Next Issue
Volume 4, December
Previous Issue
Volume 4, June
 
 

Plants, Volume 4, Issue 3 (September 2015) – 16 articles , Pages 356-727

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
904 KiB  
Article
DNA and Flavonoids Leach out from Active Nuclei of Taxus and Tsuga after Extreme Climate Stresses
by Walter Feucht, Markus Schmid and Dieter Treutter
Plants 2015, 4(3), 710-727; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030710 - 21 Sep 2015
Cited by 4 | Viewed by 5066
Abstract
Severe over-stresses of climate caused dramatic changes in the intracellular distribution of the flavonoids. This was studied in needles from the current year’s growth of the following species and varieties: Tsuga canadensis, Taxus baccata, T. aurea, T. repens, T. [...] Read more.
Severe over-stresses of climate caused dramatic changes in the intracellular distribution of the flavonoids. This was studied in needles from the current year’s growth of the following species and varieties: Tsuga canadensis, Taxus baccata, T. aurea, T. repens, T. nana, and T. compacta. The mode of steady changes in flavonoids was evaluated by microscopic techniques. Most of the flavonoids stain visibly yellow by themselves. The colorless flavanol subgroup can be stained blue by the DMACA reagent. In mid-summer 2013, outstanding high temperatures and intense photo-oxidative irradiation caused in a free-standing tree of Taxus baccata dramatic heat damage in a limited number of cells of the palisade layers. In these cells, the cytoplasm was burned brown. However, the nucleus maintained its healthy “blue” colored appearance which apparently was a result of antioxidant barrier effects by these flavanols. In late May 2014, excessive rainfall greatly affected all study trees. Collectively, in all study trees, a limited number of the mesophyll nuclei from the needless grown in 2013 and 2014 became overly turgid, enlarged in size and the flavanols leached outward through the damaged nuclear membranes. This diffusive stress event was followed one to three days later by a similar efflux of DNA. Such a complete dissolution of the nuclei in young tissues was the most spectacular phenomenon of the present study. As a common feature, leaching of both flavanols and DNA was markedly enhanced with increasing size and age of the cells. There is evidence that signalling flavonoids are sensitized to provide in nuclei and cytoplasm multiple mutual protective mechanisms. However, this well-orchestrated flavonoid system is broken down by extreme climate events. Full article
Show Figures

Figure 1

1441 KiB  
Article
Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1
by Anja Smykowski, Stefan M. Fischer and Ulrike Zentgraf
Plants 2015, 4(3), 691-709; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030691 - 16 Sep 2015
Cited by 15 | Viewed by 7222 | Correction
Abstract
Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively [...] Read more.
Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII. Full article
(This article belongs to the Special Issue Plant Senescence)
Show Figures

Graphical abstract

830 KiB  
Article
Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest
by Kolby J. Jardine, Jeffrey Q. Chambers, Jennifer Holm, Angela B. Jardine, Clarissa G. Fontes, Raquel F. Zorzanelli, Kimberly T. Meyers, Vinicius Fernadez De Souza, Sabrina Garcia, Bruno O. Gimenez, Luani R. de O. Piva, Niro Higuchi, Paulo Artaxo, Scot Martin and Antônio O. Manzi
Plants 2015, 4(3), 678-690; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030678 - 15 Sep 2015
Cited by 39 | Viewed by 13247
Abstract
Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but [...] Read more.
Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress. Full article
(This article belongs to the Special Issue Plant Senescence)
Show Figures

Graphical abstract

624 KiB  
Review
Possible Roles of Strigolactones during Leaf Senescence
by Yusuke Yamada and Mikihisa Umehara
Plants 2015, 4(3), 664-677; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030664 - 11 Sep 2015
Cited by 51 | Viewed by 9984
Abstract
Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones [...] Read more.
Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence. Full article
(This article belongs to the Special Issue Plant Senescence)
Show Figures

Graphical abstract

1423 KiB  
Article
Rice Phytochrome B (OsPhyB) Negatively Regulates Dark- and Starvation-Induced Leaf Senescence
by Weilan Piao, Eun-Young Kim, Su-Hyun Han, Yasuhito Sakuraba and Nam-Chon Paek
Plants 2015, 4(3), 644-663; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030644 - 01 Sep 2015
Cited by 28 | Viewed by 8814
Abstract
Light regulates leaf senescence and light deprivation causes large-scale transcriptional reprogramming to dismantle cellular components and remobilize nutrients to sink organs, such as seeds and storage tissue. We recently reported that in Arabidopsis (Arabidopsis thaliana), Phytochrome-Interacting Factor4 (PIF4) and PIF5 promote [...] Read more.
Light regulates leaf senescence and light deprivation causes large-scale transcriptional reprogramming to dismantle cellular components and remobilize nutrients to sink organs, such as seeds and storage tissue. We recently reported that in Arabidopsis (Arabidopsis thaliana), Phytochrome-Interacting Factor4 (PIF4) and PIF5 promote dark-induced senescence and natural senescence by directly activating the expression of typical senescence-associated genes (SAGs), including ORESARA1 (ORE1) and ETHYLENE INSENSITIVE3 (EIN3). In contrast, phytochrome B (PhyB) inhibits leaf senescence by repressing PIF4 and PIF5 at the post-translational level. Although we found how red light signaling represses leaf senescence in Arabidopsis, it remains unknown whether PhyB and/or PhyA are involved in leaf senescence in rice (Oryza sativa). Here we show that rice phyB knockout mutants (osphyB-1, -2, and -3) exhibited an early senescence phenotype during dark-induced senescence, but an osphyA knockout mutant (osphyA-3) senesced normally. The RT-qPCR analysis revealed that several senescence-associated genes, including OsORE1 and OsEIN3, were significantly up-regulated in osphyB-2 mutants, indicating that OsPhyB also inhibits leaf senescence, like Arabidopsis PhyB. We also found that leaf segments of osphyB-2 senesced faster even under light conditions. Supplementation with nitrogen compounds, such as KNO3 and NH4NO3, rescued the early senescence phenotype of osphyB-2, indicating that starvation is one of the major signaling factors in the OsPhyB-dependent leaf senescence pathway. Full article
(This article belongs to the Special Issue Plant Senescence)
Show Figures

Figure 1

4261 KiB  
Review
The Control of Auxin Transport in Parasitic and Symbiotic Root–Microbe Interactions
by Jason Liang Pin Ng, Francine Perrine-Walker, Anton P. Wasson and Ulrike Mathesius
Plants 2015, 4(3), 606-643; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030606 - 24 Aug 2015
Cited by 27 | Viewed by 13588
Abstract
Most field-grown plants are surrounded by microbes, especially from the soil. Some of these, including bacteria, fungi and nematodes, specifically manipulate the growth and development of their plant hosts, primarily for the formation of structures housing the microbes in roots. These developmental processes [...] Read more.
Most field-grown plants are surrounded by microbes, especially from the soil. Some of these, including bacteria, fungi and nematodes, specifically manipulate the growth and development of their plant hosts, primarily for the formation of structures housing the microbes in roots. These developmental processes require the correct localization of the phytohormone auxin, which is involved in the control of cell division, cell enlargement, organ development and defense, and is thus a likely target for microbes that infect and invade plants. Some microbes have the ability to directly synthesize auxin. Others produce specific signals that indirectly alter the accumulation of auxin in the plant by altering auxin transport. This review highlights root–microbe interactions in which auxin transport is known to be targeted by symbionts and parasites to manipulate the development of their host root system. We include case studies for parasitic root–nematode interactions, mycorrhizal symbioses as well as nitrogen fixing symbioses in actinorhizal and legume hosts. The mechanisms to achieve auxin transport control that have been studied in model organisms include the induction of plant flavonoids that indirectly alter auxin transport and the direct targeting of auxin transporters by nematode effectors. In most cases, detailed mechanisms of auxin transport control remain unknown. Full article
(This article belongs to the Special Issue Plant Root Development)
Show Figures

Graphical abstract

1252 KiB  
Article
Sulfite Oxidase Activity Is Essential for Normal Sulfur, Nitrogen and Carbon Metabolism in Tomato Leaves
by Galina Brychkova, Dmitry Yarmolinsky, Albert Batushansky, Vladislav Grishkevich, Inna Khozin-Goldberg, Aaron Fait, Rachel Amir, Robert Fluhr and Moshe Sagi
Plants 2015, 4(3), 573-605; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030573 - 14 Aug 2015
Cited by 16 | Viewed by 8960
Abstract
Plant sulfite oxidase [SO; E.C.1.8.3.1] has been shown to be a key player in protecting plants against exogenous toxic sulfite. Recently we showed that SO activity is essential to cope with rising dark-induced endogenous sulfite levels in tomato plants (Lycopersicon esculentum/Solanum lycopersicum [...] Read more.
Plant sulfite oxidase [SO; E.C.1.8.3.1] has been shown to be a key player in protecting plants against exogenous toxic sulfite. Recently we showed that SO activity is essential to cope with rising dark-induced endogenous sulfite levels in tomato plants (Lycopersicon esculentum/Solanum lycopersicum Mill. cv. Rheinlands Ruhm). Here we uncover the ramifications of SO impairment on carbon, nitrogen and sulfur (S) metabolites. Current analysis of the wild-type and SO-impaired plants revealed that under controlled conditions, the imbalanced sulfite level resulting from SO impairment conferred a metabolic shift towards elevated reduced S-compounds, namely sulfide, S-amino acids (S-AA), Co-A and acetyl-CoA, followed by non-S-AA, nitrogen and carbon metabolite enhancement, including polar lipids. Exposing plants to dark-induced carbon starvation resulted in a higher degradation of S-compounds, total AA, carbohydrates, polar lipids and total RNA in the mutant plants. Significantly, a failure to balance the carbon backbones was evident in the mutants, indicated by an increase in tricarboxylic acid cycle (TCA) cycle intermediates, whereas a decrease was shown in stressed wild-type plants. These results indicate that the role of SO is not limited to a rescue reaction under elevated sulfite, but SO is a key player in maintaining optimal carbon, nitrogen and sulfur metabolism in tomato plants. Full article
(This article belongs to the Special Issue Plant Senescence)
Show Figures

Graphical abstract

832 KiB  
Review
Abscisic Acid: Hidden Architect of Root System Structure
by Jeanne M. Harris
Plants 2015, 4(3), 548-572; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030548 - 11 Aug 2015
Cited by 111 | Viewed by 12789
Abstract
Plants modulate root growth in response to changes in the local environment, guided by intrinsic developmental genetic programs. The hormone Abscisic Acid (ABA) mediates responses to different environmental factors, such as the presence of nitrate in the soil, water stress and salt, shaping [...] Read more.
Plants modulate root growth in response to changes in the local environment, guided by intrinsic developmental genetic programs. The hormone Abscisic Acid (ABA) mediates responses to different environmental factors, such as the presence of nitrate in the soil, water stress and salt, shaping the structure of the root system by regulating the production of lateral roots as well as controlling root elongation by modulating cell division and elongation. Curiously, ABA controls different aspects of root architecture in different plant species, perhaps providing some insight into the great diversity of root architecture in different plants, both from different taxa and from different environments. ABA is an ancient signaling pathway, acquired well before the diversification of land plants. Nonetheless, how this ancient signaling module is implemented or interacts within a larger signaling network appears to vary in different species. This review will examine the role of ABA in the control of root architecture, focusing on the regulation of lateral root formation in three plant species, Arabidopsis thaliana, Medicago truncatula and Oryza sativa. We will consider how the implementation of the ABA signaling module might be a target of natural selection, to help contribute to the diversity of root architecture in nature. Full article
(This article belongs to the Special Issue Plant Root Development)
Show Figures

Figure 1

720 KiB  
Review
Hormonal Control of Lateral Root and Nodule Development in Legumes
by Sandra Bensmihen
Plants 2015, 4(3), 523-547; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030523 - 07 Aug 2015
Cited by 55 | Viewed by 10253
Abstract
Many plants can establish symbioses with nitrogen-fixing bacteria, some of which lead to nodulation, including legumes. Indeed, in the rhizobium/legume symbiosis, new root organs, called nodules, are formed by the plant in order to host the rhizobia in protective conditions, optimized for nitrogen [...] Read more.
Many plants can establish symbioses with nitrogen-fixing bacteria, some of which lead to nodulation, including legumes. Indeed, in the rhizobium/legume symbiosis, new root organs, called nodules, are formed by the plant in order to host the rhizobia in protective conditions, optimized for nitrogen fixation. In this way, these plants can benefit from the reduction of atmospheric dinitrogen into ammonia by the hosted bacteria, and in exchange the plant provides the rhizobia with a carbon source. Since this symbiosis is costly for the plant it is highly regulated. Both legume nodule and lateral root organogenesis involve divisions of the root inner tissues, and both developmental programs are tightly controlled by plant hormones. In fact, most of the major plant hormones, such as auxin, cytokinins, abscisic acid, and strigolactones, control both lateral root formation and nodule organogenesis, but often in an opposite manner. This suggests that the sensitivity of legume plants to some phytohormones could be linked to the antagonism that exists between the processes of nodulation and lateral root formation. Here, we will review the implication of some major phytohormones in lateral root formation in legumes, compare them with their roles in nodulation, and discuss specificities and divergences from non-legume eudicot plants such as Arabidopsis thaliana. Full article
(This article belongs to the Special Issue Plant Root Development)
Show Figures

Figure 1

1306 KiB  
Article
Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content
by Rachel Anderson and Peter Ryser
Plants 2015, 4(3), 505-522; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030505 - 05 Aug 2015
Cited by 20 | Viewed by 9608
Abstract
Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over [...] Read more.
Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season. Full article
(This article belongs to the Special Issue Plant Senescence)
Show Figures

Graphical abstract

749 KiB  
Review
Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions
by Sandip A. Ghuge, Alessandra Tisi, Andrea Carucci, Renato A. Rodrigues-Pousada, Stefano Franchi, Paraskevi Tavladoraki, Riccardo Angelini and Alessandra Cona
Plants 2015, 4(3), 489-504; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030489 - 14 Jul 2015
Cited by 22 | Viewed by 6996
Abstract
Polyamines (PAs) are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs), including copper amine oxidases (CuAOs) and flavin [...] Read more.
Polyamines (PAs) are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs), including copper amine oxidases (CuAOs) and flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). The biologically-active hydrogen peroxide (H2O2) is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H2O2 biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H2O2 derived from PA oxidation in xylem tissue maturation under stress-simulated conditions. Full article
(This article belongs to the Special Issue Plant Root Development)
Show Figures

Graphical abstract

808 KiB  
Review
Keeping Control: The Role of Senescence and Development in Plant Pathogenesis and Defense
by Eva Häffner, Sandra Konietzki and Elke Diederichsen
Plants 2015, 4(3), 449-488; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030449 - 13 Jul 2015
Cited by 58 | Viewed by 10918
Abstract
Many plant pathogens show interactions with host development. Pathogens may modify plant development according to their nutritional demands. Conversely, plant development influences pathogen growth. Biotrophic pathogens often delay senescence to keep host cells alive, and resistance is achieved by senescence-like processes in the [...] Read more.
Many plant pathogens show interactions with host development. Pathogens may modify plant development according to their nutritional demands. Conversely, plant development influences pathogen growth. Biotrophic pathogens often delay senescence to keep host cells alive, and resistance is achieved by senescence-like processes in the host. Necrotrophic pathogens promote senescence in the host, and preventing early senescence is a resistance strategy of plants. For hemibiotrophic pathogens both patterns may apply. Most signaling pathways are involved in both developmental and defense reactions. Increasing knowledge about the molecular components allows to distinguish signaling branches, cross-talk and regulatory nodes that may influence the outcome of an infection. In this review, recent reports on major molecular players and their role in senescence and in pathogen response are reviewed. Examples of pathosystems with strong developmental implications illustrate the molecular basis of selected control strategies. A study of gene expression in the interaction between the hemibiotrophic vascular pathogen Verticillium longisporum and its cruciferous hosts shows processes that are fine-tuned to counteract early senescence and to achieve resistance. The complexity of the processes involved reflects the complex genetic control of quantitative disease resistance, and understanding the relationship between disease, development and resistance will support resistance breeding. Full article
(This article belongs to the Special Issue Plant Senescence)
Show Figures

Figure 1

1381 KiB  
Review
NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops
by Dagmara Podzimska-Sroka, Charlotte O'Shea, Per L. Gregersen and Karen Skriver
Plants 2015, 4(3), 412-448; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030412 - 13 Jul 2015
Cited by 97 | Viewed by 14033
Abstract
Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC [...] Read more.
Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics of these domains determine the interactions in gene regulatory networks. Emerging local NAC-centered gene regulatory networks reveal complex molecular mechanisms of stress- and hormone-regulated senescence and basic physiological steps of the senescence process. For example, through molecular interactions involving the hormone abscisic acid, Arabidopsis NAP promotes chlorophyll degradation, a hallmark of senescence. Furthermore, studies of the functional rice ortholog, OsNAP, suggest that NAC genes can be targeted to obtain specific changes in lifespan control and nutrient remobilization in crop plants. This is also exemplified by the wheat NAM1 genes which promote senescence and increase grain zinc, iron, and protein content. Thus, NAC genes are promising targets for fine-tuning senescence for increased yield and quality. Full article
(This article belongs to the Special Issue Plant Senescence)
Show Figures

Figure 1

689 KiB  
Review
Senescence, Stress, and Reactive Oxygen Species
by Ivan Jajic, Tadeusz Sarna and Kazimierz Strzalka
Plants 2015, 4(3), 393-411; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030393 - 08 Jul 2015
Cited by 214 | Viewed by 17026
Abstract
Generation of reactive oxygen species (ROS) is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of [...] Read more.
Generation of reactive oxygen species (ROS) is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of biomembranes. On the other hand, they also have a signaling role and changes in production of ROS can act as signals that change the transcription of genes that favor the acclimation of plants to abiotic stresses. Among the ROS, it is believed that H2O2 causes the largest changes in the levels of gene expression in plants. A wide range of plant responses has been found to be triggered by H2O2 such as acclimation to drought, photooxidative stress, and induction of senescence. Our knowledge on signaling roles of singlet oxygen (1O2) has been limited by its short lifetime, but recent experiments with a flu mutant demonstrated that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. In this review we summarize the latest progress on the signaling roles of ROS during senescence and abiotic stresses and we give a short overview of the methods that can be used for their assessment. Full article
(This article belongs to the Special Issue Plant Senescence)
Show Figures

Figure 1

1060 KiB  
Review
Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants
by Lesley A. Judd, Brian E. Jackson and William C. Fonteno
Plants 2015, 4(3), 369-392; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030369 - 03 Jul 2015
Cited by 64 | Viewed by 16092
Abstract
The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown [...] Read more.
The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain. Full article
(This article belongs to the Special Issue Plant Root Development)
Show Figures

Figure 1

620 KiB  
Review
Senescence Meets Dedifferentiation
by Yemima Givaty Rapp, Vanessa Ransbotyn and Gideon Grafi
Plants 2015, 4(3), 356-368; https://0-doi-org.brum.beds.ac.uk/10.3390/plants4030356 - 29 Jun 2015
Cited by 9 | Viewed by 12160
Abstract
Senescence represents the final stage of leaf development but is often induced prematurely following exposure to biotic and abiotic stresses. Leaf senescence is manifested by color change from green to yellow (due to chlorophyll degradation) or to red (due to de novo synthesis [...] Read more.
Senescence represents the final stage of leaf development but is often induced prematurely following exposure to biotic and abiotic stresses. Leaf senescence is manifested by color change from green to yellow (due to chlorophyll degradation) or to red (due to de novo synthesis of anthocyanins coupled with chlorophyll degradation) and frequently culminates in programmed death of leaves. However, the breakdown of chlorophyll and macromolecules such as proteins and RNAs that occurs during leaf senescence does not necessarily represent a one-way road to death but rather a reversible process whereby senescing leaves can, under certain conditions, re-green and regain their photosynthetic capacity. This phenomenon essentially distinguishes senescence from programmed cell death, leading researchers to hypothesize that changes occurring during senescence might represent a process of trans-differentiation, that is the conversion of one cell type to another. In this review, we highlight attributes common to senescence and dedifferentiation including chromatin structure and activation of transposable elements and provide further support to the notion that senescence is not merely a deterioration process leading to death but rather a unique developmental state resembling dedifferentiation. Full article
(This article belongs to the Special Issue Plant Senescence)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop