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Abstract: The current review examines the state of knowledge and research on machine learning (ML)
applications in horticultural production and the potential for predicting fresh produce losses and
waste. Recently, ML has been increasingly applied in horticulture for efficient and accurate operations.
Given the health benefits of fresh produce and the need for food and nutrition security, efficient
horticultural production and postharvest management are important. This review aims to assess the
application of ML in preharvest and postharvest horticulture and the potential of ML in reducing
postharvest losses and waste by predicting their magnitude, which is crucial for management practices
and policymaking in loss and waste reduction. The review starts by assessing the application of ML in
preharvest horticulture. It then presents the application of ML in postharvest handling and processing,
and lastly, the prospects for its application in postharvest loss and waste quantification. The findings
revealed that several ML algorithms perform satisfactorily in classification and prediction tasks.
Based on that, there is a need to further investigate the suitability of more models or a combination
of models with a higher potential for classification and prediction. Overall, the review suggested
possible future directions for research related to the application of ML in postharvest losses and
waste quantification.

Keywords: machine learning; models; prediction; forecast; postharvest; losses and waste; fruit;
vegetables; horticulture; quantification

1. Introduction

Horticultural produce is known to contain essential nutritious elements in large
quantities [1–3]. These essential nutrients are vital to maintaining a healthy life and
have many benefits for the human body [4]. Chronic diseases such as hypertension,
heart disease, stroke, diabetes, cancer, and pulmonary disease are the leading causes of
mortality [5]. Increasing cases of obesity and malnutrition are also a growing concern
worldwide. Research evidence has shown that increased fruit and vegetable consumption
decreases the risk of diseases [6]. Also, there is a correlation between fruit and vegetable
consumption and delays in age-related disorders [6,7]. Despite the benefits obtained from
the consumption of fruit and vegetables, a remarkable amount is still wasted globally
throughout the food value chain for several reasons, such as pest and disease infestation,
environmental stress, quality issues, and marketing aesthetic standards [8,9]. To address
these challenges, artificial intelligence (AI), particularly ML, has emerged as a promising
tool in preharvest and postharvest horticulture [10].
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Horticulture is critical to supplying fruit and vegetables, which are rich in essential
nutrients and contribute significantly to global economies. Despite their importance, hor-
ticultural practices in various regions remain rudimentary, often due to barriers such as
a lack of modern technology. This is because these farmers are reluctant to use modern
technologies for several reasons, such as a lack of skill and the cost of acquiring such
technology [11]. This results in high preharvest and postharvest losses. Deficiencies in
data-driven decision-making related to weather, soil conditions, irrigation, and pest man-
agement contribute to inefficiencies that can be addressed through ML technologies. The
integration of ML algorithms into the horticultural value chain (Figure 1) can enhance pro-
duce quality and optimize resource allocation, thereby increasing the return on investment
for stakeholders [12].
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Figure 1. Stages of the horticultural value chain where ML can be applied. Adapted with a slight
modification from [11].

Recent technologies in machine vision, sensors, and remote satellite data generation
have produced big data at different stages of the food value chain. As a result, the advent
of big data technologies has catalyzed the application of ML in various stages of the food
value chain.

ML has been widely used in different fields of agriculture and plant science, such as
plant breeding [13], in vitro culture [14], stress phenotyping [15], stress physiology [16],
plant system biology [17], plant identification [18], plant genetic engineering [19], and
pathogen identification [20]. Despite the growing body of research on ML in agriculture,
there is a noticeable gap in the literature concerning its application in postharvest loss and
waste management. The available literature is mainly focused on the application of ML
technologies in preharvest horticulture and on the classification of fruit and vegetables
for sorting and grading [21–25]. A Scopus search with filters for the past decade showed
89 reviews for ML combined with deep learning, AI, and machine vision applications in
agriculture and food production. A further investigation shows that only seven reviews
included information on the application of ML in postharvest horticulture [26–32]. Given
this gap, the present review aims to synthesize the current knowledge on ML applications
in preharvest horticulture and extend the discussion to postharvest scenarios, including
processing and retail. The review structure is as follows: firstly, an overview of the concept
of the ML technique in horticultural production was presented, followed by the application
of ML in preharvest horticulture. Further discussion was presented on the application of
ML in postharvest handling and processing. In addition, the application of ML in retail
was discussed. Lastly, the prospects of the application of ML in postharvest loss and waste
quantification and prediction and prospects in the area were discussed.
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1.1. The Concept of ML Technique—An Overview

ML is a subset of AI focused on the development of algorithms and statistical models
that enable computers to learn and make predictions or decisions without being explicitly
programmed for specific tasks. While AI is a broader concept that encompasses machines
designed to mimic human intelligence, including reasoning, learning, and problem-solving,
ML specifically deals with the learning aspect, where machines improve their performance
on a task through exposure to data. In essence, all machine learning is AI, but not all AI is
machine learning; AI includes rule-based systems, expert systems, and other methods that
do not necessarily involve learning from data.

In the current era, vast amounts of data are generated across various domains, present-
ing opportunities and challenges for data analysis. These data can be used for validation,
calibration, classification, verification, prediction, and characterization of variables. How-
ever, using manual approaches to process and perform tasks with the generated data has
resulted in several challenges due to the size and complexity of the data [33]. To resolve this
problem, a sub-field of AI known as ML emerged to automatically learn and capture the
relationship between various features in data to produce a result used in decision-making.
The primary aim of ML is to formulate algorithms capable of autonomously discerning
patterns in data and making informed predictions or decisions [34]. The process involves
feeding ML models with a large amount of data and allowing them to learn the features
and patterns within the data.

ML has gained significant attention in recent years due to the increasing availability of
big data in different fields and the need to harness these data to solve problems [35]. ML
has been applied in various fields, such as transportation, telecommunication, healthcare,
finance, and agriculture. In the agricultural sector, ML has found applications in areas
such as crop yield prediction [36,37], pest and disease detection [38], and cultivar classifica-
tion [39]. By leveraging ML, farmers can optimize their production inputs and improve
their yields, thereby enhancing food security.

Although ML was initially conceived as a complement to traditional statistical meth-
ods, it offers distinct advantages, such as automation and the capacity for self-improvement
through iterative learning [40]. As defined by Wang et al. [40], ML deals with the develop-
ment of intelligent models that use algorithms to predict, estimate, and classify a variable.
The performance of an ML model is contingent upon the quality of feature analysis, data
preprocessing techniques, and the efficacy of the algorithmic methods employed [40].

1.2. Machine Learning Models

There are different types of learning in ML models—supervised, semi-supervised,
unsupervised, and reinforced learning (Figure 2). The main difference between supervised
and other learning types is that the datasets used are labeled with features to known
outputs. In semi-supervised learning, the datasets used are both labeled and unlabeled,
and usually, the numbers of unlabeled data are higher than the labeled data [41]. Unlike
supervised learning, unsupervised learning uses unlabeled datasets to learn patterns and
predict output. Reinforced learning allows the model to simulate its environment and make
predictions based on the state of the environment.
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ML models like random forest (RF), K-nearest neighbors (KNNs), and linear regression
(LR) are designed to identify and learn patterns within datasets [43]. The predictive
accuracy of a machine learning model generally improves with increased exposure to
relevant data [44]. Models are widely used for predictive analysis as data features are
learned and tuned to improve performance. ML models can be broadly categorized
into supervised, semi-supervised and unsupervised learning algorithms as shown in
Figure 2. Supervised learning algorithms are trained on labeled datasets, allowing them
to make predictions or classifications, whereas unsupervised learning algorithms work
with unlabeled data to identify underlying patterns or structures [45]. In horticultural
applications, supervised models like RF and KNN have been effectively used for tasks
such as disease detection and yield prediction, while unsupervised models find utility in
clustering similar types of produce based on features like size, color, and texture. Other
advanced models like SVM and neural networks are also gaining traction in horticultural
applications, offering higher accuracy and the ability to model complex relationships
in data [37].

The architecture of learning and prediction activities in ML is presented in Figure 3.
The original data are usually split into two—a training dataset and a test dataset. In some
cases, there is a third dataset for model validation after testing. The training dataset is used
to train the model, while the test dataset is used to evaluate the performance of the model.
The model makes predictions using the observed pattern in the training dataset without
knowing the true target variable. The predictions of the model are then compared to the
true target variables, and performance parameters are recorded [40].
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1.3. Parameters Used to Evaluate the Performance of an ML Model

The evaluation of an ML model’s performance relies on a set of metrics that quantify
its accuracy and reliability. According to Raschka [46], the parameter for evaluating
an ML model is mostly the all-around performance of the model. This is important in
identifying the ideal model to perform a task. Commonly employed metrics for assessing
model performance include the confusion matrix, classification accuracy, cross-validation,
F1-score, precision, and recall [11]. In horticultural applications, metrics like precision and
recall are particularly important when the cost of false positives and false negatives, such
as misclassifying produce quality, can be high.

2. ML Application in Preharvest Horticulture

While ML has extensive applications in diverse fields like telecommunication and
healthcare, its utility in preharvest horticulture is increasingly recognized [40]. Recent stud-
ies have highlighted the growing role of ML in preharvest horticulture, particularly in areas
like disease and weed detection, yield prediction, and crop quality assessment [43,47,48].

2.1. Pest and Disease Prediction and Detection

In horticulture, the timely detection of pests and diseases is crucial for implementing
effective control measures. This is because it enables farmers to plan mitigation and control
measures [49]. Disease detection can be time-consuming, especially where traditional
laboratory methods are used [50]. The methods often come with limitations, such as high
costs and time consumption [50]. As a result, AI-based techniques that use cameras for
image acquisition have recently emerged for disease detection. Emerging AI-based tech-
niques leverage ML and deep learning algorithms to enhance pest and disease recognition
accuracy and speed. These technologies allow for early detection and management of pests
and diseases to increase yield [51]. This is important because pest and disease infestations
affect the quality of horticultural products and may lead to losses or waste [49].

A growing body of research has focused on employing ML algorithms to detect
and predict pests and diseases in horticulture (Table 1). Pantazi et al. [21] investigated
the infection of milk thistle by smut fungus. Three ML models—supervised Kohonen
network, counter propagation artificial neural network, and XY-fusion network—were
used to identify infected and healthy plants during plant growth. In a similar study, Chung
et al. [52] applied the support vector machine (SVM) to classify rice seedlings infected by
Bakanae disease from the healthy ones. Maniyath et al. [50] applied several ML models
to distinguish between healthy and disease-infected papaya leaves. The authors reported
that the random forest (RF) model outperformed other models with an accuracy of 70.14%.
Kasinathan et al. [51] classified and detected insects in field crops using artificial neural
networks (ANNs), SVM, KNN, naïve Bayes (NB), and convolutional neural network (CNN)
models. The study was based on the shape features of the insect, and the results showed
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that the CNN is a suitable classification model for the study in comparison with the other
models. Skawsang et al. [49], in another study, applied ML models to forecast the occurrence
of pests using metrological and plant phenology data. The study aimed to provide an early
warning system for effective pest control. In another study, Javidan et al. [53] developed
a method to classify disease-infected and healthy grape leaves. The authors used principal
component analysis (PCA) to reduce the data dimension before subjecting the data to SVM
classification. The result showed that the SVM classifier combined with the linear kernel,
using the gray-level co-occurrence matrix (GLCM) features, produced a 98.71% accuracy.
Mohammed et al. [54] developed a method of predicting date palm mite infestation on
date fruits using meteorological variables and the physicochemical properties of date fruits
integrated into LR and decision forest regression (DFR) models. The authors reported that
when the meteorological and physicochemical properties were combined, the model was
able to predict the date palm mite count on date palm fruits with an accuracy of R2 = 0.918.
Collectively, these studies suggest the potential of ML algorithms to provide accurate and
timely predictions, aiding in the development of effective management strategies for pest
and disease control. This is important in planning management strategies to avoid fruit
and vegetable losses and waste due to pest and disease defects and damage.

Table 1. Summary of ML application in pest and disease prediction and detection.

Produce Pest/Disease Parameters Observed Evaluation Algorithms
Applied Results Reference

Milk thistle Smut fungus Leaf spectra images

Discrimination between
healthy milk thistle and
those affected by
smut fungus

SKN,
CP-ANN, and
XY-fusion

95.16 accuracy [21]

Rice Bakanae
disease

Rice cultivars Tainan 11
and Toyonishiki
seedlings; morphological
and colour traits of
healthy and infected
rice seedlings

Detection of Bakanae
disease in rice seedlings SVM 87.9% accuracy [52]

Papaya leaves Abnormalities on
papaya leaves Leaf images

Identify between
healthy and
disease-infected papaya
leaves

RF 70.14% accuracy [50]

Multiple crops Insect Shape features extracted
from the insect images

Classification and
detection of insects in
field crops

ANN, SVM,
KNN, NB,
and CNN

CNN provided the highest
classification accuracy of 91.5%
and 90% for 9 and 24 classes
of insects

[51]

Wheat Yellow rust Leaf spectra images Automatic detection of
‘yellow rust’ disease ANN 99% accuracy [55]

Rice Brown planthopper Weather and host plant
phenology factors

Forecast the brown
planthopper population

ANN, RF,
and MLR

ANN: R2 = 0.770, RMSE = 1.686;
RF: R2 = 0.754, RMSE = 1.737;
and MLR model: R2 = 0.645,
RMSE = 2.015

[49]

Crop leaf

Alternaria Alternate,
Anthracnose,
Bacterial Blight, and
Cercospora leaf spot

Different leaf images
Identify between
disease-infected and
healthy leaves

SVM
Over 95% accuracy for
disease-infected leaves and
98% accuracy for healthy leaves

[56]

Grape leaves Black measles, black
rot, and leaf blight Leaf captured images

Diagnose and classify
diseased-infected and
healthy leaves

PCA and SVM

SVM classifier combined with
linear kernel, using the GLCM
features, produced
a 98.71% accuracy

[53]

Date fruit Date palm mite
Meteorological variables
and physicochemical
properties of date fruits

Prediction of date
palm mite count
on date fruits

LR and DFR

DFR performed better than LR
in all the variables, with R2 of
0.842, 0.895, and 0.921 for MV,
PPV, and MPPV, respectively.
LR produced R2 of 0.464, 0.670,
and 0.554 for MV, PPV, and
MPPV, respectively.

[54]

Supervised Kohonen network (SKN); counter propagation artificial neural network (CP-ANN); support vector
machine (SVM); random forest (RF); artificial neural networks (ANNs); K-nearest neighbors (KNN); naïve Bayes
(NB); convolutional neural network (CNN); linear multiple regression (MLR); principal component analysis
(PCA); gray-level co-occurrence matrix (GLCM); coefficient of determination (R2); root mean square error (RMSE);
linear regression (LR); decision forest regression (DFR); meteorological variable (MV); physicochemical properties
variables (PPVs); meteorological and physicochemical properties’ variables (MPPVs).
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2.2. Prediction and Detection of Crop Loss Due to Natural Causes

Extreme weather and climatic conditions pose significant risks for on-farm crop loss,
often beyond the control of standard farming operations [57]. Farmers often rely on
agricultural insurance as a financial safety net to mitigate these risks. Insurance institutions
perform field evaluations to estimate the yield loss in the event of crop loss through a natural
disaster. The accuracy of insurance estimations often hinges on identifying “Homogeneous
Damage Zones”, which facilitate the extrapolation of localized data to estimate losses across
an entire field [57].

Table 2 summarizes various ML applications designed to detect and predict crop loss
arising from natural causes. To investigate damaged zones in fields affected by hailstorms,
Sosa et al. [57] developed a method that combined sentinel images with damage evaluation
data to determine damaged zones in fields affected by hailstorms to help in insurance claims.
In a similar study, Li et al. [58] developed a system to investigate drought risk and its effect
on wheat production in the North China Plain. The study also aimed to guide agricultural
insurance, which could be a serious issue when a natural disaster causes damage to a farm.
The authors fed the result of the model to simulate the crop–weather relationship over
a large area (MCWLA) into an RF and multiple linear regression (MLR) models to estimate
losses due to drought in three different scenarios—mild drought, moderate drought, and
severe drought. In another study, Xu et al. [59] applied the SVM model since it performed
better than the ANN to predict the distribution of frost damage to tea trees in the Zhejiang
Province of China in 2016/2017. The authors used meteorological data to predict the future
occurrence of frost events to help farmers in their decision-making. In a recent study,
Prodhan et al. [22] estimated future drought and its effect on yield loss in South Asia using
an ensemble ML (EML) that was embedded with RF and a gradient boosting machine
(GBM). The model performed optimally in predicting yield loss risk for rice, wheat, and
maize crops, with a root mean square error (RMSE) lower than that of RF and GBM as
stand-alone models.

Table 2. Summary of ML applications in the prediction of crop loss due to natural causes.

Produce Cause of Damage Parameters Observed Evaluation Algorithms Applied Results Reference

Soybeans,
wheat
and corn

Hailstorm
Sentinel-1 and -2 images;
data from
damage evaluation

Detection of crop
hailstorm damage K-means clustering 87.01% accuracy. [57]

Tea tree Frost Topography and
meteorological data

Predict the
occurrence of
a tea-tree frost event;
establish spatial
distribution of frost
damage to tea trees

SVM and ANN SVM = 83.8% accuracy;
ANN = 75% accuracy. [59]

Wheat Drought

Relative leaf area index,
(RLAI), standardized
precipitation index (SPI),
and standardized soil
moisture index (SSMI)

Drought
risk assessment

MCWLA and RF and
MCWLA and MLR

MCWLA and RF performed
better with a RMSE = 6%,
while MCWLA and
MLR’s RMSE = 20%.

[58]

Rice,
wheat, maize Drought Meteorological

drought indices

Prediction of
yield loss due to
future drought

RF, GBM, and EML

EML (RF and GBM)
outperformed other models
with an RMSE = 0.390, 0.358,
and 0.387 for rice, wheat, and
maize, respectively.

[22]

Maize,
wheat,
sorghum,
barley, teff

Drought Meteorological and
agricultural survey data

Prediction of crop
loss due to drought RF 81% accuracy. [60]

Wheat Lodging UAS RGB images Wheat
lodging detection RF, NN, and SVM RF outperformed other models

with an accuracy of 91%. [61]

Multiple
grass crops Cold stress Genomic features

Prediction of
cold-responsive and
non-responsive genes

RF

The model successfully
predicted genes that would
respond to cold stress in
related plant species.

[62]

Support vector machine (SVM); artificial neural networks (ANNs); model to simulate the crop–weather relation-
ship over a large area (MCWLA); random forest (RF); multiple linear regression (MLR); gradient boosting machine
(GBM); ensemble machine learning (EML); neural network (NN); root mean square error (RMSE); unmanned
aerial systems (UAS); red green blue (RGB).
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The existing literature Indicates limited studies focused on predicting crop loss due
to natural causes, often attributed to the limited availability of comprehensive data. This
can be attributed to the limited available data [58]. The accurate prediction of crop loss
due to natural causes in a wide area mostly relies on historical events as input data, but
detailed information on damaged areas and losses is mostly unavailable. Given these
challenges, future research should prioritize the characterization of natural events affecting
crop production, as accurate predictions are crucial for global food security.

2.3. Yield Prediction

Achieving optimum yield in horticultural production is critical, as it directly impacts
the farmer’s return on investment and broader food security. Within the framework of
precision agriculture, accurate yield prediction is indispensable for enabling proactive
planning and decision-making by farmers and other stakeholders in the value chain [63].
Also, yield prediction is essential for matching demand with supply. Lastly, yield prediction
is fundamental to helping farmers know the right harvest time to avoid storage loss [10].
However, yield prediction is complicated by various factors, including weather conditions,
soil properties, and pest incidence, which introduce significant variability. Given these
complexities, developing automated yield prediction systems using machine learning
algorithms is increasingly seen as a necessity.

Recent studies have applied different ML models to predict crop yield in different
scenarios. Ramos et al. [64] used a machine vision system and an image-processing model
to detect and classify fruit. The system developed in the study was used to count coffee fruit
on the tree branches and classify the fruit as harvestable or not harvestable. In another study,
Sengupta and Lee [65] applied the SVM to identify the number of immature green citrus
fruit in a tree canopy. The result showed that the model accurately identified and counted
80.4% of the fruit. Abbas et al. [66] developed a model to predict the yield of potatoes in the
Atlantic Region of Canada using LR, elastic net (EN), KNN, and support vector regression
(SVR). The result of the study was important for establishing field-specific management
practices for potato growers in the area. Similarly, to predict the yield of Irish potatoes
and maize in the Musanze district in Rwanda, Kuradusenge et al. [37] applied the RF to
determine the effect of temperature and rainfall on crop yield. The study aimed to provide
farmers with early information on the expected climatic conditions to mitigate climate
change’s impact on crop production. In a similar study, Iniyan et al. [36] used several
models (LR, decision tree (DT), elastic net, Lasso regression, Ridge regression, partial least
square regression (PLSR), gradient boost regression (GBR), and long short-term memory
(LSTM)) to predict yield loss based on historical agronomical data gathered in 18 years.
The agronomical data used in the study have more variables (temperature, precipitation,
humidity, soil type, crop type, season, and field area) than most of the published literature,
which improves the reliability of the results of the models. Khan et al. [67] describe
how plant height, fruit production, slope, leaf loss, and blower damage can be used to
predict yield loss during the mechanical harvesting of wild blueberry. The authors applied
SVR, LR, and RF to predict losses, and the study’s overall result could help optimize
the harvesting technique for loss reduction. These studies demonstrated the efficacy of
diverse ML algorithms in yield prediction, providing valuable insights for farmer decision-
making and planning. Compared to other non-regression ML models, regression models
such as SVR, LR, and RF have several advantages for prediction, hence their application
for yield, pest and disease, and crop loss prediction in the studies. Regression models
are used to investigate vital relationships between targeted variables of interest and the
predictor variables [68] due to their ability to form associations between dependent and
independent variables. Additionally, these models allow prediction through time series
data and show the underlying relationship among variables [69]. For instance, an LR model
easily fits a single parameter (predicted output) and captures a nonlinear relationship
between predictor and response variables. This straightforward attribute of LR makes it
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the most used model for prediction tasks [69]. Table 3 summarizes the key studies that
have employed ML models for yield prediction.

Table 3. Summary of ML applications in yield prediction.

Produce Parameters Observed Evaluation Algorithms Applied Results Reference

Coffee Colour features in digital
images

Automatic fruit
count on coffee
branches

SVM
Ripe–overripe: 82.54–87.83%; semi-ripe:
68.25–85.36%; unripe: 76.91–81.39%
(visibility percentage of fruit).

[64]

Citrus fruit Image features such as
brightness and darkness

Identification of
immature green
citrus fruit

SVM 80.4% accuracy. [65]

Agricultural yield
Historical agronomical,
environmental, and
economic data

Agriculture
yield prediction ENN and BPN 1.30 error rate. [70]

Potatoes Data on physicochemical
properties of soil

Identification of
variability in soil
properties and
potato yield

LR, EN, KNN,
and SVR

SVR outperformed other models with an RMSE of
5.97, 4.62, 6.60, and 6.17 t/ha for all datasets, while
KNN performed the poorest, with an RMSE of 6.93,
5.23, and 6.91 t/ha in three out of four datasets.

[66]

Irish potatoes
and Maize

Historical
harvest data and
meteorological parameters

Variability in
weather elements
and Irish potatoes
and maize yield

RF, PR, and SVR

RF outperformed other models with an RMSE of
510.8 and 129.9 for potato and maize, respectively,
while SVR performed the poorest, with an RMSE of
971.6 and 212.4 for the same data set.

[37]

Multiple crops Historical agronomical
and environmental data Yield prediction

LR, DT, EN, LR*,
RR, PLSR, GBR,
and LSTM

LSTM outperformed other models with an 86.3%
accuracy, while PLSR performed the least with
a 76.8% accuracy.

[36]

Soybean Meteorological and
historical yield data Yield prediction

MLR, MLP, SVM,
RF, XGBOOSTING,
and GradBOOSTING

XGBOOSTING outperformed other models with
an RMSE of 2.06 for calibration, while RF,
XGBOOSTING, and GradBOOSTING performed
better than other models for testing with an R2 of
0.71, 0.62, and 0.62, respectively.

[71]

Wild blueberry
Plant height, fruit
production, slope, leaf
loss, and blower damage

Mechanical
harvesting
yield loss

SVR, LR, and RF

LR outperformed other models with an R2 of 0.91,
0.87, 0.73, and 0.91 for Frank Webb, Tracadie,
Cooper, and Small Scott, respectively. While SVR
performed relatively well with an R2 of 0.93, 0.88,
0.79, and 0.07 for the same areas, respectively.

[66]

Wheat

Multi-source
environmental variables
such as satellite-based
vegetation indices,
climate data, and
soil properties

Yield prediction RF and SVM

RF with near-infrared reflectance of terrestrial
vegetation (NIRV) and other covariates performed
better in yield prediction with an R2 and an RMSE
of 0.74 and 758 kg/ha, respectively, while SVM with
the same variables produced an R2 of 0.69 and
RMSE of 821 kg/ha.

[72]

Back propagation neural network (BPN); ensemble neural network (ENN); elastic net (EN); K-nearest neighbors
(KNNs); support vector machine (SVM); support vector regression (SVR); polynomial regression (PR); linear
regression (LR); random forest (RF); decision tree (DT), Lasso regression (LR)*; Ridge regression (RR); partial
least square regression (PLSR); gradient boost regression (GBR); long short-term memory (LSTM); multiple linear
regression (MLR); multi-layer perceptron (MLP); extreme gradient boosting (XGBOOSTING); gradient boosting
(GradBOOSTING); coefficient of determination (R2); root mean square error (RMSE); near-infrared reflectance of
terrestrial vegetation (NIRV).

2.4. Crop Quality

The quality assessment of horticultural produce is critical for determining compliance
with market standards, thereby influencing marketability and pricing. Therefore, accurate
quality classification is pivotal for aligning produce with market standards, optimizing
pricing, and minimizing postharvest losses and waste [48,73]. Factors such as temperature,
humidity, farming method, and packaging affect preharvest and postharvest crop qual-
ity [10]; other factors could be contamination due to foreign materials [74]. These factors
could result in economic loss because of postharvest losses and waste, with a broader
implication for natural resources used for food production and the environment.

ML technologies offer a time-efficient and highly accurate approach to quality classifi-
cation in horticultural produce. Zhang et al. [74] applied linear discriminant analysis (LDA)
and SVM to classify foreign material inside cotton lint. The study reported a 95% accuracy
in the classification of cotton lint by the SVM model. Zulkifli et al. [75] developed a model
that combined a machine vision system with discriminant analysis and the SVM model to
predict the ripening stages of papaya. The model performed optimally, with LDA produc-
ing the highest result accuracy of 83.5%. In another study, Agarwal et al. [76], designed
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an SVM, KNN, multi-layer perceptron (MLP), and NB method to classify wheat grains into
‘fresh’ and ‘rotten’. The authors reported that SVM produced the highest accuracy of 93%
based on color features, while the NB model produced the highest accuracy of 65% based
on texture features. The result proved SVM to be a strong discriminatory model as it tended
to classify with the highest accuracy with color features, which are regarded as possessing
high discriminatory features in comparison to texture features [76]. Occhiuzzi et al. [77], de-
veloped an RFID-based system that was aimed at controlling the environmental conditions
of stored avocado fruits and detecting ripening status. The system fed the data retrieved
from the tag reader into an SVM that classified the fruits into “unripe”, “stock”, “grocery”,
and “consumer” with more than 85% accuracy. Researchers have prominently used SVM
for classification tasks and compared its performance to other classifiers [76,78,79]. Their
results demonstrated SVM’s ability to classify variables with good accuracy. This is due
to its generalization ability, robustness, and simple principle, which make it arguably the
most popular model for supervised learning [80]. The industrial-scale adoption of these
machine learning technologies holds significant promise for reducing postharvest losses
attributable to suboptimal produce quality. Table 4 summarizes key studies employing
machine learning models for quality assessment in horticultural produce.

Table 4. Summary of ML application in crop quality detection.

Produce Parameters Observed Evaluation Algorithms Applied Results Reference

Cotton
Infrared
hyperspectral
transmittance images

Classification of foreign
matter embedded inside
cotton lint

SVM Over 95% accuracy. [74]

Papaya Digital images
Prediction of the quality
and ripening stages
of papaya

LDA, QDA, LSVM,
and QSVM

LDA and LSVM produced the highest result
accuracy of 83.5% and 79.5%, respectively. [75]

Wheat grains
Colour and texture
features of wheat
grain samples

Classification of wheat
grain into ‘fresh’
and ‘rotten’

SVM, KNN, MLP,
and NB

SVM produced the highest accuracy of 93%
based on colour features, while the NB model
produced the highest accuracy of 65% based on
texture features.

[76]

Wheat seed Shape, colour, and
texture features

Identification and
classification of
seven-grain groups
in wheat seed

LDA, QDA, LSVM,
QSVM, and CSVM

QSVM produced the highest accuracy with 98.7,
98, 100, 97.3, 99.3, 99, 99.3, and 90.7% for sound
white wheat, small white wheat, barley, rye, red
wheat, broken white wheat, and
shrunken white, respectively.

[81]

Avocados
Electromagnetic data
from UHF RFID tags
in contact with fruits

Automatic monitoring
of avocado ripening SVM Over 85% accuracy. [77]

Tomato Colour features
Automatic classification
of tomato
ripeness stages

SVM and LDA

The one-against-one multi-class SVMs
performed better than the one-against-all
multi-class SVMs, and the LDA algorithms with
90.80, 84.80, and 84% accuracy, respectively.

[78]

Papaya
LBP, HOG, and GLCM
features collected from
image samples

Classification of
maturity status of
papaya fruits

KNN, SVM, and NB
Weighted KNN with HOG features performed
better than other models with 100% accuracy
and 0.0995 s training time.

[82]

Banana Thermal images Monitoring of fruit
quality change CNN 99% accuracy. [83]

Loquat Hyperspectral images
Classification of sound
and defective
loquat fruit

RF, XGBoost

XGBoost outperformed RF with 97.5, 96.7, and
95.9% accuracy for sound or defect; sound,
internal, or external defect; and sound or
purple spot, scar, bruising, or
flesh browning, respectively.

[84]

Support vector machine (SVM); linear discriminant analysis (LDA); quadratic discriminant analysis (QDA); linear
support vector machine (LSVM); quadratic support vector machine (QSVM); K-nearest neighbor (KNN); multi-
layer perceptron (MLP); naïve Bayes (NB); linear discriminate analysis (LDA); quadratic discriminate analysis
(QDA); quantized support vector machine (QSVM); cubic support vector machine (CSVM); ultra-high frequency
(UHF); radio frequency identification (RFID); local binary pattern (LBP); histogram of oriented gradients (HOG);
gray level co-occurrence matrix (GLCM); convolutional neural networks (CNNs), random forest (RF); extreme
gradient boost (XGBoost).

3. ML Application in Postharvest Handling and Processing

The recent literature indicates a growing application of machine learning technologies
in postharvest handling and processing, particularly in fresh produce sorting, grading,
and cultivar classification. These two postharvest activities are traditionally manual and
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subjective and are based on physical attributes such as shape, color, and the presence of
blemishes [85,86]. The labor-intensive and time-consuming nature of traditional manual
methods, coupled with their subjectivity, has led to the adoption of machine learning
technologies to address these challenges.

3.1. Fruit and Vegetable Sorting/Grading

The sorting of fresh produce is a quality classification activity and is greatly affected
by the market standard, especially for export commodities [9]. According to Opara et al. [9],
sorting fruits and vegetables is important because aesthetics is a significant attribute in
fresh produce grading, determining the quality and monetary value of such fresh produce.
Many traditional sorting processes involve an individual’s physical identification of fresh
produce based on specific attributes that are sometimes straining, time-consuming, and
dependent on the sorter’s perception [85–88]. Also, traditional sorting methods are prone to
inaccuracy due to fatigue and lack of training [89], and this may contribute to losses [87,90].
Adopting ML technologies is thus crucial for enhancing efficiency and productivity in
sorting and grading fresh produce.

Table 5 summarizes key studies focused on enhancing the efficiency of sorting and
grading systems in postharvest horticultural production through ML technologies.
Caladcad et al. [23] developed an acoustic signal system to classify coconut fruit into three
groups—pre-mature, mature, and over-mature. The data from the study were subjected to
ANN, RF, and SVM models, and the results showed that the RF model outperformed others
with 83.48% accuracy. This classification system can significantly benefit the large-scale
processing of coconut fruit for mass exportation. Ai et al. [91] applied the RF model to
discriminate between premium quality oil (extra virgin olive oil) and inexpensive edible
oils. The study was based on the fatty acid methyl esters of the oils. The authors aimed to
find a close substitute, a cheap oil with similar nutritional content to the expensive extra
virgin olive oil. As with many related studies, Piedad et al. [87] developed a model to
sort bananas by tiers rather than by individual fruit. The study classified banana tiers into
four classes—extra class, class I, class II, and reject class—using color and size features. In
another study, Ireri et al. [85] reported a machine vision system that used color images and
the radial basis function–support vector machine (RBF-SVM) classifier to detect healthy
tomatoes and those with defects. The study aimed to develop a low-cost grading system
to grade tomatoes on the processing line. The system successfully classified tomatoes
into four categories using color, texture, shape, and combined features. A recent study
by Bhargava et al. [92] proposed an automated system to detect fruit and vegetable types
and grade them using various features such as color, texture, and geometrical features.
The system utilized LR, the sparse representative classifier (SRC), ANN, and SVM, with
SVM producing the highest accuracy for both fruit and vegetable detection and grad-
ing. Fruit and vegetable grading and sorting is a classification task mostly performed by
classification models (Table 5). The results of the studies depict that several algorithms
perform satisfactorily for classification due to the high accuracy achieved in the studies.
However, SVM is a binary classifier that performs by finding the best subspace that op-
timally separates variables into classes [76] and has a high computational efficiency and
generalization capability [80]. Therefore, the combination of SVM and other models would
have a potential for higher accuracy for prediction and classification. SVM is also known
for reduced computational time and the ability to use the kernel trick to delineate data into
a higher-dimensional space before actual classification [80].
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Table 5. Summary of ML applications in fruit and vegetable sorting/grading.

Produce Parameters Observed Evaluation Algorithms Applied Results Reference

Coconut Acoustic signal
Classification of coconut fruit
into pre-mature, mature,
and over-mature

ANN, RF, and SVM
ANN: train = 79.32%; test = 81.74%; RF:
train = 90.98%; test = 83.48%; SVM: train
88.35%; test = 80.00%.

[23]

Vegetable oils Fatty acids profile
Discrimination of premium
quality oil from inexpensive
edible oils

RF

Cis-monounsaturated fatty acids in tea oil
(79.48%) were close to the expensive extra
virgin olive oil (80.71%) and could be
a substitute.

[91]

Banana Colour and size features
Classification of bananas into
extra class, class I, class II,
and reject class

ANN, SVM, and RF

RF provided the highest classification
accuracy of 94.2%. Without the reject class,
at least 97% accuracy was achieved in the
other classes.

[87]

Tomatoes Colour image processing Detection of defects in cherry
and heirloom tomatoes

SVM models, ANN,
and RF

RBF-SVM performed better than other
models, with an accuracy of 0.9709 for the
healthy and defective tomatoes category.

[85]

Multiple fruits
and vegetables

Colour, texture and
geometrical features

Detection of type and
grading of fruits
and vegetables

LR, SRC, ANN,
and SVM

SVM outperformed other models with
97.63% and 96.59% accuracy for the
detection of the type of vegetable or
fruit and grading of vegetable
and fruit, respectively.

[92]

Apples
and mangoes Digital images of fruits Classification of fruits into

damaged or good fruit KNN, SVM, and C4.5 SVM outperformed other models with
a 98% accuracy. [93]

Hawthorns Colour and
texture features

Classification of fruits into
unripe, ripe, and overripe ANN and SVM

ANN performed better than SVM with
99.57, 99.16, and 98.16% accuracy for
training, validation, and
testing respectively.

[94]

Bell pepper Colour, texture and
size features

Prediction of maturity stage
and size of bell peppers ANN and MLP

MLP classifier performed better with
93.2%, 86.4%, 84%, and 95.7% for
accuracy, precision, sensitivity, and
specificity, respectively.

[95]

Apple Colour features Automatic inspection and
classification of apple fruit

SVM, KNN, XGBoost,
and CatBoost

SVM outperformed other models by
classifying the three types of apple
samples with an accuracy of 96.7%.

[79]

Parijoto Fruits Texture features
Classification of parijoto
fruits into “good”, “rotten”,
and “defects”

KNN 80% accuracy. [96]

Artificial neural networks (ANNs); random forest (RF); support vector machine (SVM); linear regression (LR);
sparse representative classifier (SRC); multi-layer perceptron (MLP); K-nearest neighbor (KNN); extreme gradient
boosting (XGBoost); categorical boosting (CatBoost).

These studies demonstrate the potential for scaling up ML systems in industrial
settings to mitigate the challenges associated with traditional manual methods in fresh
produce sorting and grading.

3.2. Crop Detection and Cultivar Classification

ML models have been increasingly employed to detect and recognize various crop
types [97–99]. Similar technology has also been employed to differentiate fruit and veg-
etable cultivars according to the specific market and industrial needs [98–101]. Accurate
classification is crucial for meeting market specifications, thereby minimizing the risk of
rejection and subsequent loss or waste. In their study, Filho et al. [97] developed a method-
ology and model to detect and map rice crops in the field from the Sentinel-1 time series
using deep learning (LSTM and bidirectional LSTM (Bi-LSTM)) models. The performance
of deep learning models like LSTM and Bi-LSTM was compared against traditional ma-
chine learning models, including SVM, RF, KNN, and NB, to evaluate their efficacy in crop
classification. The ML models achieved high accuracy in classifying rice as the LSTM. ML
in cultivar classification was reported by Hu et al. [98]. The authors differentiated the Korla
fragrant pear into two—deciduous-calyx pear and persistent-calyx pear—using successive
projection algorithms and SVM to establish classification, with SVM achieving an accuracy
of 96.7%. Yang et al. [99] applied DT, KNN, naïve Bayes (NB), linear discriminant analysis
(LDA), SVM, and back propagation neural network (BPNN) to classify apricots based
on their shape features. The study aimed to develop a model for cultivar classification
of apricot fruit using shape features to distinguish the different cultivars. In a similar
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study, Khatri et al. [101] applied KNN, NB, classification and regression tree (CART), and
ensemble methods (EMs) to distinguish wheat seeds into three varieties: Kama, Rosa,
and Canadian. Using the physical features of the seeds, the authors reported that the EM
produced the highest result with 95% accuracy. Table 6 summarizes key studies that have
applied machine learning technologies for crop detection and cultivar classification.

Table 6. Summary of ML application in crop detection and cultivar classification.

Produce Parameters Observed Evaluation Algorithms Applied Results Reference

Korla
fragrant pear

Hyperspectral images
of pear fruit

Differentiating Korla
fragrant pears into the
deciduous–calyx or
persistent–calyx categories.

SPA and SVM SPA: 93.3% accuracy; SVM: 96.7% accuracy. [98]

Rice Sentinel-1 images Infield rice crop detection. SVM, RF, KNN, and
normal Bayes (NB)*

Accuracy and kappa values for all models are
greater than 97% in all metrics. [97]

Apricots Shape features Classification of
apricot cultivars.

DT, KNN, naïve Bayes
(NB), LDA, SVM,
and BPNN

SVM integrated with SPA has the highest
accuracy, with 90.7%. [99]

Wheat Physical features Classification of wheat seeds
into 3 varieties.

KNN, NB, CART,
and EM

EM outperformed other models with
an accuracy of 95%. [101]

Wheat DSIFT features Classification of wheat seeds
into 40 varieties. SVM 88.33% accuracy. [102]

White
mustard seeds Texture features Classification of traditional

and double-low cultivars. Multiple classifiers

R channel produced the highest accuracy with
93%, and 83% accuracy was achieved in RGB
colour space when compared to other
channels and colour spaces.

[103]

Corn seed Digital image Classification of 6 varieties of
corn seeds. RF, BN, LB, and MLP MLP outperformed other models with

a 98.83% accuracy. [104]

Multiple seeds Digital image Classification of
14 different seeds.

CNN, KNN, DT, NB,
RF, AdaBoost, and LR

CNN achieved 99% accuracy in comparison
with other models. [105]

Dry beans Dimensional and
shape features

Classification of 7 different
varieties of dry beans.

MLP, SVM, KNN,
and DT

Overall, SVM outperformed other models
with an accuracy of 93.13% and classified the
individual varieties—Barbunya, Bombay, Cali,
Dermason, Horoz, Seker, and Sira—with
92.36%, 100.00%, 95.03%, 94.36%, 94.92%,
94.67%, and 86.84% accuracy, respectively.

[106]

Pineapple Thermal
image features

Classification of pineapple
into 3 different cultivars.

LDA, QDA, SVM,
KNN, DT, and NB

SVM achieved 100% accuracy in comparison
with other models. [39]

Barley

Satellite NDVI and
Finnish Food
Authority
reference data

Classify field parcels with
and without crop loss. LR, DT, RF, and MLP

RF and mean and MI (recommended).
Classification of loss: within a year is possible.
Between years is difficult.

[44]

Multiple crops Spectral and
textural features

Classification of crops into
herbaceous crops or
woody crops.

C4.5 DT, LR, SVM,
and MLP

MLP and SVM achieved the highest
classification accuracy of 88% each as single
classifiers, while SVM and SVM performed
best among the hierarchical classifiers by
improving accuracy to 89%.

[107]

Successive projections algorithm (SPA); support vector machine (SVM); random forest (RF); K-nearest neighbors
(KNNs); normal Bayes (NB)*; decision tree (DT); naïve Bayes (NB); linear discriminant analysis (LDA); back
propagation neural network (BPNN); classification and regression tree (CART); ensemble methods (EMs); dense
scale-invariant feature transform (DSIFT); BayesNet (BN); LogitBoost (LB); multi-layer perceptron (MLP); con-
volution neural network (CNN); logistic regression (LR); quadratic discriminant analysis (QDA); normalized
difference vegetation index (NDVI).

4. ML Applications during Retail

In retail, sustainable decision-making is crucial for long-term viability and compet-
itive advantage. This means that decisions are made to enhance profitability, return on
investment, and minimize risk. To make these decisions, forecasts are made using the
past and present trends of activities around the business [108]. Many factors influence
retail operations, including market dynamics and consumer behavior, making accurate
forecasting a challenging yet essential task. ML applications have been deployed to provide
techniques to simulate, detect, and predict aspects of the complex retail system for timely
decision-making for efficient operation and to reduce food waste generation.

Some studies have applied ML techniques to enhance retail operations. For instance,
as indicated in Table 7, Myat and Tun [109] used the RF classification model to predict
palm oil prices in Myanmar using data obtained from the Myanmar Edible Oil Dealers
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Association (MEODA). The prediction was conducted to determine whether the price
will rise so that imported palm oil can be traded in the local markets. In another study,
Valecha et al. [110] used the RF classifier to classify customer behavior to buy products
based on attributes such as interpersonal, individual, environmental, and organizational
factors based on the shopping pattern (Table 7). Customer behavior prediction was based
on data collected from the Kaggle repository, and the study showed 94% accuracy. To
predict future sales, Dairu and Shilong [111] proposed a technique developed by applying
the eXtreme gradient boosting (XGBoost) model to forecast sales by extracting features
from historical sales data. The study found that the XGBoost model yielded superior
performance, achieving an RMSE of 0.878, thereby outperforming the LSTM and ARIMA
models. In a similar study, Swami et al. [112] predicted the total product and store sales
using XGBoost, LSTM, and autoregressive integrated moving average (ARIMA) models.
The result revealed that the XGBoost outperformed the other models with an RMSE of 0.878.
The authors reported that XGBoost is mainly used in Kaggle competitions and efficiently
handles different sparsity patterns.

Table 7. Summary of ML application during retail.

Produce/Variable Parameters Observed Evaluation Algorithms Applied Results Reference

Palm oil MEODA data Prediction of price RF 91.11% accuracy. [109]

Consumer behaviour Kaggle repository Prediction of
consumer behaviour RF 94% accuracy. [110]

Sales Daily sales data Prediction of product
and store sales

XGBoost, ARIMA,
and LSTM

XGBoost performed better in comparison
with other models with an RMSE of 0.878,
while ARIMA and LSTM achieved 1.092
and 0.924, respectively.

[111]

Tomato, potato
and onion Daily sales data Demand forecast

of vegetables

LSTM, RFR, GBR,
XGBoost, SVR,
and ARIMA

LSTM and SVR outperformed other
models. LSTM = RMSE values ranged
between 3.75 and 15.68, 7.03 and 21.6,
and 8.20 and 20.77 for tomato, potato,
and onion, respectively. SVR = RMSE
values ranged between 6.28 and 21.11,
14.04 and 28.88, and 7.92 and 26.8 for
tomato, potato, and onion, respectively.

[113]

Sales Historical
sales data Sales forecasting LR, RR, and XGBoost

XGBoost performed better in comparison
with other models with an RMSE of 0.655,
while LR and RR achieved 0.783 and
0.774, respectively.

[112]

Perishable produces Historical data Demand forecast of
perishable produces SVM MAPE = 0.869. [114]

Onion and potato Daily sales data Daily
demand forecast ARIMA MAPE is 28.296 for onion and

29.51 for potato. [115]

Banana Daily sales data Sales forecasting

Seasonal naïve forecasting,
SARIMA, MLPNN-1,
MLPNN-2, SARIMA-MLR,
and SARIMA-QR

SARIMA-MLR and SARIMA-QR both
performed better than other models with
an RMSE of 19.14 and 19.35, respectively.

[116]

Random forest (RF); eXtreme gradient boosting (XGBoost); autoregressive integrated moving average (ARIMA);
long short-term memory (LSTM); random forest regression (RFR); gradient boosted regression (GBR); support
vector regression (SVR); root mean square error (RMSE); Ridge regression (RR); support vector machine (SVM);
mean absolute percentage error (MAPE); seasonal autoregressive integrated moving average (SARIMA); multi-
layered perceptron neural network (MLPNN); multiple linear regression (MLR); quantile regression (QR).

5. ML Application in Postharvest Loss and Waste Quantification of Fresh
Horticultural Produce

Due to their high moisture content and limited shelf life, fruits and vegetables are
particularly vulnerable to postharvest losses. Globally, fruit and vegetables account
for the highest food commodities lost or wasted. According to the FAO, wastage is as
high as 37–55% [117]. The successful application of ML for yield prediction [64], disease
detection [21], and crop quality evaluation [74] suggests that the application of ML to quan-
tify and predict postharvest wastage along the food value chain would prove fundamental
in production planning and policymaking. Despite the apparent use of ML in this domain,
there is a noticeable lack of research focusing on its application for quantifying physical
postharvest losses in fresh produce. Yu et al. [118] used factors such as family status,
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income, expenditure, and grain transaction and applied the bias classifier, DT, and SVM
models to predict grain losses. The classification result was compared among the three
models, and SVM achieved the highest result with an accuracy of 97.30%. A literature
search suggests a few studies similar to Yu et al. [118] that used socio-economic factors to
classify food loss and mostly used grains. These studies did not include actual physical
quantification of the postharvest losses but rather focused on the causes and classification
of the problem using secondary data.

Several factors contribute to postharvest losses along the food value chain [8,119,120].
Some of the factors are value chain-specific, while others occur throughout the value chain.
As a result, to effectively quantify postharvest losses using ML, different types of data are
needed, as determined by the hotspot being assessed. The type of data could include data
on environmental conditions (such as temperature and relative humidity), data from storage
methods (such as freezing and drying), and data during transportation and logistics (such
as the rate of impact, vibration, and compression). Also, data collected during physical loss
quantification by weighing or counting is believed to be highly accurate and could be used
for ML quantification of postharvest losses.

Given the gap in the application of ML for physical postharvest loss and waste quantifi-
cation, there is an urgent need for research that employs ML techniques to quantify posthar-
vest losses of horticultural produce using physically quantified data. Such an approach
would be invaluable for evidence-based policymaking and implementation.

6. Limitations of Implementing ML Techniques in Horticultural Production and
Future Prospects

Although ML techniques improve horticultural production through automation and
enhanced efficiency, there are several challenges and limitations associated with their
implementation. These challenges arise due to the complexities of horticultural production.
One of the major challenges is data availability and variability. Data for horticultural studies
come from several sources, such as laboratory experiments, satellite imagery [57], historical
data [112,114], and manually collected data (physical quantification) [8,9]. Therefore,
ensuring the quality of data from several sources is critical for applications using ML models.
In some instances, the ML data acquisition process requires specialized skills and a huge
cost of acquisition, such as data acquisition through hyperspectral imagining, making it
difficult to acquire adequate data for use [73]. There is also the problem of the reliability
of data due to inconsistencies in data collection methodologies [121]. Furthermore, the
interaction between horticultural crops and their environment is influenced by weather,
farming practices, the prevalence of pests and diseases, and soil composition. These factors
vary from time to time and need continuous monitoring. Also, the interpretability of these
parameters and knowing how they influence horticultural production require horticultural
knowledge, which can pose a limitation to experts in other fields. There is also the problem
of scalability in the application of ML in horticultural production. Small-scale trials in
the application of ML techniques in horticultural production are usually easier, cheaper,
and often show positive results. Scaling these results to larger horticultural operations
may involve substantial cost, infrastructural requirements, and suitability to the existing
technologies and operations.

Furthermore, another aspect of the limitations of the implementation of ML in horti-
cultural production is the selection of appropriate performance criteria to evaluate model
performance. While this review has covered performance metrics for classification tasks in
ML, such as F1-score, precision, and recall (as discussed in Section 1.3), it is crucial to also
consider some of the metrics used in regression tasks, which are foundational in several ML
applications. The commonly used parameters to assess a model’s accuracy in regression
tasks include R-squared (R2), the root mean squared error (RMSE), the mean absolute
error (MAE), and the mean bias error (MBE). R2 is the coefficient of determination, which
indicates the proportion of variance in the dependent variable that is predictable from the
independent variables, providing insight into the explanatory power of the model [37,67].
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However, according to Clark et al. [122], the R2 value does not give the overall picture
of the performance of a model since it does not evaluate the bias in the predicted result.
The RMSE and MAE measure the average magnitude of error between the predicted and
actual values, with the RMSE being particularly sensitive to large errors [37,67], making it
suitable for applications in tasks where such errors are unacceptable. The MBE assesses the
average bias in predictions, helping identify systematic overestimations or underestima-
tions by the model [123]. The relationship between RMSE, MAE, and MBE is expressed by
the inequalities: MBE ≤ MAE ≤ RMSE ≤

√
nMAE, where MSE and RMSE are preferred

if the theoretical analysis on error measure is conducted as opposed to MAE because of
the ease of applying analytical measures to MAE [123]. From the analysis of the metrics,
the choice of evaluation criteria must vary based on the type of task and application in
horticultural production. Therefore, the metrics should be carefully selected based on the
data characteristics and the implications of different error types in the specific application
context. For example, in financial forecasting for ML applications in retail, where outliers
can disproportionately affect the model’s performance, MAE might be preferred due to its
resistance to the influence of large errors. Analyzing these metrics provides a more compre-
hensive evaluation of model performance, ensuring that their applications are both robust
and directly tailored to the specific challenges at each stage of horticultural production.

Having discussed the challenges and limitations associated with implementing ML
techniques in horticultural production, possible future research directions could involve
considering the integration of ML models with Internet of Things (IoT) devices such as
sensors to enable real-time monitoring and control of horticultural environments, which
would lead to higher efficiency. Also, there is a need to explore novel ensemble ML
algorithms (since they consist of a combination of traditional ML models), to address the
unique challenges of horticultural production. Finally, ML experts must collaborate with
other horticultural value chain actors such as farmers, processors, transportation, and
equipment manufacturers to ensure that the developed models are practical, effective, and
aligned with industry needs.

7. Conclusions

Recent advancements in artificial intelligence, specifically machine learning, have
significantly reduced manual labor in pre and postharvest activities, transforming the
food value chain. The integration of machine learning into horticultural practices has
not only revolutionized operations but also enhanced the speed and accuracy of various
processes. This review has reported the current knowledge of ML models that predict and
classify variables accurately as stand-alone models, such as the SVM, RF, KNN, DT, and LR,
and showed that some models achieve better results when combined with other models
(ensemble method). Based on the findings of the review, regression models such as LR,
SVR, and RF are most promising for future research in prediction and forecasting because
they allow prediction through time series and show the underlying relationship among
variables. Furthermore, the capability of ensemble methods to boost ML models’ accuracy
and reduce bias promises a great improvement in the adaptability of these models in
postharvest loss quantification. Given the successful application of ML models in different
horticultural practices, it could be a game changer for postharvest loss quantification
in the near future. However, the application of the techniques on a commercial scale
requires specialized skills and can be cost-intensive. As this review has shown, studies
relating to the application of ML techniques in quantifying and predicting postharvest
losses and waste of horticultural produce are lacking, hence highlighting the importance of
this study. The current application of ML technology in horticultural production has been
concentrated on pest and disease prediction, yield prediction, and the classification of fruit
and vegetables in sorting and grading operations. The critical need for ML in quantifying
postharvest losses and waste is evident, especially when considering its potential impact
on policy formulation and implementation for food loss and waste reduction. Given these
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considerations, future research should leverage ML to quantify and predict postharvest
losses and waste, enhancing data accuracy and facilitating timely interventions.

Author Contributions: Conceptualization, O.A.F. and U.L.O.; writing—original draft preparation,
I.K.O.; writing—review and editing, O.A.F., U.L.O. and J.A.O. All authors have read and agreed to
the published version of the manuscript.

Funding: This work is based on research supported by the National Research Foundation of South
Africa (grant numbers: 64813 and 129295). The opinions, findings, and conclusions or recommen-
dations expressed are those of the author(s) alone, and the NRF accepts no liability whatsoever in
this regard.

Data Availability Statement: All data are made available in the manuscript.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
1. Alasalvar, C.; Salvadó, J.S.; Ros, E. Bioactives and health benefits of nuts and dried fruits. Food Chem. 2020, 314, 126192. [CrossRef]

[PubMed]
2. Sarker, U.; Hossain, M.M.; Oba, S. Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus

leafy vegetable. Sci. Rep. 2020, 10, 1336. [CrossRef] [PubMed]
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