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Abstract: A Pomegranate Peel Extract (PGE) has been proposed as a natural antifungal substance
with a wide range of activity against plant diseases. Previous studies showed that the extract
has a direct antimicrobial activity and can elicit resistance responses in plant host tissues. In the
present study, the transcriptomic response of orange fruit toward PGE treatments was evaluated.
RNA-seq analyses, conducted on wounded fruits 0, 6, and 24 h after PGE applications, showed a
significantly different transcriptome in treated oranges as compared to control samples. The majority
(273) of the deferentially expressed genes (DEGs) were highly up-regulated compared to only 8 genes
that were down-regulated. Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes
(KEGG) pathway enrichment analysis showed the involvement of 1233 gene ontology (GO) terms
and 35 KEGG metabolic pathways. Among these, important defense pathways were induced and
antibiotic biosynthesis was the most enriched one. These findings may explain the underlying
preventive and curative activity of PGE against plant diseases.
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1. Introduction

The peel of pomegranate, accounting for approximately 50% of the total fruit weight, is a rich
source of phenolic components, including phenolic acids and flavonoids such as anthocyanins and
hydrolyzable tannins. The latter compounds are mainly represented by punicalagins, ellagic acid
and its derivatives [1,2]. Ellagitannins are the most important and abundant phenolic compounds
in pomegranate peel and are responsible for strong antioxidative and antimicrobial activities [3,4].
Therefore, pomegranate peel extracts have recently received great attention as valuable natural
compounds for a number of applications. For instance, they were proposed as effective alternative
means to inhibit the germination and growth of several mammalian pathogenic bacteria including
Listeria monocytogenes, L. innocua, Staphylococcus aureus, Escherichia coli, Yersinia enterocolitica, Pseudomonas
aeruginosa, and Salmonella spp. [5,6].
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Of particular relevance are their potential agricultural applications. An alcoholic extract from
pomegranate peel, named PGE, proved high efficacy in controlling several plant diseases when applied
both before and after harvest. A high level of protection was achieved against Botrytis cinerea on table
grapes and sweet cherries, Monilinia spp. on sweet cherries, Penicillium digitatum and Penicillium
italicum on citrus species, Penicillium expansum on apples and Colletotrichum spp. on olives [7–9].
In addition to its wide spectrum of activity, several other important features were reported on PGE,
such as the high level of efficacy, in both preventive and curative applications, a complex mechanism
of action, which includes direct fungicidal and bactericidal activities, and the capability of inducing
resistance in the host tissues [9,10]. The induction of resistance in host tissues treated with PGE
was indirectly demonstrated on citrus and olive fruit inoculated with P. digitatum and P. italicum [9],
and Colletotrichum acutatum [10]. In fact, rots were also significantly reduced when no direct contact
was made between the PGE and the pathogens. Furthermore, the application of PGE on grapefruits
caused a significant increase of reactive oxygen species (ROS) which reached a peak after 24 h post
treatment [9]. Analyses revealed the activation of several genes involved in plant defense responses
such as CHI, CHS, MAPK, MAPKK, and PAL. These PGE features seem to be a direct consequence
of its rich content in phenols [7]. In fact, phenolic components are potent antimicrobial agents that
exert a direct effect on fungal pathogens and can also induce resistance in the plants [11]. For instance,
quercetin, a common polyphenol in plant tissues induced resistance in plants and fruits by acting
on the transcription level of defense genes [12,13]. The knowledge of genes and pathways involved
in the induced resistance is essential to understand the mechanisms of action of PGE and may have
important practical implications facilitating the development of appropriate formulation and methods
of application to better control postharvest diseases [14].

Therefore, the aim of the present study was to investigate the impact of PGE on the transcriptome
of treated orange fruits in order to investigate the molecular basis of the induced resistance after
PGE applications.

2. Materials and Methods

2.1. Experimental Design and Sampling

A stock solution of PGE containing 120 g/L of dry matter and 1% citric acid used as antioxidant
was obtained according to Romeo et al. (2015). The solution was stored at 5 ◦C and diluted just
before use.

Freshly harvested oranges (Citrus sinensis cv. Valencia) from organic agriculture were wounded
with a sterile needle around the pedicel to produce three equidistant wounds (2 mm deep and wide)
and were treated with 20 µL of PGE (12 g/L), 1% citric acid or sterile water (control). Citric acid was
included in the trials since it is commonly used to stabilize PGE [7]. Samples were taken at three time
intervals after treatments: 1) soon after treatment “1 h”, 2) 6 h after the treatment “6 h” 3) and 24 h
after the treatment “24 h”. At each time point, albedo and flavedo were excised around the wounding
sites using an 8 mm diameter cork-borer. For each treatment, three replicates, each consisting of
9 wounds from three different oranges were collected (n = 27). Samples were immediately frozen in
liquid nitrogen, ground using a mortar and pestle, and stored at −20 ◦C. Total RNA was extracted from
30 mg of ground fruit tissue using the SV Total RNA Isolation System kit (Promega). The extracted
RNA was purified using the DNA-free kit (Invitrogen). Each RNA sample was adjusted to have a total
volume of 50 µl of total RNA. Library construction and sequencing were conducted at Macrogen Inc.
(Seoul, Korea) using an Illumina Hi-Seq 2500 System to obtain 100 bp paired-end reads. Reads were
deposited in the Sequence Read Archive with the accession number (PRJNA428949).

2.2. Data Analysis

The quality of the obtained raw reads was evaluated using the FastQC tool, version 0.11.3
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and was trimmed with Trimmomatic V
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0.36 [15] using a 4-base wide sliding window trimming approach with an average quality of 15 and
minimum read length of 36. Reads were mapped to the genome draft of sweet orange (C. sinensis)
version 2 [16] using TopHat 2.1.1 [17]. The mapped reads were assembled into transcripts using
the default setting of Cufflinks except that the library normalization method was set to geometric
which employs the DESeq normalization method [18,19]. Significant changes in transcript expression
were determined using Cuffdiff as implemented in Cufflinks with the default 0.05 q-value cut-off.
Gene expression values (FPKM) were used to conduct Principal Coordinates Analysis (PCoA) and to
construct heatmaps, using Qlucore v3.3 (Qlucore, Lund, Sweden) bioinformatic software. A list of
significantly differentiated genes (q-value ≤ 0.049 corresponding to a p-value of 0.02187 R2 ≥ 0.2728)
was selected and the corresponding sequences were extrapolated from the Citrus sinensis genome
reference. These genes were mapped and annotated, and their Gene Ontology (GO) terms (Level 2),
and pathways were analyzed using Blast2GO version 2.6.6 using default parameters [20].

3. Results

After quality filtering and adaptor trimming, the High-Throughput Sequencing resulted in a total
of 767,487,068 sequences for read 1 and read 2 combined, and an average of 14,212,723 paired-end
reads per sample (Table 1). Reads mapping on the genome draft of sweet orange (C. sinensis) resulted
in the identification of 30,142 mapped genes.

Table 1. Summary of the results of transcriptomic analysis on oranges treated with PGE, citric acid or
water (control) and analyzed 1, 6 and 24 h post treatment (hpt).

Treatment Replicates Sampling Time (hpt) Read 1 Read 2

Citric acid

R1 1 16509545 16509545
R2 1 10819465 10819465
R3 1 12792832 12792832
R1 6 11027909 11027909
R2 6 14228323 14228323
R3 6 8719836 8719836
R1 24 15550388 15550388
R2 24 24863143 24863143
R3 24 11287417 11287417

H2O

R1 1 13733858 13733858
R2 1 16898374 16898374
R3 1 9761332 9761332
R1 6 22501980 22501980
R2 6 20726432 20726432
R3 6 20954767 20954767
R1 24 15517302 15517302
R2 24 18455542 18455542
R3 24 20239137 20239137

PGE

R1 1 9514582 9514582
R2 1 8451256 8451256
R3 1 12624217 12624217
R1 6 11596104 11596104
R2 6 14399695 14399695
R3 6 10650424 10650424
R1 24 13176031 13176031
R2 24 9556111 9556111
R3 24 9187532 9187532

While 30,142 genes were included in the analysis, 585 genes remained after filtering the variance
according to the Qlucore software’s recommendation. Among those, 281 genes were differentially
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expressed (DEG) and significantly differentiated fruit treated with PGE from those treated with water
and citric acid, regardless of the sampling time point.

At all sampling time points (1, 6, and 24 h), the great majority of the DEGs (273) were upregulated
in the PGE-treated fruit as compared to water and citric acid, since only a small fraction of genes (8) was
down-regulated (Figure 1). Overall, differences between control and PGE-treated fruits increased over
the time since the expression level of the upregulated DEGs tended to increase while the downregulated
genes showed an opposite expression pattern.

Furthermore, multivariate Principal Component Analysis (PCA) revealed a clustering of the
transcriptomes into two groups where the PGE-treated samples were distinctly separated from the
control ones (water and citric acid). The clusters representing samples receiving different treatments
were further divided into three sub clusters, corresponding to the sampling time i.e., ‘1h’, ‘6h’ and
’24 h’ (Figure 2).
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3.1. Gene Ontology Enrichment

The GO terms and metabolic pathways of the DEGs were identified by performing functional
enrichment analyses. In total, 253 genes were annotated with 1233 GO terms and were assigned
to biological process, cellular component, or molecular function (Figure 3). Among the “Biological
process” category, the prominent functional groups for both induced and repressed genes were related
to the cellular process (126 DEGs), metabolic process (121), single organism process (74), cellular
component organization (31), and localization (31). While for the ‘Molecular function’ category, most
of the terms belonged to the catalytic activity (95) and binding groups (87). Cell (131), Cell part (131)
and Organelle (109) were the most enriched groups in the ‘Cellular component’ category.
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3.2. KEGG Pathways

KEGG pathway enrichment analysis of the up-regulated and down-regulated genes after PGE
treatment showed the involvement of 35 metabolic pathways (Table 2). Among these pathways, 34 were
up-regulated while only 1 pathway involved in monoterpenoid biosynthesis was down-regulated.
Overall, a large pool of transcripts fell within the area of primary metabolism, i.e., carbohydrate and
energy metabolism (16 pathways), amino acid metabolism (4 pathways), and nucleotide metabolism
(2 pathways), while other transcripts were mapped to the area of secondary metabolites biosynthesis
(6 pathways), and xenobiotics biodegradation and metabolism (6 pathways). Several identified genes
translated to enzymes that were involved in multiple pathways. In other cases, multiple enzymes were
found to be activated within the same pathways after PGE treatment.
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Table 2. List of KEGG pathways of orange fruits treated with PGE and their corresponding genes.

Category Pathway Number of Genes Enzymes in Pathway

Carbohydrate and
Energy metabolism

Glycolysis/Gluconeogenesis 3 ec:5.3.1.1, ec:4.1.2.13, ec:2.7.2.3
Pyruvate metabolism 3 ec:1.1.1.37, ec:4.4.1.5, ec:3.1.2.6
Pentose phosphate pathway 3 ec:2.7.1.15, ec:2.2.1.2, ec:4.1.2.13
Glyoxylate and dicarboxylate
metabolism

2 ec:1.1.1.37, ec:1.1.3.15

Fructose and mannose metabolism 2 ec:5.3.1.1, ec:4.1.2.13
Pentose and glucuronate
interconversions

2 ec:1.1.1.22, ec:4.2.2.2

Amino sugar and nucleotide sugar
metabolism

1 ec:1.1.1.22

Inositol phosphate metabolism 1 ec:5.3.1.1
Ascorbate and aldarate
metabolism

1 ec:1.1.1.22

Citrate cycle (TCA cycle) 1 ec:1.1.1.37
Oxidative phosphorylation 6 ec:1.10.2.2, ec:1.9.3.1, ec:1.6.5.3
Carbon fixation pathways in
prokaryotes

1 ec:1.1.1.37

Carbon fixation in photosynthetic
organisms

4 ec:1.1.1.37, ec:5.3.1.1, ec:4.1.2.13,
ec:2.7.2.3

Methane metabolism 2 ec:1.1.1.37, ec:4.1.2.13
Nitrogen metabolism 1 ec:1.7.1.1
Sulfur metabolism 5 ec:3.6.2.1, ec:2.5.1.48, ec:2.7.7.4,

ec:2.7.1.25

Lipid metabolism Glycerolipid metabolism 1 ec:3.1.1.3

Nucleotide metabolism
Purine metabolism 5 ec:3.6.1.3, ec:2.7.7.4, ec:2.7.4.6,

ec:2.4.2.7, ec:2.7.1.25
Pyrimidine metabolism 1 ec:2.7.4.6

Amino acid
metabolism

Cysteine and methionine
metabolism

6 ec:1.1.1.37, ec:2.5.1.6, ec:2.1.1.14,
ec:1.13.11.54, ec:3.3.1.1, ec:2.5.1.48

Phenylalanine metabolism 1 ec:2.1.1.104
Selenocompound metabolism 4 ec:2.1.1.14, ec:2.5.1.48, ec:2.7.7.4
Glutathione metabolism 4 ec:2.5.1.18, ec:1.11.1.15

Biosynthesis of
secondary metabolites

Antibiotic biosynthesis 10 ec:1.1.1.37, ec:1.1.3.15 ec:2.5.1.48,
ec:2.2.1.2, ec:5.3.1.1, ec:2.7.7.4,
ec:4.1.2.13, ec:2.7.4.6, ec:2.7.2.3

Monoterpenoid biosynthesis 2 ec:4.2.3.20
Phenylpropanoid biosynthesis 4 ec:1.11.1.7, ec:2.1.1.104
Flavonoid biosynthesis 1 ec:2.1.1.104
Monobactam biosynthesis 2 ec:2.7.7.4
Stilbenoid, diarylheptanoid and
gingerol biosynthesis

1 ec:2.1.1.104

Xenobiotics
biodegradation and
metabolism

Fluorobenzoate degradation 1 ec:3.1.1.45
Toluene degradation 1 ec:3.1.1.45
Metabolism of xenobiotics by
cytochrome P450

3 ec:2.5.1.18

Drug metabolism - cytochrome
P450

3 ec:2.5.1.18

Drug metabolism - other enzymes 2 ec:3.1.1.1
Chlorocyclohexane and
chlorobenzene degradation

1 ec:3.1.1.45

4. Discussion

In the present study, a transcriptomic analysis was conducted to evaluate the impact of PGE
on the expression of genes in oranges treated at different intervals after treatment (1, 6 and 24 hpt).
PGE treatment significantly influenced the gene expression (253 DEGs) compared to the control,
while citric acid, commonly utilized to stabilize the extract, did not have any impact. Importantly,
a significant impact was revealed at all investigated time points, including 1 hpt, indicating a very
quick response of the host tissue. The enrichment analysis showed the involvement of genes mainly
in the catalytic and metabolic processes. These results were in accordance with the KEGG analysis
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where pathways identification revealed that PGE acts entirely on the metabolic pathways of the
orange fruit. Among the 35 metabolic pathways, 34 were activated while only 1 pathway, involved in
monoterpenoid biosynthesis, was down-regulated. Most of the enriched pathways were involved in
primary metabolism, followed by secondary metabolite biosynthesis and xenobiotic metabolism.

The upregulation of primary metabolism indicates an increased demand for energy and
biosynthesis, which in turn may modulate signal transduction cascades that lead to plant defense
responses [21]. For instance, cysteine and methionine metabolism contained the most up-regulated
genes comparing to other pathways, with 6 DEGs coding for 6 different enzymes. Cysteine and
methionine are known to be very sensitive amino acids to almost all forms of reactive oxygen, and their
metabolism has a crucial role in oxidation resistance in plants [22]. Similarly, 6 DEGs coding for
3 enzymes were up regulated in the oxidative phosphorylation step. This pathway is important
for producing cellular energy, which results in the activation of the host defense mechanisms and
suppression of the pathogen colonization of the host tissue. Similarly, we found an upregulation
of 5 enzymes, involved in the carbon fixation pathways, which are important for the synthesis
of new molecules (metabolites) [23]. In addition, among the activated genes, 3 DEGs coded for
a very important enzyme, Glutathione S-transferases (GST, ec:2.5.1.18). This enzyme has variety
of functions in plant metabolism, but is usually over-expressed after a pathogenic infection [24].
Particularly, it plays major role in plant susceptibility to fungal infection where it is involved in
the detoxification step of lipid hydroperoxides produced by peroxidation of membranes. Studies
showed its involvement in plant defense signaling, the NPR1-independent SA-mediated pathway [25],
hypersensitive reaction and the increase of secondary metabolite production [26]. Other important
carbohydrate and energy pathways were also highly upregulated such as ‘Pentose phosphate’, ‘Pyruvate
metabolism’, ‘Glycolysis/Gluconeogenesis’, etc. These pathways were reported to be involved in the
oxidase activity responsible for production of ROS [23,27]. Therefore, the high transcription level of
genes involved in primary metabolism providing energy and intermediate components explains the
induction and overexpression of other metabolisms including xenobiotic metabolism and secondary
metabolite biosynthesis.

The high upregulation of a battery of genes involved in primary metabolism was accompanied
by a high expression of a subset of genes implicated in key pathways of secondary metabolism
biosynthesis. The activation of this metabolism reconfirms the assumption of potential involvement of
plant defense mechanism triggered by PGE treatment. Particularly, phenylpropanoid biosynthesis,
one of the most important components of the plant defense system, was significantly up-regulated
after PGE treatment [28]. Phenylpropanoids exhibit a broad spectrum of antimicrobial activity, play a
major role as chemical or physical barriers against plant infections, and as signal molecules involved
in local and systemic plant defense mechanisms. They participate in the formation of secondary
resistance metabolites and are precursors to flavonoids, isoflavonoids, and stilbenes which were also
activated following PGE treatment [29]. Many of these metabolites have an antifungal effect, and their
overproduction by the plant is considered to be part of a specific antimicrobial defense system [30].

Interestingly, a pathway producing terpenoid volatiles (monoterpenoid biosynthesis pathway)
was the only downregulated pathway in this study. Terpenoid volatiles are emitted by plants
to communicate with the environment. In sweet orange, these terpenoids are most importantly
D-Limonene, a monocyclic monoterpene, which accounts for approximately 97% of the total terpenes in
oil glands of orange flavedo [31]. The D-limonene down-regulation was reported to be tightly associated
with the activation of the defense responses in the fruit. Rodríguez and co-workers (2014) [32] showed
that the downregulation of D-limonene is followed by the up-regulation of genes involved in disease
resistance genes.

The analysis also revealed that 9 enzymes, detected in the induced pathways, are also implicated
in the biosynthesis of antibiotics. This means that the produced secondary metabolites are explicitly
antibiotic substances. Considering that antibiotics are phytochemicals that are known to have
antimicrobial and antiviral properties in plants [30,33], the induction of the production of these
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components might be one of the main mechanisms of action of PGE, especially that its activation
continued to increase until 24h post treatment. This induction could be explained mainly by the high
concentration in PGE of phenolic compounds [7]. Phenolic components are considered very potent
antimicrobial agents that exert a direct effect on the pathogen by the suppression of microbial enzyme
systems, increasing the permeability of the cell, etc. [11]. However, phenolics were also reported to
induce resistance in the plant. A study on quercetin, a polyphenol that is found in fruits, vegetables,
herbs, etc. [34], showed that quercetin application induces resistance in plants and fruits by acting
on the transcription level of defense genes [12,13]. Therefore, this suggests that the PGE has a dual
mode of action by directly affecting microbial growth, as a phenolic substance, as well as inducing
several defense-related gene responses in plants. The co-existence of more than one mechanism of
action is considered an important feature to increase efficacy and ensure high levels of protection under
different conditions and in different phases of the disease cycle [14]. In particular, the activation of
resistance responses may protect commodities from future wound infections, avoid the establishment
of latent infections and restrict fungal growth and sporulation. In this context, the results of the present
study support previous speculations of the primary role of induced resistance in the persistent efficacy
of PGE after its application [8]. Furthermore, its curative effect may be related to the rapid activation of
responses that reduce or block the ongoing fungal colonization [10].

The results also showed an overall high expression of defense genes involved in xenobiotic
metabolism in oranges treated with PGE. Xenobiotics are foreign chemical contaminants that can be
absorbed and accumulated in plant cells [35]. To detoxify these components, the plant induces the
expression of several genes involved in the xenobiotic metabolism. The activation of 5 pathways
responsible for plant detoxification, and more specifically involving cytochrome P450 and glutathione
S-transferases (GSTs), suggests a fruit response to the PGE treatment. In other words, the plant seems
to be able to detoxify the extract, and this process should be very effective since PGE did not cause any
symptoms of phytotoxicity in treated organs [8,10].

5. Conclusions

In conclusion, the results of the present study provide a comprehensive picture of the impact of PGE
on the gene expression of treated oranges, highlighting the induction of multiple metabolic responses.
These responses are likely to collectively implement a defense system capable of counteracting fungal
infections. In particular, GO analysis and pathway mapping of the DEGs showed the induction
of important defense pathways, including the phenylpropanoid pathway. However, the massive
up-regulation of genes suggest that the induction of defense mechanisms by PGE might be energetically
costly for the fruit, which could lead to massive redistribution of energy resources. This would not be
an issue in fruits or other mature organs but may be for young growing organs or plantlets. Future
investigations will be needed to evaluate these aspects and to experimentally determine the role and
function of specific differentially regulated genes in order to dissect their participation in the resistance
to pathogens.
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