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Abstract: Trichoderma spp. are widely reported to regulate plant growth by improving nutrient uptake,
photosynthesis, and abiotic stress tolerance. However, their possible application for bedding plants is
little explored, especially when comparing different growing media. Considering that coconut coir
dust is finding broader application in the ornamental plants sector as a peat substitute, this work
was aimed to test the combination of Trichoderma atroviride AT10 and coconut coir dust on Impatiens
walleriana plants. Four treatments were tested as a mix of: (i) two growing media (70:30), peat:perlite
or coconut coir dust:perlite; and (ii) the absence or presence of a T. atroviride treatment. At the end of
the production cycle, the biomass and ornamental parameters, leaf pigments, nutrient content of the
plant tissues, and Trichoderma abundance were assessed. The results revealed that T. atroviride can
readily colonize coir, and the same positive effects of inoculum were found in plants grown on both
substrates. The biostimulant effect of T. atroviride was observed as an increase in the aboveground
biomass, number and weight of flowers, pigments and nutrient concentration, thereby improving
the commercial quality of I. walleriana. Thus, T. atroviride has shown its potential in making bedding
plant cultivation more sustainable and improving the yield and aesthetic parameters of plants grown
on peat and coconut coir dust substrates.

Keywords: bedding plants; biostimulant effect; chlorophyll content; coconut coir dust; peat;
Trichoderma spp.

1. Introduction

Bedding and garden plants represent an important market share of the floriculture
industry as they are considered space-saving products, especially in some countries, such
as the United States [1,2], where they accounted for 47% of the wholesale in 2018, consid-
ering the overall market of floricultural products [3]. Looking at the European market,
the wholesale was worth 2.2 billion in 2019, with the Netherlands, France, Italy, Germany,
Spain, and Poland achieving a 27% quota of production destined for the Extra-EU export
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market [4]. Bedding plants are a typical soilless culture production that faces environmental
and economic challenges, such as the use of more sustainable crop protection strategies and
raw materials, including growing media. Indeed, soilless cultures are high-consuming sys-
tems that are increasingly asked to reduce inputs, including water, energy, agrochemicals,
and the production of waste materials, such as plastics and spent growing media, although
ensuring high product quality standards [5,6]. In this regard, molecules and microorgan-
isms with a biostimulant function may play a crucial role in enhancing quality, together
with reducing the use of phytochemicals, even if the spread of organic substrates based on
other materials than peat requires improving the knowledge of possible interactions.

Coir has become one of the most commonly used peat alternative growing media
constituents worldwide, at least in the last two decades [7–9], despite some emerging
criticisms about its sustainability due to the environmental impact related to composting
processes and shipping, as well as the social issues such as community infrastructure
problems and human and labor rights respect [7,10]. It is a renewable material with
optimal well-known physical–chemical properties [11,12], which allow the successful
production of many soilless crops, such as bedding plants, including Impatiens spp., used
both as a stand-alone substrate or in mixtures, starting from germination and seedling
growth [13–15]. Coir, as organic matter, has higher microbiological activity compared to
peat [16,17], and it has a recognized natural content of plant growth-promoting bacteria
(PGPB), such as phosphate-solubilizing bacteria and indole-3-acetic acid-producing
bacteria [18,19].

With the implementation of sustainable agronomic techniques, beneficial soil mi-
croorganisms are increasingly adopted to enhance the plant growth rate and qual-
ity [20,21]. Trichoderma spp. are ubiquitous free-living fungi (Hypocreaceae family), occur-
ring widely in all soil types and representing major components of their mycoflora [22].
Trichoderma fungi can live in soil stress conditions such as salinity, alkalinity, nutrient
deficiency, and drought [23]. Many Trichoderma species have been extensively studied
in open fields and greenhouse cultivation due to their well-known biological control
mechanism. Moreover, they are recognized to have a powerful capacity to improve plant
growth, physiological traits, nutrient uptake, and yield [24–27]. Particularly, T. atroviride
has been shown to increase the biomass of lettuce, zucchini, eggplants, tomato, and radi-
ata pine seedlings [25,28–31], as well as to promote the root development of Arabidopsis
seedlings [32,33]. The ability to stimulate plant growth has been positively correlated
with the production of metabolites with hormone activities like indole-3-acetic acid or
auxin analogues or the solubilization of nutrients like iron through siderophore secretion
in the rhizosphere [34,35]. Consequently, the use of Trichoderma spp. as an active ingredi-
ent in biofertilizers, biopesticides, bioremediates, and natural resistance stimulants is
becoming quite common. Despite this, to the best of our knowledge, there is no scientific
information on the use of Trichoderma in bedding plant cultivation and little information
on its application on ornamental plants in general, particularly when testing different
growing media.

This work was aimed to evaluate the effect of T. atroviride addition on a typical bedding
plant grown on a coir-based substrate as an alternative to peat growing media. Among the
wide range of available herbaceous bedding plants, Impatiens walleriana has been chosen
because it is much appreciated for its wide range of flower colors and long flower display,
as well as for its attractive leaves.

2. Results
2.1. Biomass Measures

The application of T. atroviride statistically increased the aboveground biomass of
I. walleriana plants, while the substrate type did not affect these parameters (Table 1). The
plant shoot fresh (FW) and dry weight (DW) were positively influenced by T. atroviride
treatment in both substrates (+26 g FW plant−1 and +0.8 g DW plant−1 in treated plants,
a 24 and 16% increment, respectively, considering the average values on peat- and coir-
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based substrates). A positive effect was also found in flowers showing a higher FW and
number, which resulted in 34 and 47% increases, respectively, considering the average
values on peat- and coir-based substrates. Flower DW was unaffected by fungal treatment
and substrate (Supplementary Table S1). By measuring the number of flowers produced
during the growing cycle, the T. atroviride presence resulted in significant differences at the
end of the trial but not at the first and second flower harvests (Figure 1). The positive effect
on flowering is also displayed in Figure 2. The same trend was also observed in the leaf
area, for which the treated plants had a 23% increase, considering the average values on
peat- and coir-based substrates (Table 1). The specific leaf area (SLA) was not influenced by
the treatment and substrate type (Supplementary Table S1).

Table 1. Biometric parameters of I. walleriana plants at the end of the experiment.

Source of Variation Shoot FW
(g plant−1)

Shoot DW
(g plant−1)

Total Flower FW
(g plant−1)

Total Flower Number
(plant−1)

Leaf Area
(cm2 plant−1)

Root DW
(g plant−1)

Treatment (T)
No T. atroviride (NTA) 109 ± 13.7 5.1 ± 0.44 20.2 ± 7.41 28.0 ± 8.21 2850 ± 415.6 1.4 ± 0.20
T. atroviride (TA) 135 ± 12.9 5.9 ± 0.77 27.0 ± 2.41 41.2 ± 5.70 3519 ± 343.6 1.6 ± 0.17
p-value ** * * ** ** ns
Substrate (S)
Peat (P) 117 ± 19.4 5.5 ± 0.94 24.4 ± 5.33 34.8 ± 7.92 3098 ± 569.2 1.6 ± 0.16
Coir (C) 126 ± 18.0 5.4 ± 0.51 22.8 ± 7.57 34.3 ± 11.7 3270 ± 453.3 1.4 ± 0.14
p-value ns ns ns ns ns **
T × S
NTA × P 101 ± 9.7 4.9 ± 0.35 22.5 ± 6.96 29.8 ± 6.86 2679 ± 442.4 1.6 ± 0.18
NTA × C 116 ± 14.4 5.2 ± 0.50 17.9 ± 8.10 26.1 ± 10.0 3021 ± 359.8 1.3 ± 0.12
TA × P 133 ± 11.2 6.2 ± 0.90 26.4 ± 2.79 39.9 ± 5.65 3517 ± 302.4 1.7 ± 0.14
TA × C 137 ± 15.9 5.5 ± 0.56 27.7 ± 2.14 42.5 ± 6.28 3520 ± 428.9 1.5 ± 0.13
p-value ns ns ns ns ns ns

Values represent the means (n = 4) ± SDs. Two-way ANOVA p-values are reported in the table (* p < 0.05;
** p < 0.01; ns = not significant). FW = fresh weight; DW = dry weight.
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Figure 1. The flower number measured at three time points during the experiment. Values rep-
resent the means (n = 4) ± SDs as Y-bars. NTA = no T. atroviride treatment, TA = T. atroviride
treatment, P = peat, C = coir. Two-way ANOVA results = Treatment: p = ns at the first and second
sampling points, p < 0.01 at the final sampling point. Substrate: p = ns at all the sampling points.
Treatment × Substrate: p = ns at all the sampling points.

The substrate type influenced the root biomass, while the T. atroviride treatment did
not improve this parameter (Table 1). Specifically, the I. walleriana plants had a statistically
lower root biomass in coir than in peat (−15% considering the average values of not treated
and treated plants).
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Figure 2. Impatiens walleriana bedding plants at the end of the experiment, 56 days after transplant.

2.2. Mineral Elements

T. atroviride treatment in the shoots influenced almost all the mineral elements, espe-
cially in the coir substrate (Table 2). The shoot total Kjeldahl nitrogen (TKN) was influenced
by the interaction between the treatment and substrate, and the highest value was found in
the not treated plants grown on the coir-based substrate. Even the shoot Ca was influenced
by the interaction between the treatment and substrate, and specifically, it was higher in the
treated plants than in the not treated ones in the coir-based substrate. Differently, P-PO4
and K increased with T. atroviride (+7 and 9%, considering the average values on peat-
and coir-based substrates). In contrast, Mg was only influenced by the substrate type and
was lower in coir than in peat (−9%, considering the average values of the not treated
and treated plants). A lower number of statistically significant variations in the mineral
elements were found in the roots (Supplementary Table S2). Specifically, K was higher in
the treated plants (+18%, considering the average values on peat and coir), while Mg was
higher in coir than in peat (+11%, considering the average values of the not treated and
treated plants).

Table 2. Nutrient concentrations (g kg−1 DW) measured in I. walleriana shoots at the end of
the experiment.

Source of Variation TKN P-PO4 K Ca Mg

Treatment (T)
No T. atroviride (NTA) 42.6 ± 2.13 7.6 ± 0.50 38.7 ± 2.00 28.5 ± 0.82 5.7 ± 0.51
T. atroviride (TA) 40.8 ± 0.99 8.1 ± 0.44 42.1 ± 2.77 30.3 ± 0.76 5.6 ± 0.28
p-value ** * * ** ns
Substrate (S)
Peat (P) 40.9 ± 1.07 7.7 ± 0.61 39.2 ± 2.48 29.4 ± 0.67 5.9 ± 0.32
Coir (C) 42.6 ± 2.16 8.0 ± 0.41 41.6 ± 2.92 29.5 ± 1.68 5.4 ± 0.28
p-value * ns ns ns *
T × S
NTA × P 41.0 ± 1.56 b 7.3 ± 0.36 37.5 ± 1.48 28.9 ± 0.64 bc 6.1 ± 0.30
NTA × C 44.3 ± 0.80 a 7.9 ± 0.47 40.0 ± 1.63 28.1 ± 0.85 c 5.3 ± 0.30
TA × P 40.8 ± 0.48 b 8.1 ± 0.56 40.9 ± 2.03 29.8 ± 0.36 ab 5.7 ± 0.23
TA × C 40.8 ± 1.44 b 8.2 ± 0.38 43.2 ± 3.34 30.8 ± 0.71 a 5.5 ± 0.30
p-value * ns ns * ns

Values represent the means (n = 4) ± SDs. Two-way ANOVA p-values and letters are reported in the table
(* p < 0.05; ** p < 0.01; ns = not significant). DW = dry weight; TKN = total Kjeldahl nitrogen.

2.3. Leaf Pigments and Trichoderma Analysis

T. atroviride treatment promoted the chlorophyll a and carotenoid accumulation in
the leaves, with values of +9 and 6% compared to the control, respectively, considering
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the average values on peat- and coir-based substrates (Table 3). Neither the treatment
nor substrate showed any effect on chlorophyll b. The interaction between the treatment
and substrate influenced the greenness index, which was higher for the plants grown on
peat and treated with T. atroviride (Figure 3). On the coir-based substrate, the treatment
with T. atroviride did not reveal any difference in the greenness index. The SPAD measures
were also higher in the plants treated with T. atroviride at the intermediate sampling points
(Figure 4).

Table 3. Pigment concentrations (mg g−1 FW) measured in I. walleriana leaves at the end of
the experiment.

Source of Variation Chlorophyll a Chlorophyll b Carotenoids

Treatment (T)
No T. atroviride (NTA) 0.97 ± 0.054 0.32 ± 0.024 0.23 ± 0.009
T. atroviride (TA) 1.06 ± 0.068 0.34 ± 0.029 0.24 ± 0.013
p-value * ns *
Substrate (S)
Peat (P) 1.03 ± 0.074 0.34 ± 0.033 0.24 ± 0.009
Coir (C) 1.00 ± 0.077 0.32 ± 0.026 0.23 ± 0.015
p-value ns ns ns
T × S
NTA × P 0.98 ± 0.059 0.31 ± 0.028 0.24 ± 0.007
NTA × C 0.97 ± 0.057 0.32 ± 0.022 0.22 ± 0.007
TA × P 1.09 ± 0.035 0.35 ± 0.007 0.25 ± 0.008
TA × C 1.03 ± 0.088 0.33 ± 0.034 0.24 ± 0.017
p-value ns ns ns

Values represent the means (n = 4) ± SDs. Two-way ANOVA p-values are reported in the table (* p < 0.05; ns = not
significant). FW = fresh weight.
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Figure 4. SPAD index at the two intermediate sampling points during the experiment. Values repre-
sent the means (n = 4) ± SDs as Y-bars. NTA = no T. atroviride treatment, TA = T. atroviride treatment,
P = peat, C = coir. Two-way ANOVA results = Treatment: p < 0.01 at the first sampling point, p < 0.05
at the second sampling point. Substrate: p = ns at both sampling points. Treatment × Substrate:
p = ns at both sampling points.

The fungal presence was higher in the pots of treated plants, resulting in an average
of 11–12 Trichoderma colony forming unit (CFU) × 103 g substrate−1 (+59% of not treated
plants, considering the average values on peat- and coir-based substrates, Figure 5).

Figure 5. Trichoderma colony-forming unit (CFU) in the substrate at the intermediate sampling point.
Bars represent the means (n = 4) ± SDs. Two-way ANOVA p-values and Tukey’s post hoc results are
reported in the figure (*** p < 0.001; ns = not significant).

2.4. Principal Component Analysis (PCA)

The PCA (Figure 6) highlighted that 46% of the variance could be explained by the
differences between the treated and not treated plants, with the shoot TKN and Mg loading
factors mostly identifying the not treated plants. On the contrary, 25% of the experimental
variance could be explained mainly by the differences between coir and peat. The peat
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observations were mostly related to Mg, flower FW, chlorophylls, carotenoids, and root
DW; the coir observations were mainly related to the shoot FW and DW, greenness index,
and TKN.
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3. Discussion

The inoculation of the substrate with Trichoderma spp. is known to promote growth,
flowering, quality, and nutritional status of ornamental plants regardless of the sub-
strate type [36]. An increase in the biomass and leaf area was observed in I. walleriana
plants in our experimental conditions, as already found in tulip and gladiolus [37,38],
polianthes [39], Lantana camara [40], begonia [41], sea lavender, cypress, and camellia [42]
inoculated with different Trichoderma strains. Moreover, a significant effect on flowering
performance attributable to the elongation of inflorescences and the development of
flowers has been also demonstrated in tulip, polianthes, and begonia [38,39,41]. In-
oculating a peat-based growing media with T. harzianum, Ousley et al. [43] showed
an improvement in the number of flowers in marigold and petunia, while in verbena,
both the number and weight of the flowers increased; these results differed from the
present work for the applied Trichoderma species (T. harzianum instead of T. atroviride)
and its inoculum dose. Despite these promising results, the mechanisms supporting the
beneficial effects of Trichoderma spp. on plant growth stimulation have not been fully
explained. Contreras-Cornejo et al. [44] suggested that the plant growth promotion abil-
ity of T. virens is mediated by an auxin-dependent mechanism; through in vitro tests the
authors confirmed the fungus’s ability to synthetize indole-3-acetic acid (IAA) and some
derivatives, leading to greater root development. In the present experiment, however,
the root biomass did not increase following the treatment with T. atroviride. Alternatively,
the higher biomass accumulation can be attributed to improved nutrient availability [45].
Trichoderma spp. can in fact facilitate nutrient absorption from the substrate through
mineral solubilization and increased element uptake [46]. Indeed, in our experimental
conditions, T. atroviride increased the leaf macronutrient concentrations (P, K, and Ca),
similarly as found by Andrzejak and Janowska [37] in gladiolus and Janowska et al. [47]
in freesia, in both cases using a mixture of T. viride, T. harzianum, and T. hamatum.

Most research papers addressing the impact of Trichoderma spp. on the content of
chloroplast pigments in leaves referred to edible species [48–50], while only a few stud-
ies investigated the stimulation of photosynthetic pigments on ornamental plants [46].
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An increase in chlorophylls was found in Begonia × tuberhybrida [41] and Gladiolus hy-
bridus ‘Advances Red’ [37] soaked in a mixture of spores of Trichoderma spp. and planted
in peat substrate. According to Andrzejak et al. [41], the chlorophyll accumulation in
Begonia × tuberhybrida was reflected by the greenness index. In our case, a significant ac-
cumulation of pigments, mainly chlorophyll a and carotenoids, and a higher greenness
index, were found in leaves as a consequence of inoculum, therefore influencing the plant
photosynthetic capability. In fact, even carotenoids are essential pigments in photosynthesis
because they absorb in the blue–green region of the solar spectrum and transfer the ab-
sorbed energy to chlorophylls, so expanding the wavelength range of light, which can drive
photosynthesis. Indeed, Harman et al. [49] stated that endophytic strains of Trichoderma
determine an increase in the number of photosynthetic pigments or the expression of genes
regulating the biosynthesis of chlorophylls, proteins in the light-harvesting complex, or
components of the Calvin cycle.

Regarding the substrate suitability, no differences were observed in either the epigeal
biomass production or flowering performance. The suitability of the coco-peat substrate for
the application of Trichoderma spp. has already been highlighted by Sriram et al. [51], who
monitored the T. harzianum fungal population density during the time, highlighting a stable
population from 28 to 42 days after the inoculum. Our experimental results highlighted the
high efficacy of inoculum also in coir alone.

4. Materials and Methods
4.1. Plant Material and Growing Condition

This experiment was carried out at the Research Centre for Vegetable and Orna-
mental Crops, Council for Agricultural Research and Economics, in Pescia (PT), Italy
(lat. 43◦54′ N, long. 10◦42′ E, altitude 62 m). The trial was conducted in a greenhouse
equipped with benches for soilless cultivation, a capillary fertigation system, and a basal
heating system based on coaxial pipes circulating warm water powered by a compressor
heat pump [52]. Basal heating was applied during the trial to maintain a temperature
of 16 ◦C at the pot and root level. Cuttings of Impatiens walleriana Hook. f ‘Buddha
F1 Carmine’ (Azienda Agricola Sentier, Mosnigo di Moriago della Battaglia, Treviso,
Italy) were transplanted on 14 February 2019 in 1.2 L pots. Four treatments were ap-
plied as a combination of: (i) two growing media, i.e., peat:perlite and coconut coir
dust (coir):perlite (both 70:30, v v−1); and (ii) amended growing media with or without
1 g L−1 of a Trichoderma atroviride-based inoculant (Tricoten, Trichoderma atroviride AT10 at
5 × 108 CFU g−1, Atens-Agrotecnologias Naturales SL, Tarragona, Spain). For each treat-
ment, 4 replicates of 20 plants were set up for a total of 320 plants. The growing media
pH and electrical conductivity (EC) were determined following the EN 13037/1999 [53]
and EN 13038/1999 [54] methods, respectively, which consist of an electrometric de-
termination on a substrate:water (1:5 v v−1) extract after 30 min shaking of a known
volume of sieved wet samples. The physical characteristics (i.e., substrate bulk density,
total porosity, available water content, water holding capacity, and air content) were
determined as described by De Boodt and Verdonck [55]. The substrate characteristics
are reported in Table 4. The trial started with the cutting transplant and ended on 11
April 2019, after 56 d of cultivation. The heating system was set to avoid an air temper-
ature below 5 ◦C. Fertirrigation was managed according to the weather conditions by
supplying a nutrient solution typically used for bedding plant production (i.e., 7.0 mM
N-NO3, 0.7 mM N-NH4, 4.0 mM K, 2.5 mM Ca, 1.0 mM Mg, 1.8 mM S-SO4, 30.0 µM Fe,
25.0 µM B, 1.0 µM Cu, 5.0 µM Zn, 10.0 µM Mn, and 1.0 µM Mo) and maintaining a pH of
roughly 6.0. During the experiment, the climate condition inside the greenhouse was
monitored by a Testo data logger, mod. 175 (Testo SE & Co. KGaA, Titisee-Neustadt,
Germany) and the recorded data were: average temperature 16.8 ◦C and air relative
humidity 57.8%.
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Table 4. Main chemical–physical characteristics of the two used growing media.

Parameters Peat:Perlite
(70:30 v v−1)

Coconut Coir Dust:Perlite
(70:30 v v−1)

pH 5.7 7.7
EC (µS cm−1) 191.2 136.7
BD (g cm−3) 0.129 0.112
TP (% by volume) 92.0 93.8
AWC (% by volume) 27.8 21.7
W-1 kPa (% by volume) 55.4 55.8
AC-1 kPa (% by volume) 19.4 18.6

EC = Electrical conductivity; BD = Bulk density; TP = Total porosity; AWC = Available water content; W-1
kPa = Water-holding capacity; AC-1 kPa = Air content.

4.2. Plant Biomass Measures

At the end of the experiment, the shoot (stems plus leaves) and flower FW and DW
were determined in each biological replicate (i.e., in a bulk sample of 10 plants out of
20 plants constituting a replicate) by drying the samples in a ventilated oven at 60 ◦C until
a constant weight. Before drying, the leaf area was measured in a significant portion of
fresh leaves using a WinDIAS Image Analysis System (Delta-T Devices, Cambridge, UK)
and used to determine the SLA (cm2 g DW−1). Flowers were periodically collected during
the experiment from all the plants constituting every replicate (three times during the trial,
i.e., 40, 49, and 56 d after transplanting, indicated as 1st collection, 2nd collection, and final
collection) to obtain the total flower production, expressed as the number, FW, and DW.
Roots were sampled at the end of the trial from the same plants used for the aboveground
biomass measures (i.e., a bulk sample of 10 plants out of 20 plants constituting a replicate),
washed in diluted acetic acid to remove the substrate, and used for the DW measures.
The SPAD index was assessed in 4 leaves per plant, in 10 plants per replicate (the same
plants used for biomass measures), by a SPAD-502 (Konica Minolta, Inc., Ishikawa-machi,
Hachioji-shi, Tokyo, Japan) at the 1st and 2nd collections to monitor the leaf chlorophylls
using a not-destructive technique.

4.3. Tissue Analyses

At the conclusion of the experiment, fresh leaf disk samples were randomly collected
from plants belonging to the same replicate (100 mg FW per replicate in two technical repli-
cates) to assess the concentration of chlorophylls a and b and total carotenoids (mg g−1 FW).
The samples underwent a methanol extraction (99%, v v−1) in darkness at −20 ◦C for 48 h
and were analyzed using a spectrophotometer (Evolution™ 300 UV–Vis Spectrophotometer,
Thermo Fisher Scientific Inc., Waltham, MA, USA) to measure the absorbances at 665.2,
652.4, and 470.0 nm, following the method described by Lichtenthaler and Buschmann [56].
The chlorophyll a, chlorophyll b, and carotenoid concentrations allowed the calculation of
the greenness index [56] as follows:

Greenness Index = (Chlorophyll a + Chlorophyll b)/Carotenoids

The root and shoot (i.e., stems plus leaves) dry samples underwent a Kjeldahl nitrogen
(TKN) analysis after a phospho-sulfuric acid digestion, as reported by Massa et al. [57]. In
addition, the samples (250 mg DW) were digested in a mixture of nitric and perchloric acids
(HNO3:HClO4 5:2 v v−1) at 230 ◦C for 1 h to determine the concentrations (mg g−1 DW)
of potassium (K), calcium (Ca), magnesium (Mg), and phosphate (P-PO4). K, Ca, and Mg
were quantified by atomic absorption spectrometry (AA-7000F Flame Atomic Absorption,
Shimadzu, Japan), while the P-PO4 concentration was determined spectrophotometrically
through the molybdenum blue method [58].
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4.4. Trichoderma atroviride Analysis

Substrate samples were collected from the plant rhizosphere at the first floral sampling
and the end of cultivation. Fungus quantification was performed by serial substrate
dilutions in a Trichoderma-selective agar medium according to Fiorentino et al. [59], with
some modifications. In detail, 10 g of root–substrate was suspended in sterile distilled
water to provide serial dilutions (four replicates per dilution), and 100 µL aliquots of
each sample were spread on the surface of 90 mm culture plates containing Rose Bengal
Chloramphenicol agar (Merck KGaA, Darmstadt, Germany). The plates were incubated at
25 ◦C and examined daily for emerging fungal colonies. The results have been expressed
as the CFU per g of dry substrate.

4.5. Statistical Analysis

The data were tested for a normal distribution through the Shapiro–Wilk test. Thus,
the data were analyzed by a two-way ANOVA (T. atroviride treatment and substrate as
variables), followed by a Tukey’s post hoc test (p < 0.05). The statistical analyses and graphs
were processed using Prism 10 (GraphPad Software Inc., La Jolla, CA, USA). Principal
component analysis (PCA) was performed using Prism 10, selecting eigenvalues higher
than 1.0.

5. Conclusions

Coconut coir dust confirmed its suitability as an alternative substrate to peat for
bedding plant production. Regarding fungal inoculum applications, T. atroviride im-
proved both the quantitative and qualitative parameters of I. walleriana bedding plants.
The inoculum positively affected the biomass parameters, nutrient uptake, and leaf
pigment concentrations without particular differences between peat and coir. T. atroviride
promoted the aesthetic parameters important for product marketability, such as the
number and dimensions of the flowers and the greenness index. In light of our results,
the application of coconut coir dust in combination with Trichoderma spp. is worthy to be
explored in other bedding plants with the aim of supporting growers in the development
of sustainable horticultural practices, including peat substrate replacement and use of
beneficial microorganisms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13050583/s1, Table S1: Biometric parameters of I. walleriana
plants at the end of the experiment; Table S2: Nutrient concentrations (g kg−1 DW) measured in
I. walleriana roots at the end of the experiment.
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