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Abstract: Azolla is a genus of aquatic ferns that engages in a unique symbiosis with a cyanobiont that
is resistant to cultivation. Azolla spp. are earmarked as a possible candidate to mitigate greenhouse
gases, in particular, carbon dioxide. That opinion is underlined here in this paper to show the broader
impact of Azolla spp. on greenhouse gas mitigation by revealing the enzyme catalogue in the Nostoc
cyanobiont to be a poor contributor to climate change. First, regarding carbon assimilation, it was
inferred that the carboxylation activity of the Rubisco enzyme of Azolla plants is able to quench carbon
dioxide on par with other C3 plants and fellow aquatic free-floating macrophytes, with the cyanobiont
contributing on average ~18% of the carboxylation load. Additionally, the author demonstrates here,
using bioinformatics and past literature, that the Nostoc cyanobiont of Azolla does not contain nitric
oxide reductase, a key enzyme that emanates nitrous oxide. In fact, all Nostoc species, both symbiotic
and nonsymbiotic, are deficient in nitric oxide reductases. Furthermore, the Azolla cyanobiont is
negative for methanogenic enzymes that use coenzyme conjugates to emit methane. With the absence
of nitrous oxide and methane release, and the potential ability to convert ambient nitrous oxide
into nitrogen gas, it is safe to say that the Azolla cyanobiont has a myriad of features that are poor
contributors to climate change, which on top of carbon dioxide quenching by the Calvin cycle in
Azolla plants, makes it an efficient holistic candidate to be developed as a force for climate change
mitigation, especially in irrigated urea-fed rice fields. The author also shows that Nostoc cyanobionts
are theoretically capable of Nod factor synthesis, similar to Rhizobia and some Frankia species, which
is a new horizon to explore in the future.
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1. Introduction

Three gases—carbon dioxide, methane (~34 times greater global warming potential than carbon
dioxide), and nitrous oxide (a ~298-fold higher global warming potential than carbon dioxide)—are the
chief contributors to global warming and, consequently, climate change [1,2]. The cultivation of crops
or agriculture is one of the main causes of climate change, because it leads to the emission of all three
of these gases. Heavy machinery and the Haber process, which is used to produce ammonia fertilizers,
have high carbon footprints. Farming of ruminants and rice cultivation, which promote anaerobic
decomposition, are both emitters of methane. Finally, the use of synthetic nitrogen fertilizers potentiates
the denitrification of nitrogen compounds, which leads to the emission of nitrous oxide as a by-product.
Therefore, it is necessary to reduce the effect of agriculture on climate change by promoting the use of
biological alternatives to nitrogen fertilizers (biofertilizers), i.e., bacterial/cyanobacterial organisms that
possess the remarkable ability to fix nitrogen gas and to furnish the nitrogen requirements of plants [3].
Nitrogen fixation is biologically viable, does not pollute or emit greenhouse gases, and is cost effective
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and user friendly, which makes this biological process a potent player in mitigating future climate
change. Notably, among such alternative solutions is a plant, the aquatic fern Azolla sp., that can act as
a biofertilizer by the fortification of a plant biological system with a nitrogen-fixing cyanobiont that
churns out ammonia in abundance [3].

Azolla spp. can quench ample carbon dioxide due to their rapid proliferation, doubling their
body weight in 2–5 days [4]. Azolla spp. are grown in paddy fields, where it has been measured that
the yields of rice are significantly elevated due to dual cropping [5,6], while the lowering of the urea
footprint is also a positive outcome based on the growth of Azolla spp. in irrigated lands. Urea has been
shown to drastically improve nitrous oxide production while being a lesser candidate for the emission
of methane; however, it increases the carbon dioxide footprint, which means that using biofertilizers as
surrogates to urea diminishes climate change in three combined mechanisms [3,7]. At an ambient CO2

concentration of 800 ppm, Azolla spp., in a small-scale production system, showed a strong increase in
biomass production, i.e., 36–47%, which establishes the potential of Azolla spp. as a solution to elevated
atmospheric carbon dioxide levels [8]. Azolla spp. are C3 plants, and based on the first assimilation
step by the action of the Rubisco carboxylase, they provide a heightened form of assimilation which
would be negligible in C4 plants, where the first step is a concentrating/enrichment mechanism [9–11].

The production of copious amounts of ammonia via nitrogen fixation, which is then transported
as amino acids such as glutamine, gives aquatic ferns abundant amounts of the Rubisco enzyme, which
is the workhorse of plants carboxylating ribulose-1,5-disphosphate into carbon skeletons made of six
carbon atoms [12]. In plants, Rubisco is said to compose ~30% of the total protein content, which
may be even higher for an ammonium-churning engine such as the Azolla superorganism. Although
rightfully considered a carbon quencher, this benefit would be made irrelevant by the production of
more potent greenhouse gases such as nitrous oxide, methane, and halocarbons from the microbiome
associated with the aquatic Azolla fern, mainly, the commonly-found cyanobiont which is popularly
known as Nostoc azollae. It is therefore imperative to investigate the potential of both (1) the Azolla sp.
(the host organism) and (2) the Nostoc major cyanobiont as contributors to greenhouse gas reductions.
The major cyanobiont is known by three generic names, Nostoc, Anabaena, and Trichormus [13], but for
the sake of simplicity and consistency, I have employed the name N. azollae throughout the article.

This study focused mostly on the cyanobiont N. azollae and its paucity of de novo production of
greenhouse gases, with the exception of carbon dioxide, which can be soaked/negated conceptually by
the Azolla aquatic fern. I also shed light on the nature of putative signaling between the cyanobiont and
host plant system using bioinformatics. To my knowledge, this is the first time that cyanobacteria have
been shown (at the genome level) to possess putative Nod-factor-modifying enzyme encoding genes.

This study only showcased the absence of key proteins for greenhouse gas production in the
cyanobiont harbored inside Azolla spp. by using simple bioinformatics tools. The results suggest
that Azolla spp. can be particularly useful for climate change mitigation, and this potential should be
harnessed. This study will hopefully trigger physiological and climate change mitigation studies on
the carbon fixation potential of Azolla species.

2. Results and Discussion

2.1. Carbon Dioxide Emissions by the Cyanobiont N. azollae

Due to the widespread presence of N. azollae inside Azolla fronds, it is unclear how much of the
carbon dioxide that is emanated by Nostoc colonies is quenched by Azolla plants. It is known that in
heterocysts, where nitrogen fixation occurs, there are strong respiration rates to maintain a low stream
of oxygen at the active site of the nitrogenase enzyme, which means that heightened carbon dioxide
emissions are a common occurrence from Nostoc filaments, especially in the dark. In this study on N.
azollae, heterocysts were found as close as two cells apart, and were commonly spaced every 2–10 cells
(Figure 1). The presence of a high number of heterocysts, compared with other Nostoc species (Table 1),
means that N. azollae could be a potent contributor to greenhouse gas emissions and, consequently,
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climate change, unless the emanated carbon dioxide is quenched by photosynthesis (Calvin cycle)
taking place in the Azolla fronds.

Due to the high production of ammonium by nitrogen fixation in the filaments of N. azollae, Azolla
plants, which benefit from the copious amounts of fixed nitrogen, can grow more rapidly, and quickly
double their biomass. Ironically, the compartment (heterocyst) that synthesizes the nitrogen for
Rubisco also produces high amounts of heterocystous carbon dioxide, which means that both the
enzyme Rubisco and the substrate carbon dioxide emanate as physiological/biochemical products from
the cyanobiont.

Azolla cyanobionts have 5-fold less Rubisco, as quantified by their transcript numbers, compared
with their free-living counterparts, and cyanobionts only have a partial/depleted carbon dioxide
fixing ability [14]. This puts the responsibility of counteracting the carbon dioxide emanated by
heterocysts—and overall, by Nostoc filaments—on the shoulders of the plant-type Rubisco enzyme.

Rubisco is known to be present at around 30% of a plant’s catalogue of proteins. Here, however,
I was unable to quantify the level of Rubisco in Azolla plants, which has not been indicated in the
literature. It has been shown that carbon dioxide assimilation takes place at 90–100 µmol CO2/mg
Chl.h for Azolla symbiosis and 75–80 µmol CO2/mg Chl.h for Azolla lacking the cyanobiont [15], which
shows that photosynthesis is affected when the symbiosis is absent. Therefore, for maximum carbon
assimilation, the cyanobiont is a critical component of the Azolla system.

Furthermore, in C3 plants, there is 15–35 mg CO2/(dm2
·h), while in C4 plants, there is 40–80 mg

CO2/(dm2
·h), which hints that the rates of carbon capture are relatively conservative in the Azolla–Nostoc

system, even without quantifying the cyanobiont’s contribution [16]. On average, there is 3–5 mg of
chlorophyll in 1 dm2 of leaf tissue, which is between 12–22 mg CO2/(dm2

·h) for Azolla–cyanobiont,
a conservative measurement for the plant system, being low to moderate among C3 counterparts,
but similar to other floating aquatic plants that assimilate CO2 over the water surface at 20–23 mg
CO2/(dm2

·h) [17]. Still, this value may be higher, considering that the CO2 in the atmosphere is beyond
415 ppm now, and the aquatic fern’s carboxylation potential was measured in a study 40 years ago.
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Figure 1. Heterocysts (H) of Nostoc azollae, where they are shown to have subtle differences in size, 
shape, and the smoothness/roughness of contours, and are spaced as close as four cells apart. 
Heterocysts are a major site of cellular respiration.  

Figure 1. Heterocysts (H) of Nostoc azollae, where they are shown to have subtle differences in size, shape,
and the smoothness/roughness of contours, and are spaced as close as four cells apart. Heterocysts are
a major site of cellular respiration.
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Table 1. The spacing of heterocysts in cyanobacteria of different pedigrees. N. punctiforme is a horizontally
transferred cyanobiont, Anabaena variabilis possesses a two-prong nitrogenase system (inclusive of a
vanadium nitrogenase), and Anabaena cylindrica PCC 7122 is a free-living cyanobacterium. The following
were obtained from [18,19] and this study.

Cell Type Organism Spacing/Percentage

Heterocyst N. azollae 2–10 cells apart

Heterocyst N. punctiforme 3–10% of the total cells

Heterocyst A. cylindrica PCC 7122 8–15 cells apart

Heterocyst A. variabilis 5–10% of cells

2.2. Oxides of Nitrogen

In this bioinformatics exploration, I examined the potential of the cyanobiont of Azolla spp. to be a
nitrous oxide, methane, and halocarbon producer, compared to other members of the order Nostocales.
I hypothesized that greenhouse-gas-producing enzymes were made redundant at the genome level
in the Azolla cyanobiont, as it lost its independence and was put under the protection of the carbon
nutrition of the host organism, which is a case of “genomic erosion” [20].

Regarding nitrous oxide production, I focused first on the nitric oxide reductase (GenBank:
AFZ55274.1, belonging to Cyanobacterium aponinum PCC 10605) (Table 2) and the nitrous oxide
reductase (RCJ21339.1, belonging to Nostoc sp. ATCC 43529) (Table 2), which catalyze sequential
steps in the mechanism of denitrification, by using the PSI-BLAST search tool to unveil their presence
(or absence) in their respective proteomes [21]. The reactions that these enzymes catalyze are shown in
Figure 2. Surprisingly, the genus Nostoc (as well as the sibling Anabaena) was found not to possess any
nitric oxide reductases that catalyze the production of the greenhouse gas nitrous oxide, but it does
contain putative nitrous oxide reductases that produce dinitrogen gas (Table 3).

Table 2. Query and the PSI-BLAST query employed in this study.

Word Query PSI-BLAST Query Type of Cyanobacteria/Bacteria

Nitric Oxide reductase AFZ55274.1, belonging to Cyanobacterium
aponinum PCC 10605

Freshwater, Unicellular

Nitrous Oxide reductase RCJ21339.1, belonging to Nostoc sp. ATCC 43529 Subsection IV, Filamentous
Cyanobacteria

Methanogenic enzymes CEN44_02070 (Fischerella muscicola CCMEE 5323) Subsection V, Filamentous
Cyanobacteria

NodB protein CAA67138.1—NodB polysaccharide deacetylase
(Rhizobium leucaenae USDA 9039)

Bacterial, Nodular

NodC protein CAA67139.1—N-acetylglucosaminyltransferases
(R. leucaenae USDA 9039)

Bacterial, Nodular

Chloroperoxidases CAA04998.1—Nostoc sp. PCC 7120 Subsection IV, Filamentous

Bromoperoxidases GBG19525.1—Nostoc commune NIES-4072 Subsection IV, FilamentousPlants 2019, 8, x FOR PEER REVIEW 6 of 15 
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Table 3. The enzymes that were employed for bioinformatics explorations and their occurrences/distribution.
(Yes—sequence identity is >30% and sequence coverage of >30%; No—identity is <30% or sequence
coverage <30%).

Protein Key Enzyme-Derived
Product

Subsection V
Cyanobacteria

Subsection IV
Cyanobacteria

Azolla Major
Cyanobiont

Nitrite reductase Nitric Oxide YES YES NO

Nitric Oxide (NO)
synthase Nitric Oxide NO YES NO

Nitric Oxide (NO)
reductase Nitrous Oxide YES NO NO

Nitrous Oxide (N2O)
reductase Nitrogen gas YES YES YES

Methanogenic enzyme Methane YES YES NO

Vanadium dependent
Chloroperoxidase Halocarbons YES YES YES

Vanadium dependent
Bromoperoxidase Halocarbons YES YES NO

It seems, theoretically, that Nostoc spp. have an evolutionary adaptation to convert nitrous oxide
in the ambient environment into dinitrogen gas, which can be utilized in subsequent nitrogen fixation,
which is an extremely clever biological process. The same enzyme (a putative nitrous oxide reductase)
was found to be present in the proteome of the cyanobiont of Azolla spp. at 31% identity and 55%
coverage (Table 3), showcasing the value of growing Azolla in rice fields, where urea is used abundantly
as a chemical fertilizer, to negate nitrous oxide emissions.

On the other hand, nitric oxide synthases, which synthesize NO, were found in two filamentous
subsections, and are available in plant cyanobionts such as Nostoc cycadae. However, nitric oxide
synthases are absent in the Azolla cyanobiont’s genome/proteome (Table 3). Nevertheless, it is
interesting that there is an ad hoc nature to the presence of the nitric oxide synthases, being found in
only a few species of Nostoc and Anabaena, which are highly abundant species of the order Nostocales.
Interestingly, the Nostoc sp. HK-1 (which establishes a symbiosis with Cycas plants), which is a
drought-tolerant species of Nostoc that has been suggested to be a contender that can survive in
extraterrestrial environments, such as on Mars. However, in the absence of lab-based evidence,
the possibility of the role of NO in cellular signaling and in the dialogue between plants and microbes
cannot be eliminated.

The accumulation of NO, which takes place in Nostoc species, appears to be a signaling event
between plants and cyanobacteria. Still, there is another enzymatic contender for the production of
NO, namely, the family of nitrite reductases. Table 3 presents a summary of the representation of
subsections IV and V of cyanobacteria and their complement of nitrogen-based enzymes, in particular,
denitrifying proteins. Of note, N. azollae also had a low homology match (22% identity and 30%
coverage) to nitrite reductases, which requires experimental data to convincingly demonstrate that it is
an authentic nitrite reductase (Figure S1).

It is noteworthy that, in the past, scientists questioned whether NO is more important for plants
or plant pathogens, since it is exuded by the latter [22]. In a similar context, the presence of NO, but
not N2O, is a measure of the use of NO in Nostoc biology. It is known that microorganisms that are
capable of parasitism utilize NO in highly efficient, constitutive, and inducible ways [22]. Therefore,
the presence of NO could analogously be a windfall for the Nostoc cyanobacteria, especially those
capable of symbiotic unions. Thus, similar to being a virulence factor in plant pathogens [22], NO could
well be a symbiotic factor in cyanobacteria capable of symbioses. Current knowledge related to this is
strictly limited in showcasing all the biological phenomena associated with NO [22].
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2.3. Cyanobacterial Signaling with Host: New In Silico-Based Evidence on Nod Factors

The key finding of this study is the gap in the denitrification process in Nostoc species (Table 3).
Still, the presence of nitrite reductases in some Nostoc species and nitric oxide synthases in others
presents a picture of accumulating NO levels that are not utilized downstream due to the absence of
nitric oxide reductases, which prevents the production of nitrous oxide by any Nostoc species (Table 3).

Furthermore, I hypothesize that the presence and accumulation of nitric oxide may have a role to
play in the establishment of symbioses with host plants. Fascinatingly, (Ns) H-NOX is a hemeprotein
found in symbiotic cyanobacteria that is markedly similar to the β subunit of soluble guanylyl cyclases
(sGC), which indicates a NO-sensing function in cyanobacteria that may use plant-derived NO for
various processes [23]. However, it does not explain the de novo synthesis of NO in such cyanobacteria
using nitric oxide synthases and nitrite reductases, although the emanation of NO by cyanobacterium
can be a mechanism for drawing the root closer toward the cyanobacterium, aided by the elongation of
the root.

Considering the similarities between the genera Frankia and Nostoc, in that both form symbiotic
unions with land plants while producing an organ such as a root nodule and possessing the ability
to differentiate into a distinct cell/vesicle to fix nitrogen, I checked for the presence of nodulation
protein NodA, nodulation protein H, and NodB polysaccharide deacetylase from “Candidatus Frankia
californiensis” [24] as the search query using the PSI-BLAST search tool. Table 4 clearly shows the
presence of NodB polysaccharide deacetylases in cyanobacterial genomes, including that of Nostoc
spp., which draws a link between two filamentous/mycelial types in two divergent plant systems.
What is most interesting is that the NodB polysaccharide deacetylase family is strongly conserved in
several cyanobacterial species, especially those of the order Nostocales.

Table 4. Search results of Nod-factor-producing/modifying proteins in all cyanobacteria and in the
genus Nostoc, using “Candidatus Frankia californiensis” Nod-factor-related sequences as queries.

Protein Best Match in Cyanobacteria
/Coverage/Sequence Identity

Best Match in
Nostoc/Coverage/Sequence Identity

Nodulation protein A
RsmB/NOP family class I SAM-dependent RNA
methyltransferase [Scytonema tolypothrichoides];

41%; 24.69%

transcriptional regulator
[Nostoc sp. MBR 210];

40%; 26.25%

Nodulation protein H type I polyketide synthase [Calothrix brevissima];
22%; 31.75%

glycosyl transferase [Nostoc sp. ATCC 53789];
17%; 34.09%

NodB polysaccharide deacetylases
Polysaccharide Deacetylase family protein

[Fischerella sp. PCC 9605];
86%; 35.8%

Deacteylase NodB [Nostoc sp. 3335mG];
81%; 37.44%

I also further searched the genus Nostoc with a NodB polysaccharide deacetylase protein from a
rhizobial strain (Rhizobium leucaenae USDA 9039) using the PSI-BLAST search tool. I found a myriad of
Nostoc species that possess homologues of >30% identity and 80% or over sequence coverage. The first
25 hits on the PSI-BLAST search were mostly symbiotically-inclined cyanobionts representing hosts
such as lichens, lower plants, gymnosperms, and angiosperms (Figure 3). However, there were NodB
polysaccharide deacetylases found in noncyanobionts.

It is worth considering what made the NodB family of polysaccharide deacetylases important
for communication by cyanobacteria, as revealed by their widespread conservation (Figure 3).
It seems that when it comes to partnerships such as Rhizobia—legumes, actinorhizal-plants—Frankia,
and host—cyanobacterium symbiotic systems, there is a role to be played by NodB polysaccharide
deacetylases, which is clearly shown by the level of sequence conservation in cyanobionts. This family
of proteins (carbohydrate esterase family 4 (CE4)) may perform its function by cleaving an N-acetyl
moiety from the nonreducing end of the chitin oligosaccharide (CO) molecule [25].

Surprisingly, even NodC nodulation proteins (glycosyltransferases) were present in PSI-BLAST
queries of a NodC protein (R. leucaenae USDA 9039), with the best match being 55% coverage/35% identity
(Figure S2). NodC proteins are N-acetylglucosaminyltransferases forming chitin oligosaccharide
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molecules. Therefore, two sequential steps of the rhizobial nod factor design pathway (NodCand
NodB nodulation proteins) are putatively conserved in many Nostoc species.
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the neighborhood joining method with support from 500 bootstrap replications. NodB nodulation
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Surprisingly, the NodB polysaccharide deacetylase protein is found in the cyanobiont of Azolla
spp. at 90% query cover and 35% sequence identity to the Rhizobium query sequence, while the NodC
acetylglucosaminyltransferase is found at 34.7% coverage but only 22% identity when searched with
the respective proteins of R. leucaenae USDA 9039 (Table 5). Whether or not the activities of synthesis
and deacetylation of the chitin oligosaccharide molecules take place in Azolla spp. is dependent on
showing experimentally that they have a function in the symbiosis. This changes our perception of
the subject; that is, N. azollae, contrary to the notion that it is incapable of horizontal transmission,
is perhaps capable of infection, or once had such a capability.

Table 5. Search results of Nod-factor-producing/modifying proteins in the Azolla cyanobiont’s proteome
using the relevant proteins from R. leucaenae USDA 9039 as the query proteins.

Azolla Cyanobiont’s Protein Type Sequence Identity to the Homolog
in R. leucaenae USDA 9039 Coverage

NodB polysaccharide deacetylase 35% 90%

NodC acetylglucosaminyltransferase 34.7% 22%
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Upon searching the Azolla plant proteome for the presence of the LysM receptor-like kinase
(Nod factor perception protein), which mediates Nod factor recognition, I found that they were absent
in the genus Azolla. Perhaps contrary to the belief that it is the cyanobiont that lost its capacity to infect,
I hypothesize here that the Azolla plant does not possess LysM receptor-like kinases for Nod factor
perception. I suggest that the Nod factors in N. azollae are involved in a different, unknown context to
mere recognition and infection, which is also supported by the presence of NodB nodulation proteins
in noncyanobionts incapable of symbioses.

Using ClustalW, I aligned four sequences of putative NodB polysaccharide deacetylases from an
actinorhizal symbiont, a species of Rhizobium, and homologues from N. azollae and Nostoc punctiforme
to examine the sequences in detail (Figure 4). The NodB domain was found mostly within the globular
fold of the NodB proteins (Figure 4b), which aligned well with its role as the catalytically-competent area
of the protein. However, the NodB domain was interrupted (a deleted region) in both cyanobacterial
sequences after the fifth conserved motif/patch (Figure 4a), which highlighted the fact that the substrate
of cyanobacterial NodB proteins may perhaps be different than the bacterial counterparts in their
substrate profiles, or such cyanobacterial proteins are inactivated or pseudogenized at the genome
level. The deleted region (Figure 4a) corresponded to a coil region (Figure 4c) when the secondary
structural motifs were predicted of the AFJ42532.1 NodB protein (Mesorhizobium plurifarium).Plants 2019, 8, x FOR PEER REVIEW 9 of 15 
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Figure 4. (a): ClustalW sequence alignment of four NodB deacetylase proteins: [>WP_131767784.1 
chitooligosaccharide deacetylase NodB [Frankia symbiont of Datisca glomerata]; [>AFJ42532.1 NodB 
nodulation protein [M. plurifarium]; [>RCJ39328.1 polysaccharide deacetylase [Nostoc punctiforme 
NIES-2108]; [>ADI63120.1 polysaccharide deacetylase [Nostoc azollae 0708]. Note: Shown in green are 
the 3/5 motifs that form key sites for enzymatic activity. Yellow indicates the interruptions (deletions) 
in the NodB domain in sequences from cyanobacteria. (b) Prediction of the Globular Domain of 
sequence AFJ42532.1 (NodB nodulation protein from M. plurifarium) using http://globplot.embl.de/. 
The amino acids in green indicate the globular domain, which contains the majority of the catalytic 
site. (c) Output of the secondary structure prediction of sequence AFJ42532.1 (NodB nodulation 
protein from M. plurifarium) using the service PSIPRED 4.0, showcasing helixes, beta strands, and coils.  

I searched cyanobacteria for the presence of methanogenic reactions using the hypothetical 
protein CEN44_02070 (Fischerella muscicola CCMEE 5323), which can synthesize methane from 
methyl-coenzyme M and coenzyme B through a methyl-coenzyme M reductase (MCR) gamma 
subunit domain, which is abundant in methanogenic organisms, including cyanobacteria. Again, no 
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(Table 3). I then constructed a phylogenetic tree with some of the best aligned sequences to the 
hypothetical protein CEN44_02070 (F. muscicola CCMEE 5323), where I found an 
enrichment/abundance of sequences from cyanobionts, from several sources, compared with those 
of free-living cyanobacteria. In particular, there was a strong representation of the Nostoc partners of 
Peltigera lichens in the phylogenetic reconstruction (Figure 5).  

In addition, it was recently shown that the wild-type iron–iron (Fe-only) nitrogenase from the 
bacterium Rhodopseudomonas palustris can produce hydrogen, ammonia, and methane in a single 
enzymatic reaction [28]. Therefore, I also checked this using PSI-BLAST, considering the unlikely 
possibility of N. azollae possessing this rare enzyme (iron–iron nitrogenase), but I failed to identify a 
candidate enzyme in the database.  

Figure 4. (a): ClustalW sequence alignment of four NodB deacetylase proteins: [>WP_131767784.1
chitooligosaccharide deacetylase NodB [Frankia symbiont of Datisca glomerata]; [>AFJ42532.1 NodB
nodulation protein [M. plurifarium]; [>RCJ39328.1 polysaccharide deacetylase [Nostoc punctiforme
NIES-2108]; [>ADI63120.1 polysaccharide deacetylase [Nostoc azollae 0708]. Note: Shown in green are
the 3/5 motifs that form key sites for enzymatic activity. Yellow indicates the interruptions (deletions)
in the NodB domain in sequences from cyanobacteria. (b) Prediction of the Globular Domain of
sequence AFJ42532.1 (NodB nodulation protein from M. plurifarium) using http://globplot.embl.de/.
The amino acids in green indicate the globular domain, which contains the majority of the catalytic site.
(c) Output of the secondary structure prediction of sequence AFJ42532.1 (NodB nodulation protein
from M. plurifarium) using the service PSIPRED 4.0, showcasing helixes, beta strands, and coils.

2.4. Methane Emissions

Cyanobacteria have been shown to produce methane from aquatic and terrestrial ecosystems [26].
It is a stark reality that biogenic methane production by cyanobacteria affects the recent and future methane
budgets, and is also part of a protracted time frame (3.5 billion years) since their evolutionary beginnings,
where they would have furnished methane to the ambient environment [26]. It is hypothesized that the
increased rates of hydrogen production in diazotrophs, such as the cyanobiont N. azollae, promote the
production of methane through the transfer of hydrogen gas into hydrogenotrophic methanogenic
bacteria in the ambient environment [26]. Still, the cultivation of Azolla spp. in methane-emanating
rice paddies, which are hot spots for methanogenic phenomena, has been shown to alleviate methane
emissions in dual cropping systems [27]. The supposed explanation of this observation is that the
dissolved oxygen in irrigation systems and the soil redox potential become favorable under Azolla
cultivation [27].

I searched cyanobacteria for the presence of methanogenic reactions using the hypothetical protein
CEN44_02070 (Fischerella muscicola CCMEE 5323), which can synthesize methane from methyl-coenzyme

http://globplot.embl.de/
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M and coenzyme B through a methyl-coenzyme M reductase (MCR) gamma subunit domain, which
is abundant in methanogenic organisms, including cyanobacteria. Again, no homologues of the
abovementioned protein were found in the proteome of the Azolla cyanobiont (Table 3). I then constructed
a phylogenetic tree with some of the best aligned sequences to the hypothetical protein CEN44_02070
(F. muscicola CCMEE 5323), where I found an enrichment/abundance of sequences from cyanobionts,
from several sources, compared with those of free-living cyanobacteria. In particular, there was a strong
representation of the Nostoc partners of Peltigera lichens in the phylogenetic reconstruction (Figure 5).
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Figure 5. The downloaded amino acid sequences of the methane production catalyzing proteins that
were aligned with the ClustalW algorithm using MEGA version X and the phylogenetic reconstruction
performed using the maximum parsimony method with support from 500 bootstrap replications. There
was no assignment of outgroups. The majority cyanobionts cluster (mixed with noncyanobionts) is
shown in a bracket.
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In addition, it was recently shown that the wild-type iron–iron (Fe-only) nitrogenase from the
bacterium Rhodopseudomonas palustris can produce hydrogen, ammonia, and methane in a single
enzymatic reaction [28]. Therefore, I also checked this using PSI-BLAST, considering the unlikely
possibility of N. azollae possessing this rare enzyme (iron–iron nitrogenase), but I failed to identify a
candidate enzyme in the database.

2.5. Halocarbon Emissions

I searched for vanadium-dependent haloperoxidases that can synthesize halocarbons as
by-products from the oxidation of halides, which can damage the ozone layer and contribute to
global warming [29]. It is interesting that almost all cyanobionts of plants and lichens have a vanadium
nitrogenase as a component of their two-prong nitrogen fixation systems, which makes the partitioning
of vanadium to the nitrogenase and haloperoxidases a critical task, when it is present [30,31].

Chloroperoxidases and bromoperoxidases have highly different protein sequences, but are
conserved in their catalytic mechanisms, proving that enzyme evolution takes place by modifying
the substrate binding site but keeping the coordination chemistry of the active site [32]. I searched
the vanadium chloroperoxidase and bromoperoxidase from Nostoc sp. PCC 7120 and Nostoc commune
NIES-4072, respectively, against the N. azollae proteome. The former (vanadium chloroperoxidase)
yielded the best match at 84% coverage and 48% sequence identity (Table 3), while the latter was not
found, showing that vanadium chloroperoxidases may be a potential source of greenhouse gases in
Azolla spp.

3. Conclusions

This bioinformatics study demonstrated the paucity of greenhouse gas emissions by the
Azolla—cyanobiont symbiosis, namely, nitrous oxide and methane, with the exception of some
forms of halocarbons and carbon dioxide, which are emanated by N. azollae. It was also shown that
the released carbon dioxide can be quenched by the fronds of Azolla spp. at the same efficiency and
range as other aquatic floating plants and C3 counterparts. It was further demonstrated, based on
computational biology, that there is nitrous oxide quenching and transformation into dinitrogen gas by
the Azolla cyanobiont, offering a near-ideal biological system for greenhouse gas mitigation for rice
cultivation with extensive urea usage. Cyanobacteria also possess the genomic ability to produce Nod
factors, which are, surprisingly, found in N. azollae as well.

4. The Future

During the Azolla event 49 million years ago, Azolla blooms in the Arctic Ocean were able to trap
carbon dioxide and become sediments on the ocean floor, which changed the earth from a greenhouse
into an icehouse [33]. This one event by itself demonstrates the importance of Azolla spp. in a future
world impacted by climate change, where they could play a crucial role in reversing greenhouse effects
and the resulting threat of climate change, which has uprooted lives in island nations such as Sri Lanka.
Such places have already witnessed changing weather patterns and the degradation of the overall
quality of life. In that stark horizon, there lies a role for the genus Azolla to be a frontrunner to combat
climate change.

5. Materials and Methods

5.1. Sequence Queries

Proteins were identified from past literature and searched using the NCBI protein database
(https://www.ncbi.nlm.nih.gov/protein) using word-based queries. The most crucial word-based
protein searches are provided in Table 2.

I assessed the top ~100 sequences derived from PSI-BLAST searches and downloaded
nonredundant sequences for phylogenetic tree construction. Phylogenetic trees played two roles in

https://www.ncbi.nlm.nih.gov/protein
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this study, i.e., providing a visual/nominal identity, and showing the phylogeny of cyanobionts against
noncyanobionts. I attempted, when possible, to employ a balance between free-living cyanobacteria
and cyanobionts, while eliminating redundant sequences.

The PSI-BLAST query focused on the umbrella taxon “cyanobacteria” using the FASTA sequence
of the sequence query to run the search tool (provided in Table 2). Furthermore, for specific queries
such as nitric oxide reductases, I employed a “Nostocales”-only PSI-BLAST search, which failed to yield
any Nostoc or Anabaena species, even at a low sequence homology level, demonstrating their absence
in such genera. This search, in particular, was conducted to ensure that both the genera Nostoc and
Anabaena were without nitric oxide reductases, a key finding of this study. Similarly, more specific
searches were also conducted at the genus and species levels according to the impending requirements.

The threshold/cut-off of 30% sequence identity was used as an indicator of members of a single
family of proteins according to the Structural Classification of Proteins (SCOP) rules [34]. The 30%
coverage was more of an arbitrary value, considering the spans of sequence conservation.

5.2. Phylogenetic Reconstructions

The nonredundant downloaded amino acid sequences (as FASTA files) from each query were first
aligned with the ClustalW algorithm using MEGA version X (default parameters) [35], which were
converted to the MEGA sequence format, and phylogenetic reconstruction was performed using the
neighborhood joining/maximum parsimony methods (again in MEGA version X) with support from
500 bootstrap replications. There was no assignment of outgroups, since the phylogenetic trees were
used here to showcase the topmost hits (the IDs) and, to a lesser extent, to show phylogeny between
cyanobiont sequence clusters.

5.3. Secondary Structure Prediction

The secondary structure prediction service PSIPRED 4.0 (http://bioinf.cs.ucl.ac.uk/psipred/) was
used to showcase the helixes, beta strands, and coils [36].

5.4. Globular Domain Prediction

Globular domains were predicted using the bioinformatics server at http://globplot.embl.de/ [37].

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/8/12/587/s1,
Figure S1: Screenshot of PSI-BLAST result for Nitrite Reductases in N. azollae., Figure S2: Screenshot of PSI-BLAST
query result, when a single NodC nodulation protein from R. leucaenae USDA 9039 was searched specifically
against cyanobacteria.
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