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Abstract: Sorghum (Sorghum bicolor) is the fifth most important cereal crop worldwide; however,
its utilization in food products can be limited due to reduced nutritional quality related to amino
acid composition and protein digestibility in cooked products. Low essential amino acid levels and
digestibility are influenced by the composition of the sorghum seed storage proteins, kafirins. In this
study, we report a core collection of 206 sorghum mutant lines with altered seed storage proteins.
Wet lab chemistry analysis was conducted to evaluate the total protein content and 23 amino acids,
including 19 protein-bound and 4 non-protein amino acids. We identified mutant lines with diverse
compositions of essential and non-essential amino acids. The highest total protein content in these
lines was almost double that of the wild-type (BTx623). The mutants identified in this study can
be used as a genetic resource to improve the sorghum grain quality and determine the molecular
mechanisms underlying the biosynthesis of storage protein and starch in sorghum seeds.

Keywords: Sorghum bicolor; kafirins; ethyl methanesulfonate (EMS); amino acids

1. Introduction

Sorghum (Sorghum bicolor), belonging to the Poaceae family, is the fifth major cereal crop
worldwide, after wheat, rice, corn, and barley, in terms of grain productivity [1]. Sorghum is
widely used in animal feed, fodder, and high-value products, such as syrup and bioethanol,
making it a promising candidate for multipurpose feedstock [2,3]. Because of its excellent
resistance to drought in agro-ecological zones with limited rainfall, where the yield of other
cereal crops is insufficient, sorghum is considered as a potential alternative to nutrient-
enriched food [4]. Sorghum is a major crop in the semiarid and arid areas of the world,
particularly in Africa, where it is a staple meal for a sizable portion of the population [5].
However, it has lower nutritional value compared to other crops [6,7]. Therefore, it is
important to develop improved sorghum varieties with higher nutritional value.

Sorghum grain can have a wide range of protein content, but on average contains
approximately 11% crude protein [8,9]. The most prevalent proteins, prolamins (kafirins
in sorghum), are present in the endosperm with the majority found in spherical protein
bodies [10]. Notably, kafirin accounts for approximately 48–70% of the total protein content
in whole grains and up to 80% of the protein content in decorticated kernels [2,11]. Starch
is the main carbohydrate in sorghum grains. Similar to protein content, total starch can
vary widely but on average the starch content in sorghum is ~70%. Starch consists of two
polysaccharides: amylopectin, accounting for 70–80% of the starch, and amylose constitut-
ing the remaining 20–30% [10,12]. Similar to maize and other cereal grains, sorghum grains
have low quantities of oil and other lipids, generally 2–4% on a weight basis [13].
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Sorghum storage proteins exhibit a strong sequence similarity to the maize storage
proteins, zeins [14]; however, sorghum proteins are more hydrophobic and have a greater
number of cross-linked fractions than the maize proteins, indicating their greater propensity
to create intermolecular disulfide cross-connections and protein aggregates [14,15]. The
combination of protein bodies and matrix protein in the endosperm forms a protein barrier
around the starch granules, which in turn inhibits amylolytic enzymes from hydrolyzing
native and processed starch [16,17]. Starch-gelatinizing is also negatively impacted by
protein structures (protein bodies and matrix protein) [3,15].

All cereal grains are low in lysine and developing germplasm with high lysine content
may result in significant trade-offs, such as poor grain quality, with a soft and floury en-
dosperm texture, in cereals [18]. Modifier genes increasing zein accumulation have been
reported to dissociate the higher lysine content in the floury endosperm in maize [19,20].
For example, the opaque-2 mutant is a potential candidate for enhancing the maize protein
quality by increasing its lysine and tryptophan levels [19]. Interestingly, sorghum possesses
a higher amount of the polymerization of its prolamins (kafirins) [21,22]. Polymerization of
kafirins results in reduced protein digestibility [23]. In previous studies, chemical mutagene-
sis (diethyl sulfate treatment) was used to produce the highly digestible high-lysine (dahl)
mutant P721Q (Q for opaque) from P721N (N for normal) in sorghum [21,24,25]; the mutant
produced floury kernels and non-vitreous phenotypes, including lysine, because of the lack of
accumulation of kairine [24].

Depending on the ability of the human body to synthesize amino acids, amino acids
can be divided into essential and non-essential types [26–28]. Essential amino acids cannot
be synthesized by the human body and need to be provided through external resources,
whereas non-essential amino acids can be synthesized by the human body and are not
required from external sources [9,29]. People in low-income nations with subsistence level
agricultural systems who depend on a few specific crops with an imbalanced amino acid
composition have more health issues caused by the inadequate intake of crucial amino
acids [9]. Addition of chemically generated amino acids to manufactured animal and
human food is not cost-effective in low-income countries. Therefore, it is necessary to
increase the concentration of essential amino acids and protein content in food crops to
aid in crop development. Various conventional and transgenic techniques have been
successfully used to enhance the protein content and amino acid balance in plant seeds.
Lysine-rich sorghum germplasm was created via transgenesis of the gene HT12 to improve
the nutritional quality of the sorghum grain [30–33]. However, these techniques require
more time and sophisticated lab facilities, which are not available in low-income countries,
necessitating the development of an eco-friendly and economical approach that provides
immediate agronomic benefits to the farmers.

The mutant populations in plants have been widely used in plants as a resource of
genetic diversity for crop functional genomics and breeding applications. It has been
demonstrated that mutant populations are powerful resources for gene function study [34].
Large-scale plant mutant populations could be produced in several ways, including T-DNA
insertion and physically- or chemically-induced mutagenesis [35]. T-DNA-based insertional
mutagenesis is impractical to generate large mutant populations for crops such as sorghum,
due to the lack of a highly efficient transformation system [36]. Therefore, chemical muta-
gens such as ethyl methanesulfonate (EMS) are often employed for seed mutation because
they are efficient to create high frequency point mutations [37]. The EMS chemical could
induce high density stable point mutations at the genome level. The desirable mutants may
be used directly in breeding without raising any concerns about genetic modification [37].
EMS-induced mutagenesis has been utilized effectively in Arabidopsis [38–40], rice [41,42],
wheat [43,44], maize [45,46], barley [47], sorghum [48,49], and tomato [50]. For example, it
has been shown that EMS-induced mutagenesis is a successful method for obtaining genetic
resources for high-quality rapeseed breeding, particularly for the creation of cultivars with
high oleic acid and low linolenic acid in Brassica napus [51,52]. Likewise, Soybean muta-
genesis has been widely used in characterized loci controlling important agronomic traits
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such as seed quality. For example, the FAD2-1A gene (Glyma.03G144500) has been shown
to influence the concertation of linoleic acid. Similarly, mutations in the RS2 (raffinose
synthase; Glyma.03G137900) genes result in higher sucrose levels and lower concentra-
tions of raffinose and stachyose oligosaccharide [53–55]. Similarly, another EMS-based
mutant population was used to investigate the mechanism of oil production and generate
germplasms for Brassica napus breeding [56]. In maize, the Waxy1 line was created by
EMS-based mutagenesis, which could produce the low expression level of granule-bound
starch synthase I and lead to the low level of amylose but high level of amylopectin in
seed [57,58]. OsNF-YB1 knockout in rice led to altered rice quality due to the changes
in grain size, amylose, total starch, crude fiber, and lipid content, as well as increased
protein content [59]. In recent years, induced mutations have been extensively used for
breeding annual oilseed crops [60–63]. The maize Opaque-2 (O2) mutant has been used
in breeding to produce new maize verities with high lysine content and reduced zein to
glutenin ratio [64,65]. The maize O2 mutant has been used in breeding to produce new
maize verities with high lysine content and reduced zein to glutenin ratio [64,65]. Hence,
the mutant germplasm produced by EMS that has the potential to improve seed quality
and other agronomic performance may be employed as a complementing technique in the
genetic improvement of cereal crops.

Although several EMS mutant populations have been developed previously, none of the
sorghum mutant populations have been screened extensively for seed quality traits [48,49,66–68].
Sorghum has been underutilized in grain quality studies due to the limited availability of
genetic resources. To facilitate the functional genomics research of sorghum, we previously
established a large sorghum mutant population containing more than 6400 M2 pools [48,49].
More than 1.8 million canonical EMS-induced mutations were discovered from the whole-
genome sequencing of 256 mutant lines, which covered more than 95% of the sorghum
genome. Interestingly, 97.5% of the generated mutations were not discovered in the natural
variants. This population has been of great value in characterizing important traits in
sorghum, including epicuticular wax, seed size, and inflorescence development [49,69,70].
This mutant population has sufficient mutation density and low cross-fertilization, making
it a useful genetic resource for examining the functions of sorghum genes. The underlying
mutant resources, coupled with compressive grain quality analysis for essential and non-
essential amino acids provide an efficient platform for functional validation of genes related
to important seed traits in sorghum.

In this study, we analyzed 23 amino acids in 206 ethyl methanesulfonate (EMS)-based
sorghum mutant lines to provide a new germplasm resource for sorghum grain quality
improvement. EMS mutagenesis technique has gained momentum for generating mutant
populations due to its high frequency of point mutations [71,72]. Herein, we used a wet
chemistry approach to determine the levels of essential and non-essential amino acids in
EMS-based mutant and wild-type sorghum crops to compare their nutrient dynamics. Our
study may serve as a robust genetic resource for enhancing the sorghum genetic potential
to improve its grain nutrient content and aid in the development of effective sorghum
breeding strategies.

2. Results
2.1. Variations in the Seed Amino Acid and Total Protein Levels in the Mutagenized
Sorghum Population

To identify any variations in amino acid levels in the sorghum mutant population, we
analyzed the M3 generation of 206 mutant lines. This mutant population was generated
via EMS treatment of the reference genome line, BTx623, through single-seed descent. Each
mutant line contained, on average, 7660 mutations. The overall mutation density in the
population was 11 SNPs/Mb, with a range varying from 0.02 to 22.5 SNPs/Mb [49]. We
conducted wet lab chemistry analysis to determine the seed protein composition, including
total protein content and concentration of various amino acids in the mutant population.
Wet lab chemistry analysis provides accurate and precise measurements of the content of
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each amino acid [73,74]. Total protein content and distribution of 23 amino acids, including
19 protein-bound and 4 non-protein amino acids, are depicted in Figure 1A. Total protein
content (10.28–19.01%) in 206 accessions indicated new genetic variability due to induced
mutagenesis (Figure 1A). Surprisingly, the total protein content was higher in all mutant
lines than in the BTx623 line (10.35%). ARS197 (19.14%), ARS152 (18.45%), and ARS
(18.04%) showed increases in total protein content of 84.92, 78.26, and 74.29%, respectively
(Figure 1A). In wild-type BTx623, the most abundant amino acid in sorghum seeds was
glutamic acid (21.11%), followed by leucine (13.40%), alanine (9.34%), and proline (8.21%)
(Figure 1B). The minimum and maximum concentrations of each amino acid in the mutant
population are listed in Table 1. Major amino acids, hydroxylysine, methionine, taurine,
cysteine, tyrosine, tryptophan, hydroxyproline, lanthionine, and ornithine, exhibited > 20%
difference between their minimum and maximum concentrations, indicating diversity in
the mutagenized population (Table 1).
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Figure 1. Variations in the total protein content in the mutant population and amino acid distribution
in BTx623. (A) Variation in the total protein content and number of mutant lines. (B) Composition
of amino acids in the total protein of BTx623. Control line (BTx623) is indicated by a red bar in
each panel.
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Table 1. Summary of the amino acid analysis of 206 sorghum mutant lines.

Summary of Mutant Population

Amino Acids Mean (%) Maximum (%) Minimum (%)

Taurine 1.29 1.81 0.89
Hydroxyproline 0.08 0.20 0.00

Aspartic Acid 6.45 7.57 5.90
Threonine 3.07 3.40 2.87

Serine 3.97 4.36 3.63
Glutamic Acid 21.70 23.37 19.73

Proline 8.07 8.59 7.40
Lanthionine 0.13 0.28 0.00

Glycine 2.88 3.32 2.43
Alanine 9.51 10.22 8.80
Cysteine 1.67 2.07 1.15

Valine 5.03 5.32 4.71
Methionine 1.61 2.16 1.08
Isoleucine 4.22 4.46 3.89
Leucine 13.98 14.94 12.97
Tyrosine 3.51 3.82 2.83

Phenylalanine 5.43 5.72 5.05
Hydroxylysine 0.19 0.37 0.08

Ornithine 0.05 0.09 0.00
Lysine 2.08 2.66 1.78

Histidine 2.22 2.45 1.92
Arginine 3.38 4.28 2.87

Tryptophan 0.82 0.98 0.67

Using the wet lab chemistry approach, we measured the concentrations of essential
(histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan,
and valine) and non-essential (alanine, arginine, asparagine, aspartic acid, cysteine, glu-
tamic acid, glutamine, glycine, proline, serine, and tyrosine) amino acids in each mutant
line. We found a positive correlation between the concentration of each amino acid and
the total protein content (Figure S1). As shown in Figure S1, the concentration of each
amino acid increased with the increase in total protein content in the seeds. Compared to
leucine, methionine, tryptophane, and phenylalanine (R2 = 0.594, 0.485, 0.492, and 0.632,
respectively), histidine, lysine, threonine, and valine (R2 = 0.671, 0.918, 0.746, and 0.720, re-
spectively) exhibited stronger correlations (Figure S2). This result suggests that the mutant
lines with a high percentage of total protein had high concentrations of essential amino
acids. Compared to the wild-type line, ARS158, ARS125, and ARS197 mutant lines had dou-
ble the concentrations of important amino acids. Histidine concentration was 0.41 g/100 of
dry seed in ARS158 and ARS125 mutant lines compared to 0.22 g/100 of dry seed in BTx623
(Figure 2A). Similarly, isoleucine, leucine, lysine, and phenylalanine concentrations were
doubled in the ARS197 mutant line compared to that in the wild-type line. ARS197 had high
concentrations of isoleucine, leucine, lysine, and phenylalanine, indicating positive correla-
tions among these amino acids (Figure 2A–I). Compared to BTx623, the mutant lines had
higher concentrations of the essential amino acids, histidine, isoleucine, leucine, lysine, and
phenylalanine. However, ARS159, showed lower concertation of methionine (0.16 g/100 g
of dry seed) than BTx623 (0.19 g/100 g of dry seed). Concentrations of non-essential amino
acids showed a similar trend in the mutant population (Figure 3A–I). Similar to essential
amino acids, non-essential amino acids also showed a positive correlation with the total
protein content (Figure S2). All mutant lines had higher concentrations of alanine, proline,
serine, arginine, and tyrosine than BTx623. However, five mutant lines exhibited lower
concentrations of cysteine than BTx623 (Figure 3A). A similar trend was observed for the
non-protein amino acids, ornithine, taurine, and hydroxyproline (Figure S2).
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Figure 2. Mutant lines with various concentrations of the essential amino acids, histidine (A),
isoleucine (B), leucine (C), methionine (D), lysine (E), valine (F), threonine (G), tryptophan (H), and
phenylalanine (I). The x value indicates g/100 g of dry seed sample. Total protein was extracted from
100 g of seeds and the amino acids were quantified. Control line (BTx623) is indicated by a red bar in
each panel.

2.2. Variability in the Kernel Structure, Composition, and Starch Content

To further investigate the effects of mutations on the kernel structure composition
and starch content, seeds from five mutant lines (ARS132, ARS137, ARS239, ARS136, and
ARS140) and BTx623 were analyzed using near-infrared (NIR) spectroscopy. These mutant
lines were randomly selected for comparison with BTx623. As illustrated in Figure 4, the
mutations in these five lines affected the proportion of floury and vitreous endosperm,
vitreosity, and the seed protein, total starch, and amylose contents. The proportion of
vitreous endosperm was higher than that of floury endosperm in ARS132, ARS137, ARS136,
and ARS140 lines (Figure 4). However, ARS239 showed a pattern similar to that of BTx623.
Floury and vitreous endosperm traits are directly related to the starch digestibility rate.
These components are unique in their composition and their relative proportions influence
the final chemistry of the grain. In addition, the grain composition is closely intertwined
with the physical structure [75]. Hence, the mutant lines generated in this study may be a
useful resource for investigating the effects of floury and vitreous endosperms on the starch
digestibility rate and other traits of sorghum seeds. ARS132, ARS137, ARS136, and ARS140
mutant lines had higher vitreosity than BTx623 and ARS239 lines (Figure 4), indicating
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that the rate of vitreosity is directly correlated with the proportion of floury and vitreous
endosperm. We also quantified the total protein content via NIR spectroscopy and found
a correlation of 0.857 with wet lab chemistry analysis, indicating the high quality and
reliability of the data generated in this study. ARS239 had a higher protein content than the
other mutant lines and BTx623, suggesting that the proportion of vitreous endosperm is
negatively correlated with the total protein content. Compared with BTx623, no obvious
changes were observed in any of the mutant lines. Interestingly, amylose content decreased
by 26.673% in ARS239 compared to that in BTx623, suggesting that the floury endosperm
has more amylose content than the vitreous endosperm (Figure 3). These results indicate
that the mutant lines generated in this study have sufficient variability and can be used as
a valuable resource for functional genomics research and sorghum breeding in the future.

Plants 2023, 12, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 3. Mutant lines with various concentrations of the non-essential amino acids, glutamic acid 
(A), alanine (B), proline (C), aspartic acid (D), serine (E), arginine (F), tyrosine (G), cysteine (H), and 
glycine (I). The x value indicates g/100 g of dry seed sample. Total protein was extracted from 100 g 
of seeds and the amino acids were quantified. Control line (BTx623) is indicated by a red bar in each 
panel. 

2.2. Variability in the Kernel Structure, Composition, and Starch Content 
To further investigate the effects of mutations on the kernel structure composition 

and starch content, seeds from five mutant lines (ARS132, ARS137, ARS239, ARS136, and 
ARS140) and BTx623 were analyzed using near-infrared (NIR) spectroscopy. These mu-
tant lines were randomly selected for comparison with BTx623. As illustrated in Figure 4, 
the mutations in these five lines affected the proportion of floury and vitreous endosperm, 
vitreosity, and the seed protein, total starch, and amylose contents. The proportion of vit-
reous endosperm was higher than that of floury endosperm in ARS132, ARS137, ARS136, 
and ARS140 lines (Figure 4). However, ARS239 showed a pattern similar to that of BTx623. 
Floury and vitreous endosperm traits are directly related to the starch digestibility rate. 
These components are unique in their composition and their relative proportions influ-
ence the final chemistry of the grain. In addition, the grain composition is closely inter-
twined with the physical structure [75]. Hence, the mutant lines generated in this study 
may be a useful resource for investigating the effects of floury and vitreous endosperms 
on the starch digestibility rate and other traits of sorghum seeds. ARS132, ARS137, 
ARS136, and ARS140 mutant lines had higher vitreosity than BTx623 and ARS239 lines 
(Figure 4), indicating that the rate of vitreosity is directly correlated with the proportion 

Figure 3. Mutant lines with various concentrations of the non-essential amino acids, glutamic acid (A),
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of seeds and the amino acids were quantified. Control line (BTx623) is indicated by a red bar in
each panel.
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2.3. Correlation between the Total Protein and Amino Acid Levels in the Mutagenized
Sorghum Population

To determine the correlations between each amino acid concentration and the total
protein content, the concentrations of each amino acid (g amino acid/100 g protein) relative
to the total protein content were calculated. Glutamic acid, lanthionine, alanine, leucine,
hydroxylysine, and ornithine showed positive correlations with the total protein content
(Figure 5), suggesting that their concentrations increase relative to the total protein content.
Notably, glutamic acid, alanine, and leucine were the three most abundant amino acids
in wild-type seeds. Taurine, hydroxyproline, threonine, serine, proline, glycine, cysteine,
methionine, lysine, histidine, arginine, and tryptophan showed negative correlations with
the total protein content. For example, the total protein content was increased by 89.34%
in the ARS197 line compared to that in BTx623, but the lysin content was decreased
(2.16 g/100 g of protein) in the ARS197 line compared to that in BTx623 (2.39 g/100 g of
protein). de Borja Reis, et al. [76] reported similar findings in soybeans. Aspartic acid,
phenylalanine, isoleucine, valine, and tyrosine were not significantly related to the total
protein concentration in the mutagenized sorghum population (Figure 5). These results
indicate that the amino acid to protein ratio directly affects the nutritional value of sorghum
seeds and should be specifically considered in the development of high-protein varieties.
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3. Discussion

Sorghum is the fifth most important cereal crop that is grown as a food and feed crop
worldwide. In comparison to wheat, rice, and maize, sorghum may have lower nutritional
value, which is directly affected by the protein quality of the grain. Along with lower
protein digestibility, sorghum is low in essential amino acids, especially lysine. Therefore,
it is necessary to develop new germplasm sources, such as mutant populations, with
variability in seed composition, particularly in essential amino acid content. In this study,
mutant lines were generated using an EMS-based approach. These mutant lines showed
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variation in seed amino acid concentrations compared to those in the BTx623 line and may
be used in future sorghum breeding programs.

In this study, the mutants exhibited wide variability in the total protein content and
23 amino acids, including 19 protein-bound and 4 non-protein amino acids. Lasztity [77]
and De Mesa-Stonestreet et al. [78] revealed that the total protein content in elite sorghum
lines ranged from 6 to 18%, with an average of 11%. The lines generated in this study showed
10–19.2% total protein content (Figure 1A), which varied significantly in the mutant lines.
Compared to BTx623, all mutant lines showed a higher total protein content (Figure 1A).
Similar results have been reported in a soybean EMS-based mutant population [79]. In
addition, the essential amino acid content was positively correlated with the total protein
content. Several mutant lines with altered amino acid content were also observed. Therefore,
the mutant population developed in this study can be used as a resource to enhance the
sorghum seed quality by increasing its essential amino acid content.

Our mutant lines can aid in the identification of genes affecting the seed quality. We
identified promising mutants with increased total protein and essential amino acid contents
in this study. We also observed positive correlations among various amino acids in the
ARS197 mutant line. Hence, this mutant line can be used to determine the correlations
among various amino acids. Mutants showing variability in kernel weight, kernel size,
amylose content, virtuosity, and starch content may also exhibit a high yield. Therefore,
the mutant lines generated in this study can be used in sorghum breeding programs to
improve the seed quality, such as increase the essential amino acid content and digestibility,
and other important traits, such as yield, kernel hardness, and starch content.

4. Material and Methods
4.1. Generating a Mutant Population

We generated a mutant population via EMS treatment, as previously described [49].
Briefly, approximately 100 g of BTx623 seeds was treated with 0.1–0.3% EMS (v/v) for 16 h at
50 rpm on a rotary shaker. Seeds were thoroughly washed for 5 h in tap water at an ambient
temperature. During incubation, the water was repeatedly changed every 30 min. Seeds
were air-dried and planted in the field at a density of 120,000 seeds per hectare. To prevent
cross-pollination, the panicles of each plant were covered with a 400-weight rainproof
paper pollination bag before anthesis. Mature seeds were harvested from each plant and
advanced to M2 generation by growing the resulting seeds one row per head, and the
panicle was bagged before anthesis (three individuals in each row). One panicle progressed
to M3 generation. Ten panicles were bagged for each M3 head row and pooled as M4 seeds,
which were distributed to the end users upon request. Sample preparation, DNA extraction,
variation detection and function, and prediction characterization of Sorghum EMS-induced
single-nucleotide polymorphisms have been previously described [49]. For the current
study, mutant collections of 256 lines were planted at the USDA-ARS Plant Stress and
Germplasm Development Research Unit, Lubbock, Texas (latitude 33◦35′ N, longitude
101◦53′ W, and altitude 958 m) in 2017. The soil type is an Amarillo fine sandy loam (fine-
loamy, mixed, superactive thermic Aridic Paleustalfs). Before planting, a mixture of bulk
ammonium sulfate and mono ammonium phosphate was applied to the field, calculated to
achieve levels of 65 kg nitrogen and 27 kg phosphorous per hectare. An augmented design
with no replicates was used. The plot size is four rows of 4.67 m long with 1.02-m row
spacing. Sorghum seeds were planted at 80 per row at a depth of 3 cm using a John Deere
MaxEmerge Planter. The irrigated plots received 5 mm of water per day from underground
drip lines located on 1.02-m centers as needed. Fifty grams of dry seed from 206 lines
were provided to Agricultural Experiment Station Chemical Laboratories of the University
of Missouri-Columbia for total protein and composition of amino acids. The remaining
50 lines with low seeds yield were not included.
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4.2. Total Protein and Amino Acid Extraction and Analysis

Total protein and amino acid contents were analyzed by the Agricultural Experiment
Station Chemical Laboratories of the University of Missouri-Columbia (https://aescl.
missouri.edu/index.html, accessed on 1 January 2023) following the standard methods
of the Association of Official Analytical Chemists (AOAC). Briefly, crude seed protein
content was calculated from the total nitrogen content using the Kjeldahl method [80]. The
complete amino acid profile was analyzed via cation-exchange chromatography coupled
with post-column ninhydrin derivatization and quantitation according to the AOAC Official
Method 982 [81].

4.3. NIR Analysis of the Five Sorghum Mutant Lines

Grain composition of five selected sorghum mutant lines was determined using NIR,
as previously described [82]. The vitreosity of the samples was determined via image
analysis of the cut sorghum kernels, as described in [83].

5. Conclusions

The sorghum mutant population showed significant variability in total protein content,
along with variability in 19 protein-bound and 4 non-protein amino acids. Mutants with
doubled amounts of total protein and essential amino acids, such as histidine, leucine, and
lysine, have great potential for improving sorghum seed quality. In addition, we observed
variability in kernel weight, kernel size, amylose content, virtuosity, and starch, which
could also be used to improve important traits of sorghum. The mutant lines that exhibited
interesting variability in seed composition generated in the current study will be freely
available for sorghum breeding programs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12081662/s1, Figure S1: Relationship between amino acids
concertation (g/100 g of seeds) and protein concentration (g/100 g of seeds) in seed of mutant lines;
Figure S2: Number of mutant lines with various concentrations of non- protein amino acids such as
taurine, lanthionine, and ornithine etc.
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