (A), the photon activity 
distribution coefficients of PSII (β) (B), the relative deviation from full balance (β/α–1) between PSI 
and PSII (β/α−1) (C), the fraction of photon energy absorbed in PSII antennae utilized for photosyn-
thetic electron transport (p) (D), the estimate of the fraction of excess excitation energy that is neither 
dissipated in the PSII antennae nor utilized for photochemistry (Ex) (E), and the fraction of photon 
energy absorbed in PSII antennae and dissipated via thermal energy in the antenna (D) (F) in leaves 
of salt-stressed tomato seedlings with or without exogenous reduced ascorbic acid (AsA) and ly-
corine (AsA synthesis inhibitor) spraying. Abbreviations 3d, 6d, and 9d represent the third, sixth, 
and ninth day after treatment, respectively. Control, no added NaCl and sprayed with distilled wa-
ter; NaCl, added 100 mmol·L–1 NaCl and sprayed with distilled water; NaCl + AsA, added 100 
mmol·L–1 NaCl and sprayed with 0.5 mmol·L–1 AsA; NaCl + lycorine, added 100 mmol·L–1 NaCl and 
sprayed with 0.25 mmol·L–1 lycorine; NaCl + lycorine + AsA, added 100 mmol·L–1 NaCl and sprayed 
with 0.25 mmol·L–1 lycorine plus 0.5 mmol·L–1 AsA. Values are means ± SD (n = 3). Values with a 
different letter within a sampling date are significantly different (p < 0.05). 

2.3. PSII Electron Flux Distributions 
NaCl treatment was associated with significant reductions in Je (PSII), Je (PCR), and 

Je (PCO) in tomato leaves together with significant increases in Ja, Ja (O2-dependent), and 
Ja(O2-independent) relative to control plants (Figure 4). NaCl + AsA treatment reversed 
the impact of NaCl treatment on Je (PSII), Je (PCR), and Ja (O2-dependent), with these 
values rising by 10.4–21.6%, 25.3–41.8%, and 18.8–122.8%, respectively, relative to NaCl 
treatment, whereas Ja (O2-dependent) decreased significantly by 4.5–30.0% throughout 
the study period. NaCl + lycorine treatment resulted in further decreases in Je (PSII), Je 
(PCR), and Je (PCO) as well as increases in Ja and Ja (O2-dependent). However, combined 

Figure 3. Values of the photon activity distribution coefficients of PSI (α) (A), the photon activity
distribution coefficients of PSII (β) (B), the relative deviation from full balance (β/α–1) between
PSI and PSII (β/α−1) (C), the fraction of photon energy absorbed in PSII antennae utilized for
photosynthetic electron transport (p) (D), the estimate of the fraction of excess excitation energy that
is neither dissipated in the PSII antennae nor utilized for photochemistry (Ex) (E), and the fraction of
photon energy absorbed in PSII antennae and dissipated via thermal energy in the antenna (D) (F) in
leaves of salt-stressed tomato seedlings with or without exogenous reduced ascorbic acid (AsA) and
lycorine (AsA synthesis inhibitor) spraying. Abbreviations 3d, 6d, and 9d represent the third, sixth,
and ninth day after treatment, respectively. Control, no added NaCl and sprayed with distilled water;
NaCl, added 100 mmol·L–1 NaCl and sprayed with distilled water; NaCl + AsA, added 100 mmol·L–1

NaCl and sprayed with 0.5 mmol·L–1 AsA; NaCl + lycorine, added 100 mmol·L–1 NaCl and sprayed
with 0.25 mmol·L–1 lycorine; NaCl + lycorine + AsA, added 100 mmol·L–1 NaCl and sprayed with
0.25 mmol·L–1 lycorine plus 0.5 mmol·L–1 AsA. Values are means± SD (n = 3). Values with a different
letter within a sampling date are significantly different (p < 0.05).

2.3. PSII Electron Flux Distributions

NaCl treatment was associated with significant reductions in Je (PSII), Je (PCR), and
Je (PCO) in tomato leaves together with significant increases in Ja, Ja (O2-dependent), and
Ja(O2-independent) relative to control plants (Figure 4). NaCl + AsA treatment reversed
the impact of NaCl treatment on Je (PSII), Je (PCR), and Ja (O2-dependent), with these
values rising by 10.4–21.6%, 25.3–41.8%, and 18.8–122.8%, respectively, relative to NaCl
treatment, whereas Ja (O2-dependent) decreased significantly by 4.5–30.0% throughout the
study period. NaCl + lycorine treatment resulted in further decreases in Je (PSII), Je (PCR),
and Je (PCO) as well as increases in Ja and Ja (O2-dependent). However, combined AsA
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treatment was sufficient to weaken the adverse impacts of NaCl + lycorine treatment on
these parameters.
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Figure 4. Values of the rate of electron transport through PSII Je(PSII) (A), electron flux for the
photosynthetic carbon reduction cycle (Je(PCR)) (B), electron flux for photorespiration (Je(PCO))
(C), alternative electron flux (Ja) (D), the O2-dependent alternative electron flux (Ja(O2-dependent))
(E), and the O2-independent alternative electron flux (Ja(O2-independent)) (F) in leaves of salt-
stressed tomato seedlings with or without exogenous reduced ascorbic acid (AsA) and lycorine (AsA
synthesis inhibitor) spraying. Abbreviations 3d, 6d, and 9d represent the third, sixth, and ninth
day after treatment, respectively. Control, no added NaCl and sprayed with distilled water; NaCl,
added 100 mmol·L–1 NaCl and sprayed with distilled water; NaCl + AsA, added 100 mmol·L–1

NaCl and sprayed with 0.5 mmol·L–1 AsA; NaCl + lycorine, added 100 mmol·L–1 NaCl and sprayed
with 0.25 mmol·L–1 lycorine; NaCl + lycorine + AsA, added 100 mmol·L–1 NaCl and sprayed with
0.25 mmol·L–1 lycorine plus 0.5 mmol·L–1 AsA. Values are means± SD (n = 3). Values with a different
letter within a sampling date are significantly different (p < 0.05).

Treatment with NaCl resulted in significant reductions in the Je (PCR)/Je (PSII) and Je
(PCO)/Je (PSII) ratios, while significantly increasing the Ja/Je (PSII), Ja(O2-independent)/Je
(PSII), and Ja (O2-dependent)/Je (PSII) ratios at all sampling time points relative to control
seedlings (Figure 5). NaCl + AsA treatment was sufficient to reverse the impact of NaCl
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on the Je (PCR)/Je (PSII), Je (PCO)/Je (PSII), Ja/Je (PSII), and Ja (O2-dependent)/Je (PSII)
ratios while promoting an increase in the Ja (O2-independent)/Je (PSII) ratio. Lycorine
treatment reduced the Je (PCR)/Je (PSII) and Ja (O2-independent)/Je (PSII) ratios at all
time points, decreased the Je (PCO)/Je (PSII) ratio on days six and nine, and resulted in a
significant increase in Ja/Je (PSII) and Ja (O2-dependent)/Je (PSII) ratios at all time points
in these NaCl-exposed seedlings. Significantly higher Je (PCR)/Je (PSII), Je (PCO)/Je (PSII),
and Ja (O2-independent)/Je (PSII) ratios were observed under NaCl + lycorine + AsA
treatment conditions at all time points relative to NaCl + lycorine treatment conditions,
whereas Ja/Je (PSII) and Ja (O2-dependent)/Je (PSII) were decreased.
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water; NaCl + AsA, added 100 mmol·L–1 NaCl and sprayed with 0.5 mmol·L–1 AsA; NaCl + lycorine, 
added 100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1 lycorine; NaCl + lycorine + AsA, added 
100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1 lycorine plus 0.5 mmol·L–1 AsA. Values are 
means ± SD (n = 3).  

2.4. CEF-PSI Analyses 
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and Je (PSI)] were significantly decreased in response to NaCl and NaCl + lycorine treat-
ment relative to control and NaCl treatment, respectively, whereas AsA promoted Je 
(PSII) and significantly increased Je (PSI) in the leaves of these tomato seedlings irrespec-
tive of the addition of lycorine. Salt stress was also associated with the inhibition of LEF 
and the stimulation of the quantum yield of CEF around PSI [Y (CEF)], the ratio of the 
quantum yield of CEF to Y(II) [Y (CEF)/Y (II)], and electron flux through CEF-PSI [(Je 
(CEF-PSI)] on day three post-treatment, but these indices declined significantly on days 
six and nine after treatment. Relative to seedlings in the NaCl or NaCl + lycorine groups, 
those subjected to AsA treatment exhibited significant increases in Y (CEF) by 15.1–57.7% 

Figure 5. Ratio of Je(PCR)/Je(PSII), Je(PCO)/Je(PSII), Ja/Je(PSII), Ja(O2-dependent)/Je(PSII), and
Ja(O2-independent)/Je(PSII) in leaves of salt-stressed tomato seedlings with or without exogenous
reduced ascorbic acid (AsA) and lycorine (AsA synthesis inhibitor) spraying. Abbreviations 3d, 6d,
and 9d represent the third, sixth, and ninth day after treatment, respectively. Control, no added
NaCl and sprayed with distilled water; NaCl, added 100 mmol·L–1 NaCl and sprayed with distilled
water; NaCl + AsA, added 100 mmol·L–1 NaCl and sprayed with 0.5 mmol·L–1 AsA; NaCl + lycorine,
added 100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1 lycorine; NaCl + lycorine + AsA, added
100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1 lycorine plus 0.5 mmol·L–1 AsA. Values are
means ± SD (n = 3).

2.4. CEF-PSI Analyses

As shown in Figures 4 and 6, electron transport rates for both PSI and PSII [Je (PSII) and
Je (PSI)] were significantly decreased in response to NaCl and NaCl + lycorine treatment
relative to control and NaCl treatment, respectively, whereas AsA promoted Je (PSII) and
significantly increased Je (PSI) in the leaves of these tomato seedlings irrespective of the
addition of lycorine. Salt stress was also associated with the inhibition of LEF and the
stimulation of the quantum yield of CEF around PSI [Y (CEF)], the ratio of the quantum
yield of CEF to Y(II) [Y (CEF)/Y (II)], and electron flux through CEF-PSI [(Je (CEF-PSI)]
on day three post-treatment, but these indices declined significantly on days six and
nine after treatment. Relative to seedlings in the NaCl or NaCl + lycorine groups, those
subjected to AsA treatment exhibited significant increases in Y (CEF) by 15.1–57.7% and
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37.5–150.3%, Y (CEF)/Y (II) by 27.6–39.9% and 21.1–114.9%, and Je (CEF-PSI) by 15.1–57.7%
and 37.5–150.3%, respectively, throughout the study period.

Plants 2023, 12, x FOR PEER REVIEW 9 of 25 
 

 

and 37.5–150.3%, Y (CEF)/Y (II) by 27.6–39.9% and 21.1–114.9%, and Je (CEF-PSI) by 15.1–
57.7% and 37.5–150.3%, respectively, throughout the study period. 

 
Figure 6. Values of the rate of electron transport through PSI (Je(PSI)) (A), the quantum yield of 
cyclic electron flow (CEF) around PS I (Y(CEF)) (B), Y(CEF)/Y (II) (C), and the electron flux through 
CEF-PSI (Je(CEF-PSI)) (D) in leaves of salt-stressed tomato seedlings with or without exogenous 
reduced ascorbic acid (AsA) and lycorine (AsA synthesis inhibitor) spraying. Abbreviations 3d, 6d, 
and 9d represent the third, sixth, and ninth day after treatment, respectively. Control, no added 
NaCl and sprayed with distilled water; NaCl, added 100 mmol·L–1 NaCl and sprayed with distilled 
water; NaCl + AsA, added 100 mmol·L–1 NaCl and sprayed with 0.5 mmol·L–1 AsA; NaCl + lycorine, 
added 100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1 lycorine; NaCl + lycorine + AsA, added 
100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1 lycorine plus 0.5 mmol·L–1 AsA. Values are 
means ± SD (n = 3). Values with a different letter within a sampling date are significantly different 
(p < 0.05). 

2.5. ROS Metabolism and Oxidative Damage Analyses 
Salt stress induced an increase in the O2− generation rate, MDA and H2O2 content, 

and relative conductivity in the tomato leaves. Relative to NaCl-treated plants, plants 
treated with NaCl + AsA treatment showed O2− generation rates that were 48.3%, 51.5%, 
and 40.9% lower at the three sampling time points, with significant concomitant 40.0–
55.5%, 22.8–51.8%, and 12.8–55.5% reductions in the relative conductivity and levels of 
H2O2 and MDA in leaves of NaCl + AsA-treated seedlings (Figure 7). In addition, relative 
to NaCl treatment, NaCl + lycorine treatment was associated with higher levels of MDA 
and ROS accumulation throughout the treatment period, while combined NaCl + lycorine 
+ AsA treatment was sufficient to reverse these adverse effects of NaCl + lycorine treat-
ment in analyzed seedlings. 

Figure 6. Values of the rate of electron transport through PSI (Je(PSI)) (A), the quantum yield of
cyclic electron flow (CEF) around PS I (Y(CEF)) (B), Y(CEF)/Y (II) (C), and the electron flux through
CEF-PSI (Je(CEF-PSI)) (D) in leaves of salt-stressed tomato seedlings with or without exogenous
reduced ascorbic acid (AsA) and lycorine (AsA synthesis inhibitor) spraying. Abbreviations 3d, 6d,
and 9d represent the third, sixth, and ninth day after treatment, respectively. Control, no added
NaCl and sprayed with distilled water; NaCl, added 100 mmol·L–1 NaCl and sprayed with distilled
water; NaCl + AsA, added 100 mmol·L–1 NaCl and sprayed with 0.5 mmol·L–1 AsA; NaCl + lycorine,
added 100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1 lycorine; NaCl + lycorine + AsA, added
100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1 lycorine plus 0.5 mmol·L–1 AsA. Values are
means ± SD (n = 3). Values with a different letter within a sampling date are significantly different
(p < 0.05).

2.5. ROS Metabolism and Oxidative Damage Analyses

Salt stress induced an increase in the O2
− generation rate, MDA and H2O2 content,

and relative conductivity in the tomato leaves. Relative to NaCl-treated plants, plants
treated with NaCl + AsA treatment showed O2

− generation rates that were 48.3%, 51.5%,
and 40.9% lower at the three sampling time points, with significant concomitant 40.0–55.5%,
22.8–51.8%, and 12.8–55.5% reductions in the relative conductivity and levels of H2O2 and
MDA in leaves of NaCl + AsA-treated seedlings (Figure 7). In addition, relative to NaCl
treatment, NaCl + lycorine treatment was associated with higher levels of MDA and ROS
accumulation throughout the treatment period, while combined NaCl + lycorine + AsA
treatment was sufficient to reverse these adverse effects of NaCl + lycorine treatment in
analyzed seedlings.
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Figure 7. Values of histochemical detection of superoxide anion (O2
−) (A), O·− content (B), histo-

chemical detection of hydrogen peroxide (H2O2) (C), H2O2 content (D), histochemical detection of
MDA (E), MDA content (F), and relative conductivity (G) in leaves of salt-stressed tomato seedlings
with or without exogenous reduced ascorbic acid (AsA) and lycorine (AsA synthesis inhibitor)
spraying. Abbreviations 3d, 6d, and 9d represent the third, sixth, and ninth day after treatment,
respectively. Control, no added NaCl and sprayed with distilled water; NaCl, added 100 mmol·L–1

NaCl and sprayed with distilled water; NaCl + AsA, added 100 mmol·L–1 NaCl and sprayed with
0.5 mmol·L–1 AsA; NaCl + lycorine, added 100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1

lycorine; NaCl + lycorine + AsA, added 100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1 lycorine
plus 0.5 mmol·L–1 AsA. Values are means ± SD (n = 3). Values with a different letter within a
sampling date are significantly different (p < 0.05).
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2.6. GSH Content and the GSH/GSSG Ratio

Relative to control seedlings, salt-stressed plants showed significantly reduced GSH
levels and GSH/GSSG ratio throughout the study period (Figure 8). Relative to NaCl only,
NaCl + lycorine treatment was associated with significant 18.8–46.3% reductions in GSH
contents without significantly impacting the GSH/GSSG ratio at any time point. Exoge-
nous AsA administration significantly attenuated the effects of NaCl and NaCl + lycorine
treatment on GSH content and the GSH/GSSG ratio at these three sampling time points.
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Figure 8. Values of reduced glutathione (GSH) content (A) and the ratio of GSH/GSSG (reduced
glutathione/oxidized glutathione) (B) in leaves of salt-stressed tomato seedlings with or without ex-
ogenous reduced ascorbic acid (AsA) and lycorine (AsA synthesis inhibitor) spraying. Abbreviations
3d, 6d, and 9d represent the third, sixth, and ninth day after treatment, respectively. Control, no added
NaCl and sprayed with distilled water; NaCl, added 100 mmol·L–1 NaCl and sprayed with distilled
water; NaCl + AsA, added 100 mmol·L–1 NaCl and sprayed with 0.5 mmol·L–1 AsA; NaCl + lycorine,
added 100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1 lycorine; NaCl + lycorine + AsA, added
100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1 lycorine plus 0.5 mmol·L–1 AsA. Values are
means ± SD (n = 3). Values with a different letter within a sampling date are significantly different
(p < 0.05).

2.7. Antioxidant Enzyme Gene Expression and Activity Levels

Relative to control seedlings, NaCl treatment was associated with significant reduc-
tions in SOD, POD, CAT, APX, GR, DHAR, and MDHAR activity on days three, six, and
nine (Figures 9 and 10). Consistently, significant decreases in the expression of the genes
encoding all these enzymes were observed at all three sampling time points in salt-stress-
exposed seedlings relative to control seedlings (Figure 11). The expression and activity of
these enzymes were significantly enhanced and decreased, respectively, upon NaCl + AsA
and NaCl + lycorine treatment at all time points relative to NaCl treatment alone. However,
combined NaCl + AsA + lycorine treatment reversed the deleterious effects of NaCl + ly-
corine treatment on such enzymatic activity and gene expression levels in these seedlings.
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Figure 9. Values of superoxidase dismutase (SOD) (A), peroxidase (POD) (B), and catalase (CAT)
(C) activity in leaves of salt-stressed tomato seedlings with or without exogenous reduced ascorbic
acid (AsA) and lycorine (AsA synthesis inhibitor) spraying. Abbreviations 3d, 6d, and 9d represent
the third, sixth, and ninth day after treatment, respectively. Control, no added NaCl and sprayed
with distilled water; NaCl, added 100 mmol·L–1 NaCl and sprayed with distilled water; NaCl + AsA,
added 100 mmol·L–1 NaCl and sprayed with 0.5 mmol·L–1 AsA; NaCl + lycorine, added 100 mmol·L–1

NaCl and sprayed with 0.25 mmol·L–1 lycorine; NaCl + lycorine + AsA, added 100 mmol·L–1 NaCl
and sprayed with 0.25 mmol·L–1 lycorine plus 0.5 mmol·L–1 AsA. Values are means ± SD (n = 3).
Values with a different letter within a sampling date are significantly different (p < 0.05).
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Figure 10. Values of ascorbate peroxidase (APX) (A), glutathione reductase (GR) (B), dehydroascor-
bate reductase (DHAR) (C), and monodehydroascorbate reductase (MDHAR) (D) activity in leaves of
salt-stressed tomato seedlings with or without exogenous reduced ascorbic acid (AsA) and lycorine
(AsA synthesis inhibitor) spraying. Abbreviations 3d, 6d, and 9d represent the third, sixth, and
ninth day after treatment, respectively. Control, no added NaCl and sprayed with distilled water;
NaCl, added 100 mmol·L–1 NaCl and sprayed with distilled water; NaCl + AsA, added 100 mmol·L–1

NaCl and sprayed with 0.5 mmol·L–1 AsA; NaCl + lycorine, added 100 mmol·L–1 NaCl and sprayed
with 0.25 mmol·L–1 lycorine; NaCl + lycorine + AsA, added 100 mmol·L–1 NaCl and sprayed with
0.25 mmol·L–1 lycorine plus 0.5 mmol·L–1 AsA. Values are means± SD (n = 3). Values with a different
letter within a sampling date are significantly different (p < 0.05).
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Figure 11. Expression of SOD (superoxidase dismutase gene) (A), CAT (catalase gene) (B), POD
(peroxidase gene) (C), APX (ascorbate peroxidase gene) (D), MDHAR (monodehydroascorbate
reductase gene) (E), DHAR (dehydroascorbate reductase gene) (F), and GR (glutathione reductase
gene) (G) genes in leaves of salt-stressed tomato seedlings with or without exogenous reduced
ascorbic acid (AsA) and lycorine (AsA synthesis inhibitor) spraying. Abbreviations 3d, 6d, and
9d represent the third, sixth, and ninth day after treatment, respectively. Control, no added NaCl
and sprayed with distilled water; NaCl, addition of 100 mmol·L–1 NaCl and sprayed with distilled
water; NaCl + AsA, added 100 mmol·L–1 NaCl and sprayed with 0.5 mmol·L–1 AsA; NaCl + lycorine,
added 100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1 lycorine; NaCl + lycorine + AsA, added
100 mmol·L–1 NaCl and sprayed with 0.25 mmol·L–1 lycorine plus 0.5 mmol·L–1 AsA. Values are
means ± SD (n = 3). Values with a different letter within a sampling date are significantly different
(p < 0.05).

3. Materials and Methods
3.1. Plant Materials and Treatment Conditions

Tomato seeds (Ligeer 87-5) were incubated at 28 ◦C on moist filter paper for 2 days
in an incubator, after which they were sown in a plastic dish containing peat and vermi-
culite (1:1). At the two-true-leaf stage, seedlings of uniform size were transplanted into
12-L black plastic containers (n = 6/container). The containers were filled with 10 L of
Hoagland nutrient solution with oxygen. After 7 days, the plants were treated by adding
NaCl to the nutrient solution and/or spraying AsA and/or the AsA synthase inhibitor
(lycorine) on the leaves of the plants in the following combinations: (1) untreated control
plants; (2) 100 mmol·L−1 NaCl (NaCl group); (3) 100 mmol·L−1 NaCl + 0.5 mmol·L−1

AsA (NaCl + AsA group); (4) 100 mmol·L−1 NaCl + 0.25 mmol·L−1 lycorine (NaCl + ly-
corine group); and (5) 100 mmol·L−1 NaCl + 0.25 mmol·L−1 lycorine + 0.5 mmol·L−1

AsA (NaCl + lycorine +AsA group). The AsA and lycorine volumes, concentrations, and
application methods used herein were based on the results of our prior study [22]. Ex-
periments were performed using randomized group assignments, with three replicates
of five plants per treatment. Nutrient solutions were changed every third day and were
oxygenated throughout the day. Samples were collected for analysis on days three, six, and
nine of treatment.

3.2. Chlorophyll Fluorescence Parameters and P700 Redox State

The Maxi Imaging-Pam (Imaging-Pam, WALZ, Germany) modulated fluorescence
imaging system was used to measure chlorophyll fluorescence parameters together with
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the Imaging Win program. PSII chlorophyll fluorescence and P700 redox states were
simultaneously measured with a saturated pulse Dual-PAM-100 fluorometer and the Dual-
PAM software. Following dark adaptation for 30 min, leaves were illuminated with a
high-saturation light pulse (0.05 Hz) for 260 s. The instrument then automatically reported
the following parameters: Fv/Fm, 1–qP, qP, NPQ, Y(NPQ), Y(II), Pm, Y(I), Y(NO), Y(NA),
and Y(ND) (Table 1). False-color images of Fv/Fm, Y(II), Y(NPQ), and Y(NO) images [from
0.000 (black) to 1.000 (purple)] were recorded and compared with Imaging Win [25].

Table 1. Parameters of chlorophyll fluorescence.

Parameter and Formula Explanation

Fv/Fm The maximal photochemical efficiency of PSII
Pm The maximal P700 changes

NPQ = (Fm − Fm
′)/Fm

′ Non-photochemical quenching coefficient
qP = (Fm

′ − Fs)/(Fm
′ − Fo

′) Photochemical quenching coefficient
1–qP = (F − Fo

′)/(Fm
′ − Fo

′) PSII excitation pressure
Y(II) = (Fm

′ − Fs)/ Fm
′ Effective quantum yield of PSII

Y(NPQ) = (Fs/Fm
′) − (Fs/Fm) The quantum yield of regulated non-photochemical energy

dissipation of PSII
Y(NO) = Fs/Fm The quantum yield of non-regulated energy dissipation of PSII

Y(I) = 1 − Y(ND) − Y(NA) The effective quantum yield of PSI
Y(ND) = 1 − P700red Fraction of over P700 that is oxidized in a given state

Y(NA) = (Pm − Pm
′)/Pm Fraction of over P700 that cannot be oxidized in a given state

D = (1 − Fv
′/Fm

′) × 100% The fraction of photon energy absorbed in PSII antennae and
dissipated via thermal energy in the antenna

p = Fv
′/Fm

′ × qP × 100% The fraction of photon energy absorbed in PSII antennae
utilized for photosynthetic electron transport

Ex = Fv
′/Fm

′ × (1 − qP)
The estimate of the fraction of excess excitation energy that is

neither dissipated in the PSII antennae nor utilized for
photochemistry

B = 1/(1 + f) and α = f/(1 + f)
f = (Fm

′ − Fs)/(Fm
′ − Fo

′)

β and α represent the photon activity distribution coefficients of
PSII and PSI, and f represents the opening degree of PSII

reaction center

β/α – 1 = (1 – f)/f The relative deviation from full balance (β/α − 1) between PSI
and PSII

3.3. Absorbed Light Energy Allocation Analyses

Absorbed light energy allocation and the distribution coefficients for excitation energy
of PSI and PSII, including D, p, Ex, β, α, and (β/α − 1), were analyzed using formulae
reported previously by Demmig-Adams et al. [26] (Table 1).

3.4. LEF and CEF Electron Flux Transport Rate Calculations

Electron transport rates through PSII [Je(PSII)] and PSI [Je(PSI)] were computed using
formulae reported previously by Miyake et al. [27]. Rubisco oxygenation rates (VO) and
Rubisco carboxylation rates (Vc) can be analyzed using formulae reported previously by
Sharkey et al. [28]. The distribution of electron fluxes through PSII, including Je(PCR),
Je(PCO), Ja, Ja(O2-dependent), and Ja(O2-independent), were analyzed using formulae
reported previously by Krall et al. [29] (Table 2). The parameters Je(CEF-PSI), Y(CEF), and
Y(CEF)/Y(II) were used for estimation of the extent of CEF [30] (Table 2).
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Table 2. Parameters of the linear electron flow (LEF) and cycle electron flux (CEF) transport rate.

Parameter and Formula Explanation

Je(PSI) = Y(II) × PPFD × 0.84 × 0.5

Electron transport rates through PSII. The value
0.5 corresponds to the assumption that excitation is
equally distributed between PSI and PSII, while
0.84 corresponds to the general absorptivity of the
leaves of C3 plants.

Je(PSII) = Y(II) × PPFD × 0.84 × 0.5 Electron transport rates through PSI.

VC = (Pn + RP)/[1 − pO2/(2 × Sr × Cc)]

The rate of Rubisco carboxylation. Pn represents
net CO2 assimilation rate; RP represents the rate of
day respiration; pO2 represents the ambient partial
pressure of O2; Sr represents CO2/O2 relative
specificity of RuBisCO; and Cc represents the
partial pressure of CO2 at the carboxylation site.

VO = (VC × pO2)/(Sr × Cc) The rate of Rubisco oxygenation.

Je(PCR) = 4 × VC
The electron flux for the photosynthetic carbon
reduction (PCR) cycle.

Je(PCO) = 4 × VO
The electron fluxes associated with
photorespiration (PCO) cycle.

Ja = Je(PSII) − Je(PCR) − Je(PCO) Alternative PSII electron flux not utilized by the
PCR or PCO cycles.

Ja(O2-dependent) = Ja(21%O2) − Ja(2%O2) Alternative O2-dependent electron flux.
Ja(O2-independent) = Ja(2%O2) Alternative O2-independent electron flux.
Je(CEF-PSI) = Je(PSI) − Je(PSII) Electron transport rates through CEF around PSI.

Y(CEF) = Y(II) − Y(I) The quantum yield of CEF around PSI.

Y(CEF)/Y(II) = [Y(I) − Y(II)]/Y(II) The ratio of the quantum yield of CEF around PSI
to the effective quantum yield of PSII.

3.5. ROS Generation and Lipid-Peroxidation-Related Analyses

Malondialdehyde (MDA) levels in cells were measured with thiobarbituric acid to
assess lipid peroxidation levels [31]. Hydrogen peroxide (H2O2) levels were assessed as
reported by Yu et al. [32], while superoxide anion (O2

−) generation rates were determined
as reported by Elstner et al. [33]. Relative conductivity was computed as per Ma et al. [34].
Schiff’s reagent, which is capable of detecting lipid-peroxidation-derived aldehydes, was
used for histochemical analyses of lipid peroxidation. Briefly, leaves were placed in Schiff’s
reagent for 1 h followed by immersion in boiling ethanol for bleaching until a red/purple
color consistent with lipid peroxidation was visible. The histochemical localization of
H2O2 and O2

− in seedling leaves was assessed per the protocol published by Thordal-
Christensen et al. [35], with H2O2 (brown spot) and O2

− (dark blue) being colored using
solutions of 1% 3,3-diaminobenzidine (DAB) and 0.1% nitroblue tetrazolium chloride (NBT),
respectively.

3.6. Antioxidant Metabolite Analyses

Oxidized glutathione (GSSG) concentrations were measured as reported previously
by Nagalakshmi [36]. Total glutathione and GSSG absorptivity were measured at 412 nm.
Reduced glutathione (GSH) levels were calculated based on the difference between total
glutathione and GSSG levels.

3.7. Antioxidant Enzyme Activity Assays

Tomato leaves (0.3 g) were taken and placed in a pre-chilled mortar, and 3 mL of
pre-chilled 0.05 mol L−1 phosphate buffer (pH 7.8) was added. It was then ground into a
homogenate on an ice bath, centrifuged at 12,000× g for 20 min at 4 ◦C, and the supernatant
was separated as the enzyme extract and stored at 4 ◦C.

The activity of superoxidase dismutase (SOD) was assessed as reported previously
by El-Shabrawi et al. [37], with one unit of SOD activity corresponding to the amount of
enzyme necessary for a 50% reduction in NBT content as detected at 560 nm in a colori-
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metric assay. The activity of peroxidase (POD) was detected as reported previously by
Cakmak et al. [38] using a 2.9 mL reaction solution containing 0.1 M phosphate buffer
(pH .0), 0.04 mL of 0.1 M H2O2, 0.04 mL of 1% guaiacol, and 0.02 mL of the enzyme
extraction solution. Absorbance was analyzed for 3 min at 470 nm. Catalase (CAT) activity
levels were measured as described by Hasanuzzaman et al. [39]. Briefly, 0.1 mL enzyme
extract samples were combined with 1.7 mL of 25 mM phosphate buffer (pH 7.0) and
0.2 mL of 100 mM H2O2. Changes in absorbance (240 nm) were then assessed within 1 min.
Ascorbate peroxidase (APX) activity was measured as in a previous study reported by
Nakano et al. [40]. Briefly, 0.1 mL enzyme extract samples were combined with 1.7 mL
of 25 mM phosphate buffer (pH 7.0), 0.1 mL of 5 mM AsA, and 0.1 mL of 20 mM H2O2.
Absorbances were read at 290 nm after 1 min. The activity of monodehydroascorbate
reductase (MDHAR) was measured as described by Hossain et al. [41], combining 0.1 mL of
enzyme extract and 1.7 mL of 25 mM phosphate buffer (pH 7.0), 0.05 mL ascorbate oxidase,
and 0.01 mL of 4 mM NADH before measuring the absorbance at 340 nm. The activity
of dehydroascorbate reductase (DHAR) was measured as reported by Costa et al. [42] by
mixing 0.1 mL enzyme extract samples and 1.7 mL of 25 mM phosphate buffer (pH 7.0),
0.1 mL of GSH, and 0.01 mL of 8 mM dehydroascorbate (DHA) prior to measuring ab-
sorbance for 1 min at 265 nm. Glutathione reductase (GR) activity was measured using the
method reported by Cakmak et al. [38]. Decreases in the absorbance (340 nm) associated
with NADPH oxidation were measured for 1 min, and activity was calculated based on an
extinction coefficient of 6.2 mmol L−1 cm−1.

3.8. qPCR

TRIzol was used to extract total RNA from tomato leaves, after which a HyperScriptTM
III RT SuperMix for qPCR (EnzyArtisan Biotech, Shanghai, China) with gDNA Remover
was used to prepare cDNA based on the provided directions. Then, a 2× S6 Universal SYBR
qPCR Mix (EnzyArtisan Biotech, China) was used for qPCR using appropriate primers
(Table 3). Three biological replicate samples were analyzed for each condition, and relative
gene expression was calculated by the 2−∆∆Ct method.

Table 3. Sequences of primers used for qRT-PCR.

Gene Name Primer Sequence(5′ to 3′)

Actin (NM_001323002.1)
FORWARD TGACTACGAGCAGGAACTTGAAACC
REVERSE AACGGAACCTCTCAGCACCAATG

SOD (M37151.1)
FORWARD CGGGTGACCTGGGAAACATAGTG
REVERSE ACCACAAGTGCTCGTCCAACAAC

CAT (NM_001247898.1)
FORWARD GCTCCCAGTTAATGCTCCCAAGTG
REVERSE CAAGAAGGAATCGGGTACTGCTCAG

POD (L13654.1)
FORWARD GAGAGGTCTGTTCCAATCCGATGC
REVERSE TTCGTTGAGTGGTCCATCTACAAGC

APX (AY974805.1)
FORWARD AATTGGCTGGTGTTGTTGCTGTTG
REVERSE GGTGGTTCTGGTTTGTCCTCTCTG

MDHAR
(NM_001247084.2)

FORWARD GGGTTCTTCTTGAAAGTGGGAGTCC
REVERSE GAGCCTCTTCAACCGACGATGC

DHAR (NM_001247893.2)
FORWARD AAGAAGTGGAGTGTGCCTGAAAGC
REVERSE AGCCTTGGTTTTCTGGAACGACTC

GR (NM_001321393.1)
FORWARD AGGTTGAATCTGGATGCTGTTGGTG
REVERSE AATGCTGGGTATATTGGTGCGTGAG

Note: Actin (internal control gene); SOD (superoxidase dismutase gene), CAT (catalase gene), POD (peroxidase
gene), APX (ascorbate peroxidase gene), MDHAR (monodehydroascorbate reductase gene), DHAR (dehydroascor-
bate reductase gene), GR (glutathione reductase gene).

3.9. Statistical Analysis

Data were expressed as means ± standard deviation (SD) and were compared with
SPSS v 19.0 using ANOVAs and Duncan’s multiple interval test. p < 0.05 was the signifi-
cance threshold, and Origin 9 was used to construct all figures in this study.
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4. Discussion

In an earlier study, we demonstrated that the exogenous application of AsA was
sufficient to alleviate salt-stress-induced PSII photoinhibition through both increases in
endogenous AsA content and enhanced photosynthetic performance [22]. PSII is generally
regarded as the system primarily affected by photoinhibition under stress conditions, but
some authors have suggested that PSI may also be susceptible [43–45]. Here, significant
reductions in Fv/Fm and Pm were observed in tomato seedlings exposed to salt stress,
suggesting inhibition of both PSI and PSII [46,47]. Salt stress reduced the Y(II) and qP of
tomato seedling leaves, whereas 1–qP was increased, suggesting that excitation pressure
increases in PSII (1–qP) were attributable to a reduced capacity for CO2 assimilation and
reduced electron transfer efficiency [48]. Increases in Y(NO) that were observed in salt-
stress-exposed plants (Figure 2) suggested the disruption of the PSII supercomplex and/or
damage to the D1 protein by excess light energy, which impacts its turnover [49,50]. By
applying exogenous AsA, it was possible to mitigate the impact of salinity on Y(II), qP,
and Y(NO). AsA is reportedly a cofactor of violaxanthin de-epoxidase that is involved in
dissipating excess excitation energy from the xanthophyll cycle under stress conditions [51].
Higher AsA levels within plants can drive D1 protein accumulation under conditions of
cold stress, for example, thereby alleviating PSII photoinhibition [52]. To further probe
the role of AsA, we applied lycorine (an inhibitor of L-galactono-γ-lactone dehydrogenase
activity, which is a key enzyme in AsA synthesis) on the leaves of salt-stressed tomato
seedlings with or without AsA treatment. LYC was used to reduce endogenous AsA
content [53]. In this work, we found that Lycorine treatment could reduce the endogenous
AsA content in leaves of salt-stressed tomato seedlings with or without AsA application
(Figure S1). Meanwhile, a decrease in Y(II) and qP and an increase in 1–qP and Y(NO) were
observed under NaCl + lycorine and NaCl + lycorine + AsA treatment compared with
salt stress and NaCl + AsA treatment, respectively (Figures 1 and 2). Therefore, Applying
AsA may therefore be capable of preserving PSII supercomplex stability or enhancing
the turnover of the D1 protein while also augmenting photosynthetic electron transport
and Calvin-cycle-associated NADPH and ATP demands [54,55]. Higher NPQ values and
lower 1–qP values following treatment with AsA indicated a reduction in PSII reaction
center excitation pressure, an increased capacity for heat dissipation, and a reduction in the
degree of photoinhibition [56,57]. In addition, a decreased capacity for CO2 assimilation
can contribute to a proportion of reduced electron carriers being unable to undergo PSI
donor-side oxidation, resulting in the over-reduction of P700 or excess NADP accumulation,
which in turn enhances ·OH formation and contributes to PSI damage [58]. Here, Y(I) and
[Y(ND)] decreased under stress conditions, whereas Y(NA) increased (Figure 2), thus
demonstrating that PSI was sensitive to salt stress and its activity was reduced in relation
to P700 over-reduction and PSI impairment. Exogenous AsA application was sufficient to
reverse the impact of NaCl or NaCl + lycorine treatment on these indices (Figure 2). AsA
was thus able to maintain P700 at a higher oxidation state under salt stress conditions while
attenuating ·OH-mediated PSI damage.

State transition is a mechanism through which organisms that rely on photosynthe-
sis can control the relative allocation of excitation energy to PSI and PSII and decrease
excitation-energy-related stress in PSII reaction centers [59]. Under adverse conditions,
maintaining a balanced distribution of excitation energy is a prerequisite for the efficient op-
eration of PSII and PSI and the coordinated completion of the LEF (linear electron flow) [60].
Here, salt stress was found to result in reductions in p and α values and increases in D,
β, Ex, and β/α-1, indicating an imbalanced distribution of excitation energy between PSI
and PSII. Additionally, an increase in PSII excitation energy stress and the portion of light
energy allocated to light reactions (p) was significantly decreased, whereas the portion of
light energy dissipated as energy from non-photochemical reactions (Ex) increased. This
may contribute to the reductions in photosynthetic efficiency and PSII damage under salt
stress conditions (Figure 3). The application of lycorine led to a further imbalance in the
allocation of excitation energy between PSI and PSII in tomato seedlings exposed to salt
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stress, suggesting reduced regulatory ability of the photosystem energy redistribution
mechanism (Figure 3). Exogenous AsA application was able to balance the distribution
of excitation energy between PSI and PSII, thus increasing PSII reaction center openness
(qP) under NaCl and NaCl + lycorine treatment conditions, which allowed more energy for
photochemical reactions (p) and reduced PSII damage resulting from exposure to excess
light energy (Ex), as evidenced by Fv/Fm and Y(II) enhancement. AsA can thus maintain
an appropriate distribution of absorbed light energy between PSI and PSII under salt stress
conditions, improving the light energy utilization efficiency.

Light energy absorbed by plants is used primarily for electron transfer that drives
electron-consuming processes such as photorespiration (PCO) and photosynthetic car-
bon reduction (PCR) [61]. The total electron flux in PSII [Je(PSII)] can be separated into
both Je(PCR) and Je(PCO) as well as the alternative electron flux (Ja). Ja comprises both
Ja(O2-independent) and Ja(O2-dependent), the latter of which corresponds to the Mehler
reaction, which is a key source of ROS such that increased Ja(O2-dependent) can trigger
ROS production under adverse conditions [62]. Under normal conditions, PCR functions
as a key sink for light energy that has been absorbed, whereas the inhibition of PCR under
stress conditions can alter photorespiration, the Mehler reaction, and nitrogen-metabolism-
related electron flow [11]. Haupt-Herting et al. [63] found that tomato seedlings exposed to
water stress exhibited significant reductions in Je(PCR) and Ja(O2-dependent) together with
an increase in Je(PCR). Moreover, Zhou et al. [64] analyzed PSII electron flux and found
that cold-induced reductions in Je(PCR) were largely compensated by Ja(O2-dependent)
rather than by Je(PCO). Here, salt stress was found to inhibit Je(PCR) and Je(PCO) while
enhancing Ja(O2-dependent) and Ja(O2-independent) (Figure 4). These results indicate the
trapping of large quantities of excess energy that are then consumed via O2 partial-pressure-
dependent alternative electron flux, resulting in excessive ROS production. Melatonin and
brassinolide (BR) reportedly improve cucumber seedling cold tolerance through mech-
anisms associated with increases in Je(PCR) and decreases in Ja(O2-dependent) [61,65].
Zhang et al. [66] utilized transgenic rice overexpressing l-galactono-γ-lactone dehydroge-
nase (GLDH) and demonstrated that higher levels of endogenous AsA were associated with
increases in Je(PCR) and Je(PCR)/Je(PSII) together with reductions in Ja/Je(PSII), implying
a role for AsA in photosynthetic electron flow allocation in rice. Here, we found AsA to
maintain high Je(PCR), Je(PCO)/Je(PSII), and Je(PCR)/Je(PSII) levels while significantly
suppressing increases in Ja/Je(PSII) and Ja(O2-dependent) in tomato seedlings exposed
to salt stress (Figure 5). The application of AsA further reversed the impact of lycorine
treatment by inhibiting electron flow allocation to carbon assimilation and inducing Mehler
reaction allocation under salt stress conditions. AsA is thus capable of maintaining the
ability of PCO and PCR to consume excessive photosynthesis-related electrons, thus re-
ducing O2 partial-pressure-dependent alternative electron flux. Excessive light energy
can, under stress conditions, contribute to ROS production within chloroplasts that can
damage both PSII and PSI. CEF-PSI can effectively protect against photodamage, and many
prior reports have demonstrated that CEF can shield PSI from stressors including cold [67],
heat [68], drought [69], and other adverse conditions [70]. By oxidizing PSI acceptor-side
components through the recycling of electrons from PSI to the plastoquinone (PQ) pool
and Cyt b6/f, CEF can mitigate acceptor-side reduction [71]. Here, the exogenous AsA
stimulated Y(CEF) in tomato seedlings subjected to salt stress with or without lycorine
treatment while improving the Y(CEF)/Y(II) ratio and Je(CEF-PSI) (Figure 6). Application
of AsA was thus able to stimulate increased CEF activity, transferring PSI electrons to PQ
and growing the PQ pool, thus facilitating PQ pool oxidization in these tomato leaves that
had been subjected to salt stress. Applying AsA can thus facilitate absorbed light energy
distribution to PSI reaction centers, reducing PSI donor-side electron accumulation [72]. In
summary, exogenous AsA activated CEF and thereby alleviated PSI photoinhibition under
salt stress conditions.

Dysregulated ROS metabolism under stress conditions can cause damage to aerobic or-
ganisms and can contribute to photoinhibition resulting from damage to the photosynthetic



Plants 2023, 12, 1379 19 of 24

apparatus. Elevated Ja(O2-dependent) under salt stress or other stress conditions implies
enhanced Mehler reaction activity and ROS generation [73]. Here, salt stress increased
Ja(O2-dependent) and caused concomitant increases in the accumulation of MDA and
ROS (O2

− and H2O2) as well as reduced antioxidant enzyme activity levels and increased
electrolyte permeability (Figures 7 and 9), indicating that the ROS production capacity was
increased and ROS scavenging activity was impaired under salt stress, thereby contributing
to oxidative damage. Plants have evolved a range of tightly regulated enzymatic and
non-enzymatic mechanisms responsible for the scavenging of ROS, with the CAT, POD,
SOD, and AsA–GSH pathways being the most prominent in this context. Both endogenous
GSH levels and the GSH/GSSG ratio can offer important insight into redox homeostasis
in plants [74–77]. The ability to maintain such redox homeostasis under stress conditions
is critical, as it can shield against damage to the photosystems [78]. Endogenous AsA
has been shown to serve as a key non-enzymatic component of these antioxidant defense
pathways, as it serves as an electron donor for APX-mediated H2O2 scavenging in the
AsA–GSH cycle when protecting plants against the potential oxidative stress induced by
many abiotic stressors [79–81]. Exogenous AsA application can similarly improve stress
tolerance and promote growth through the detoxification of ROS induced in response to
various stressors [82–84]. Here, the spraying of AsA on tomato seedlings under salt stress
conditions contributed to increases in photosynthetic electron flow, the inhibition of Mehler
reaction activity, and reductions in ROS accumulation. Moreover, AsA was associated
with improvements in the expression and activity levels of POD, CAT, SOD, APX, GR,
DHAR, and MDAR, whereas in salt-stressed plants treated with lycorine, these enzymes
were downregulated and suppresses while ROS levels were increased (Figures 7 and 9–11).
Treatment with exogenous AsA similarly promoted increases in the GSH content and
GSH/GSSG ratio in the leaves of tomato seedlings exposed to NaCl or NaCl + lycorine
treatment (Figure 8). These data further confirmed that exogenous AsA was able to in-
crease photosynthetic electron flow, inhibit ROS production, enhance the detoxification
of ROS, and maintain redox homeostasis in salt-stress-exposed plants. This pathway is
one of the key mechanisms by which photosystem stability is maintained, and it mitigates
photoinhibition in the presence of salt stress.

5. Conclusions

In summary, these results demonstrate the efficacy of AsA in the mitigation of photo-
system inhibition in tomato seedlings under salt stress conditions. The findings showed
that AsA could promote the thermal dissipation of PSII excitation energy and mitigate
excessive PSI receptor side reduction under salt stress. This was accomplished primarily by
balancing the allocation of excitation energy between PSI and PSII, thus activating NPQ
mechanisms, photorespiration, and CEF, which maintained the stability of both photosys-
tems and enhanced the quantum yield of PSII and PSI photochemistry. The exogenous
application of AsA was also able to promote efficient electron transfer between the two
photosystems and protect against photooxidative damage through the enhancement of
ROS scavenging and photosynthetic electron flow, thereby effectively alleviating PSI and
PSII photoinhibition and improving the photosynthetic performance of tomato seedlings
exposed to high levels of salinity (Figure 12).
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(PQ), the cytochrome b6/f (Cyt b6/f) complex, and plastocyanin (PC), and they ultimately reduce 
NADP+ to NADPH via Fd (black arrow). In the context of cyclic electron flow (CEF) around PSI, Fd 
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Figure 12. Schematic diagram of the effects of ascorbic acid (AsA) on photosynthetic electron
transfer, current distribution, and reactive oxygen species (ROS) scavenging in the leaves of tomato
seedlings under salt stress conditions. Note: the solid and dashed lines correspond to promotion
and inhibition, respectively, while the relative thickness of arrows denotes an increase or decrease.
Electrons generated by photosystem II (PSII) are transferred to photosystem I (PSI) via plastoquinone
(PQ), the cytochrome b6/f (Cyt b6/f) complex, and plastocyanin (PC), and they ultimately reduce
NADP+ to NADPH via Fd (black arrow). In the context of cyclic electron flow (CEF) around PSI, Fd
can transfer electrons back to PQ and then back to PSI via Cyt b6/f and PC (orange arrow). These
electron transfer reactions are coupled with proton pumping into the thylakoid lumen and produce a
proton gradient across the thylakoid membrane (∆pH). AsA promotes an increase in CEF rate under
salt stress and NaCl + lycorine treatment conditions, and this increase in CEF rate contributes to
the formation of ∆pH, which in turn induces an increase in non-photochemical quenching (NPQ),
allocation of photosynthetic electron flux primarily to carbon assimilation and nitrogen metabolism,
and a decrease in Mehler reaction electron flow. Increased NPQ induces increased photosynthetic
electron flux, which is primarily allocated to carbon assimilation and nitrogen metabolism. This
decreases Mehler reaction electron flow and increases the strength of the antioxidant system and
the activity of key enzymes in the ascorbate–glutathione (AsA–GSH) cycle. This, in turn, reduces
ROS levels, signals to the nucleus, increases gene expression, and provides negative feedback to the
chloroplast, which ultimately alleviates oxidative damage to the electron donor and acceptor side
of PSII. In addition, the increase in ∆pH maintained the regulation of electron transfer by Cyt b6/f
and avoided the excessive accumulation of electrons at PSI to reduce the oxidative damage on the
acceptor side of PSI.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12061379/s1, Figure S1: Values of reduced ascorbic acid
(AsA) content in leaves of salt-stressed tomato seedlings with or without exogenous reduced ascorbic
acid (AsA) and lycorine (AsA synthesis inhibitor) spraying. Abbreviations 3d, 6d, and 9d represent
the third, sixth, and ninth day after treatment, respectively. Control, no added NaCl and sprayed
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with distilled water; NaCl, added 100 mmol·L–1 NaCl and sprayed with distilled water; NaCl + AsA,
added 100 mmol·L–1 NaCl and sprayed with 0.5 mmol·L–1 AsA; NaCl + lycorine, added 100 mmol·L–1

NaCl and sprayed with 0.25 mmol·L–1 lycorine; NaCl + lycorine + AsA, added 100 mmol·L–1 NaCl
and sprayed with 0.25 mmol·L–1 lycorine plus 0.5 mmol·L–1 AsA. Values are means ± SD (n = 3).
Values with a different letter within a sampling date are significantly different (p < 0.05).
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