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Abstract: Lycium chinense Mill, an important Chinese herbal medicine, is widely used as a dietary
supplement and food. Here the chloroplast (CP) genome of L. chinense was sequenced and analyzed,
revealing a size of 155,756 bp and with a 37.8% GC content. The L. chinense CP genome comprises a
large single copy region (LSC) of 86,595 bp and a small single copy region (SSC) of 18,209 bp, and two
inverted repeat regions (IRa and IRb) of 25,476 bp separated by the single copy regions. The genome
encodes 114 genes, 16 of which are duplicated. Most of the 85 protein-coding genes (CDS) had
standard ATG start codons, while 3 genes including rps12, psbL and ndhD had abnormal start codons
(ACT and ACG). In addition, a strong A/T bias was found in the majority of simple sequence repeats
(SSRs) detected in the CP genome. Analysis of the phylogenetic relationships among 16 species
revealed that L. chinense is a sister taxon to Lycium barbarum. Overall, the complete sequence and
annotation of the L. chinense CP genome provides valuable genetic information to facilitate precise
understanding of the taxonomy, species and phylogenetic evolution of the Solanaceae family.
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1. Introduction

Lycium chinense plays an important role in Chinese traditional medicine and has been used as
a food and herbal medicine in China for thousands of years [1,2]. The fruits of L. chinense have
potential pharmacological effects such as anti-aging, reducing blood glucose and serum lipids, immune
regulation, among others [3]. Moreover, the dry root bark of L. chinense is widely used for the treatment
of night sweats, diabetes, coughs, vomiting blood, high blood pressure, and ulcers, and is officially
listed in the Chinese Pharmacopoeia (2015 version) [4].

L. chinense belongs to the Solanaceae family, which is composed of around 27,000 species belonging
to 24 genera. Among them, Lycium is one of the most important genus because the fruit, leaf, root bark,
and young shoots of many species of this genus have been used as local foods and/or medicines for
many years [5]. The Lycium genus comprises approximately 70 species, which are widely distributed
throughout the world, including southern Africa, Europe, Asia, America and Australia [6,7], however,
seven are unique to China. These seven Chinese species are all deciduous shrubs with highly
similar morphologies and structures, making it difficult to distinguish among them according to their
appearance. Consequently, they are often confused in the market [8]. There has been an attempt
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to define DNA barcode sequences to identify and analyze the phylogenetic relationships within the
Lycium genus, however, this has been unsuccessful [8]. Therefore, more effective molecular markers
are required to facilitate the investigation of the relationships within the Lycium genus [9].

In recent years, chloroplast (CP) genomes have been widely used to reconstruct phylogenetic
relationships among various land plants. As an important plastid, CPs play an indispensable role in a
plant cell’s utilization of photosynthesis, carbon fixation. With the rapid development of next-generation
sequencing technologies, sequencing of entire genomes is feasible for most laboratories [10]. According
to published reports, the structure of CP genomes in angiosperms are highly conserved, with an
approximate length of 150 kb comprised of two inverted repeat regions (IRa and, IRb) and large and
small single copy regions (LSC and SSC), with the two inverted repeats (IRs) separated by the two
single copy regions (SCs) [11,12]. CP genomes can be used to study evolutionary relationships at the
taxonomic level, as they are maternally inherited, haploid, and highly conserved in gene content and
genome structure [13,14].

Transcriptome analysis of L. chinense leaves has been reported [15], however, information about
the structure of its CP genome is still lacking. Here we report the CP genome of L. chinense based on
data generated using next-generation sequencing. Further, gene structure characteristics, RNA editing
sites, codon usage as well as phylogenetic position of L. chinense were analyzed and compared with
those of several related species. To the best of our knowledge, this is the third comprehensive analysis
of a CP genome from the Lycium genus, along with the two recently reported CP genomes from Lycium
barbarum and Lycium ruthenicum.

2. Results

2.1. CP Genome Organization and Gene Content

The CP genome of L. chinense is 155,756 bp in length consisting of large and small single-copy
regions of length 86,595 and 18,209 bp, separated by two IR regions of 25,476 bp (Figure 1 and Table 1).
The total G + C content was similar to that of other species in the Solanaceae family, which is about
37.8% [11,12,16,17]. And the G + C contents of the LSC (35.8%) and SSC regions (32.3%) were lower
than those of the IR regions (43.1%). In the protein-coding regions (CDS), the G + C contents of the first,
second and third codon positions were 43.9%, 37.9%, and 33.1%, respectively (Table 1), demonstrating
that the A + T content is much higher at the third codon position than those of the other two. This
phenomenon, which is commonly detected in other plant CP genomes, can be used to separate nuclear
and mitochondrial DNA from CP DNA [18–21].

Table 1. Base composition in the chloroplast genome of L. chinense.

Region Positions T/U (%) C (%) A (%) G (%) Total (bp)

LSC 32.7 18.3 31.4 17.5 86,595
IRB 28.4 20.7 28.5 22.4 25,476
SSC 33.9 16.8 33.7 15.5 18,209
IRA 28.5 22.4 28.4 20.7 25,476
Total 31.5 19.2 30.7 18.6 155,756
CDS 31.3 17.9 30.5 20.3 79,700

1st position 25.0 18.6 30.9 25.3 26,567
2nd position 34.0 19.6 28.5 18.3 26,567
3rd position 35.0 15.5 32.7 17.6 26,566
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Figure 1. Gene map of the L. chinense chloroplast (CP) genome. Genes inside the circle are transcribed
clockwise, and counterclockwise transcribed otherwise. Filled colors represent different functional
groups according to the legend on the left bottom. The gray arrow represents gene direction. The
darker gray in the inner circle corresponds to GC content, whereas the lighter gray corresponds to
AT content.

The L. chinense CP genome is predicted to encode a total of 130 functional genes. Among them,
16 are duplicated in the IR region, including 5 CDS, 7 tRNAs and 4 rRNAs. Annotation revealed 80
distinct protein-coding genes, 30 separate tRNA genes and 4 distinct rRNA genes (Table 2). In addition,
one gene (ycf1) without a stop codon was annotated as a pseudogene. Intron-containing genes were
also analyzed. In total, there were 17 genes containing one or two introns found in the L. chinense CP
genome (Table 3), including 12 CDS and 5 tRNA genes, two of which (ycf3 and clpP) contain two intron.
While there was a single intron in the other 15 genes, as has also been reported in other plants [22,23].

2.2. Repeat Structure and Simple Sequence Repeat (SSR) Analysis

The SSRs detected in L. chinense are represented in Table 4. A total of 231 SSR loci were detected,
including 107 mononucleotide, 46 dinucleotide, 67 trinucleotide and 11 tetranucleotide repeat units. In
addition, of the mononucleotide SSRs, 99.1% constituted A/T sequences, while only one belongs to G/C
motif. Interestingly, 63.0% of the dinucleotide SSRs were also A/T motifs.
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Table 2. List of genes annotated in the chloroplast genomes of L. chinense.

Classification of Genes Gene Names Number

Photosystem I psaA, psaB, psaC, psaI, psaJ 5

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ,
psbK, psbL, psbM, psbN, psbT, psbZ 15

Cytochrome b/f complex petA, petB *, petD *, petG, petL, petN 6

ATP synthase atpA, atpB, atpE, atpF, atpH, atpI 6

NADH dehydrogenase ndhA *, ndhB * (×2), ndhC, ndhD, ndhE, ndhF,
ndhG, ndhH, ndhI, ndhJ, ndhK 12 (1)

RubisCO large subunit rbcL 1

RNA polymerase rpoA, rpoB, rpoC1, rpoC2 4

Ribosomal proteins (SSC) rps2, rps3, rps4, rps7 (×2), rps8, rps11, rps12 ** (×2),
rps14, rps15, rps16 *, rps18, rps19 14 (2)

Ribosomal proteins (LSC) rpl2 (×2), rpl14, rpl16, rpl20, rpl22, rpl23 (×2),
rpl32, rpl33, rpl36 11

Ribosomal RNAs rrn 4.5 (×2), rrn 5 (×2), rrn 16 (×2), rrn 23 (×2) 8 (4)

Protein of unkown function ycf1 (×2), ycf2 (×2), ycf3 **, ycf4 6 (2)

Transfer RNAs 37 tRNAs (8 contain an intron, 7 in the inverted
repeats region) 37 (7)

Other genes accD, ccsA, cemA, clpP, matK 5

Total 130

* indicates gene containing one intron; while ** indicates gene with two introns.

Table 3. Gene in the chloroplast genome of L. chinense with introns and exons.

Gene Location Exon I
(bp)

Intron I
(bp)

Exon II
(bp)

Intron II
(bp)

Exon III
(bp)

atpF LSC 410 704 145
clpP LSC 228 640 292 808 71
ndhA SSC 539 1154 553
ndhB IR 777 679 756
petB LSC 6 750 642
petD LSC 8 742 475
rpl16 LSC 396 1016 9
rpl2 IR 434 666 391

rpoC1 LSC 1616 737 430
rps12 IR 26 536 232
rps16 LSC 227 822 40

trnA-UGC IR 38 681 35
trnI-GAU IR 34 717 37
trnK-UUU LSC 36 2513 37
trnL-UAA LSC 35 497 50
trnV-UAC LSC 35 565 38

ycf3 LSC 154 756 229 744 124

Long repeats are defined as sequence repeats ≥30 bp, which might function to increase population
genetic diversity and promote chloroplast genome rearrangement [24]. It must be noted that the
repeat types found are all forward and palindromic among the four species which all belong to the
Solanaceae family. There are 49 (25 forward, 24 palindromic), 46 (23 forward, 23 palindromic), 39
(20 forward, 19 palindromic), 40 (20 forward, 20 palindromic) large repeats in the CP genomes of
L. chinense, L. barbarum, L. ruthenicum, A. belladonna, respectively (Figure 2).



Plants 2019, 8, 87 5 of 15

Table 4. Types and numbers of simple sequence repeats (SSRs) in the L. chinense chloroplast genome.

SSR Type Repeat Unit Amount Ratio (%)

Mono
A/T 106 99.1
C/G 1 0.9

Di
AC/GT 1 2.2
AG/CT 16 34.8
AT/TA 29 63.0

Tri

AAC/GTT 9 13.4
AAG/CTT 20 30.0
AAT/ATT 21 31.3
ACC/GGT 1 1.4
ACG/CGT 1 1.4
ACT/AGT 2 3.0
AGC/CTG 5 7.5
AGG/CCT 4 6.0
ATC/ATG 4 6.0

Tetra

AAAC/GTTT 3 27.3
AAAG/CTTT 1 9.1
AAAT/ATTT 5 45.4
AATC/ATTG 1 9.1
AGAT/ATCT 1 9.1
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complement, respectively. Colors represent repeats of different lengths, as indicated.

2.3. Comparative Chloroplast Genomic Analysis

To facilitate subsequent phylogenetic analyses and plant identification smoothly, we used the
mVISTA program to analyze the entire CP genome sequence of L. chinense in comparison with those of
A. belladonna (NC_004561.1), L. barbarum (MH032560.1), L. ruthenicum (NC_039651.1) (Figure 3). These
four species all belong to the Solanaceae family. The data presented in Figure 3 clearly demonstrate
that the IR regions are more conserved than the SC regions. Copy correction caused by gene conversion
between the two IR region sequences could be the main cause of this phenomenon [25]. Moreover,
coding regions were more strongly conserved than the non-coding regions, which is a very common
finding in the CP genomes of many other angiosperms [26–28].

2.4. IR Contraction and Expansion in the L. chinense. CP Genome.

As shown in Figure 4, the IR-SSC and IR-LSC boundaries of L. chinense were compared with
those of three other species, A. belladonna (NC_004561.1), L. barbarum (MH032560.1) and L. ruthenicum
(NC_039651). The length of the IR regions in the four CP genomes ranged from 25,395 to 25,906 bp,
demonstrating a modest expansion. Due to the expansion, the rps19 and ycf1 genes were partially
included in the IR regions of the Solanoideae family. Consequently, there is a truncated rps19
pseudogene and a ycf1 pseudogene copy found at the junction of LSC/IRB and SSC/IRA, respectively.
The ndhF and trnH genes, which are entirely located in the SSC and LSC regions, respectively, were
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at varying distances from the LSC/SSC borders within the Solanoideae family; the longest distance
(54 bp) was observed in the L. chinense. In contrast, 33 bp of the rps19 gene and 979 bp of the ycf1 gene
are extended into the IR regions in the L. ruthenicum CP genome, which is the shortest among the four
species. Moreover, in L. chinense, L. barbarum, and A. belladonna, 47, 49 and 60 bp of the rps19 gene and
995, 998 and 1438 bp of the ycf1 gene are extended into the IR regions, respectively. Taken together,
these data indicate that the expansion and contraction of the IR/SC regions exhibit similar patterns
within the family, with slight variations.
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Figure 4. Comparison of the borders of large single copy regions (LSC), small single copy (LSC) and
inverted repeat (IR) regions among four chloroplast genomes (not to scale). Number above the gene
features means the distance between the ends of genes and the borders sites. The IRb/SSC border
extended into the ycf1 genes to create various lengths of ycf1 pseudogenes among four chloroplast
genomes, while the IRa/LSC border extended into the rps19 genes to create various lengths of
rps19 pseudogenes.
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2.5. Codon Usage and RNA Editing Sites

The results of analysis of codon usage in the L. chinense CP genome are summarized in Figure 5 and
Table S1. Twenty amino acids that can be transported for protein biosynthesis by tRNA molecules were
found in the CP genome. All the CDS in the L. chinense CP genome combined included 26,569 codons.
Among them, codons encoding leucine was the most common, accounting for 13.16% of total usage.
While at the same time, codons encoding cysteine were the least frequent, accounting for 1.82% of total
usage. Furthermore, as the number of codons encoding a particular amino acid increased, the relative
synonymous codon usage (RSCU) value also increased (Figure 5). Interestingly, most amino acid
codons, other than two non-redundant codons (for methionine and tryptophan), exhibit preferential
use, as observed in other species [29–33].Plants 2019, 8, x FOR PEER REVIEW  8 of 16 
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Figure 5. Codon content for 20 amino acids and stop codons in all protein-coding genes in the of
L. chinense CP genome.

The Predictive RNA Editor for Plants (PREP) suite was used to detect potential RNA editing sites
in the L. chinense CP genome, and the results were summarized in Table S2. A total of 50 RNA editing
sites in 35 genes were identified. All the nucleotide changes found were cytidine (C) to thymine (T)
edits, which are typical of the transcripts of land plant CP genomes [34]. Furthermore, the results
also revealed that the conversion from the amino acid S to L is the most frequent, accounting for
approximately 40%; while H to Y, and I to F switches were the least common, accounting for only 2%.

2.6. Phylogenetic Analysis

The results of phylogenetic analyses are presented in Figures 6 and 7 and Table S3; most nodes
were strongly supported with bootstrap values of 100%. Furthermore, all 16 species included in this
analysis were split into two clades, with 14 Solanaceae plants comprising a unique clade, and the
rest two outgroup species from the Labiatae grouped into the other clade. Within the Solanaceae,
each genus basically clustered alone, demonstrating good monophyletic separation of this family.
L. chinense (Lycium) was a sister species to L. barbarum, which is strongly supported by both the
maximum likelihood and BEAST trees. Further, the Lycium genus is sister to the Atropa genus.
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position of L. chinense is indicated in blue font. Salvia japonica Thunb and Pogostemon cablin (Blanco)
Bent were used as outgroups.
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3. Discussion

This is the first report of the complete CP genome of L. chinense. Meanwhile, it has been the
third species of the Lycium genus to have its CP genome fully sequenced and analyzed, with those
of the other two (L. barbarum and L. ruthenicum) published recently [35,36]. Interestingly, the size of
the L. chinense CP genome (155,756 bp) is the largest among the three Lycium species, with 180 bp
longer than that of L. barbarum and 763 bp longer than that of L. ruthenicum. This is consistent with the
hypothesis that IR contraction and expansion is the main reason explaining size differences between
CP genomes [35–38].

Analysis of the gene content indicated that there are 82 protein-coding genes with a standard
ATG start codon among the total of 85 protein-coding genes in the L. chinense CP genome. While the
remaining three genes contain abnormal ACG (psbL and ndhD) and ACT (rps12) start codons. ACG
and ACT are meaningless as start codons, whereas in general they are synonymous codons which can
still encode threonine. This phenomenon has also been reported in the model plant Nicotiana tabacum,
where the start codon for psbL and ndhD are ACG as well [39]. Furthermore, an ACT start codon
for rps12 is also present in the mitochondrial genome of tube-dwelling diatom Berkeleya fennica [40].
Therefore, we hypothesize that the start codons of some genes such as rps12, psbL and ndhD might be
mutated during the evolution. RNA editing is a common phenomenon in plant CP genomes and causes
modifying mutations, changes reading frames, and regulates the expression of CP genes [41]. The
ndhD and psbL can be normally transcribed due to RNA editing, and this phenomenon has also been
described in Linum usitatissimum L [42], tobacco [43], spinach [44], and Ampelopsis brevipedunculata [45].
Amino acid transitions caused by RNA editing in the L. chinense CP genome exhibited the highest
frequency of conversion from serine to leucine (S to L), representing a change from a hydrophilic into
a hydrophobic amino acid. This is consistent with the general characteristics of high-level plant CP
RNA editing [46,47]. In protein structures, hydrophobic residues are usually enclosed in the center If
a hydrophilic mutation occurs, the stability of the protein structure will tend to decrease. While in
severe cases, correct folding could be hindered. Therefore, we hypothesize that the detected changes
induced by RNA editing might promote the formation of hydrophobic cores, making the proteins
more stable [48,49].

SSRs, also called microsatellites, which are widely distributed across genomes, refer to a group of
tandem sequences [50]. SSRs play a key role in genomes and have been widely used in genetic and
genomic studies because of their extreme variability within species [51–54]. The analysis results of
SSRs in our study are consistent with the hypothesis that CP SSRs have a strong A/T bias, which is
a common finding in many plant species [55–57]. The abundance of AT nucleotides in CP genomes
might be related to the presence of SSRs, which is related to the stability of AT and GC nucleotides, to
some extent [11]. The SSRs in the L. chinense CP genome could be used as molecular markers resource
in future genetic identification studies.

With their great potential for application in studies of phylogenetics, evolution and molecular
systematics, CP genomes have been widely used to solve phylogenetic issues in various land
plants [16,57,58]. To identify the evolutionary position of L. chinense within the Solanaceae family, we
conducted multiple sequence alignments using 13 other Solanaceae CP genome sequences (contain only
one IR region). Two species from Labiatae family were chosen as outgroups. The results of phylogenetic
analysis using two types of software both showed that L. chinense is the most closely related to the
species of L. barbarum, which is identical in appearance to L. chinense. However, their therapeutic
efficacies and active ingredients differ from each other [59,60]. Nevertheless, much more research has
been carried out on L. barbarum, which is also officially listed in the Chinese Pharmacopoeia (2015
version), while only a few papers have been published reporting L. chinense. Overall, this study has
generated abundant information valuable for the investigation of the genetic diversity of L. chinense
and the Solanaceae family more broadly; and it will facilitate the use of CP genome sequences for
species identification.
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4. Materials and Methods

4.1. Plant Material and DNA Extraction

Fresh leaves of the L. chinense were obtained from the Medicinal Plant Garden of Guangzhou
University of Chinese Medicine. Total genomic DNA (gDNA) was extracted from those leaves using a
DNeasy Plant Mini Kit (Qiagen, German). A DNA sample of good integrity and with both optical
density (OD) 260/280 and OD 260/230 ratio greater than 1.8 was submitted to subsequent experiments.

4.2. Chloroplast Genome Sequencing and Assembly

The sequencing library was constructed using this gDNA, after being ultrasonically sheered into
250 bp fragments, and then be submitted to Next-generation Sequencing on an Illumina HiSeq 2000
platform. NGS platform generated 6.82 G of raw sequencing data, then the raw data were filtered
by removing low quality reads with a sliding window quality cutoff of Q20 using Trimmomatic [61].
Using the complete sequence of A. belladonna chloroplast genome as a reference, CP-like reads were
extracted from those clean reads and then be assembled using the Abyss2.0 program [62], resulting in
a complete chloroplast genome sequence of L. chinense. PCR amplification was performed to verify the
four junction regions between the IR regions and the LSC/SSC region.

4.3. Gene Annotation and Genome Structure

Gene annotation of the L. chinense CP genome was conducted using the online program
GeSeq-Annotation of Organellar Genomes (https://chlorobox.mpimp-golm.mpg.de/geseq.html) [63]
with default parameters, which annotates not only protein-coding genes, but also tRNAs and rRNAs.
Genious Pro. (version 4.8.4) was used to correct the annotation result by adjusting the open reading
frame of coding genes. Further examination and revision of the annotation information were manually
performed with the assistance of the CLC Sequence Viewer (version 8). After that the complete
chloroplast genome was submitted using the program Sequin and an accession number of MK040922
was assigned from the GenBank. The Organellar Genome DRAW (OGDRAW) program was used to
draw the physical map with default parameters and subsequent manual editing. [64].

GC content of CDS regions as well as the distribution of codon usage was analyzed using the
Molecular Evolutionary Genetics Analysis (MEGA 6.06) [65,66]. The online program Predictive RNA
Editor for Plants (PREP) suite was used, with a cutoff value set at 0.8, to predict potential RNA editing
sites in 35 genes of the CP genome of L. chinense using [67]. Furthermore, by using MISA [68], SSRs
were detected with default parameters. The forward and inverted repeats were determined by setting
the parameter of Hamming Distance to 3 and the Minimal Repeat Size parameter to 30 with the REPuter
program (https://bibiserv2.cebitec.uni-bielefeld.de/reputer) [69].

4.4. Genome Comparison and Phylogenetic Analysis

In order to compare the CP genome of L. chinense with others of A. belladonna (NC_004561.1),
L. barbarum (MH032560.1) and L. ruthenicum (NC_039651), the mVISTA program (http://genome.lbl.
gov/vista/index.shtml) [70] in the Shuffle-LAGAN mode [71] was carried out using the annotation of
L. chinense as the reference.

In order to identify the phylogenetic position of L. chinense within the tubiflorae lineages, two
kinds of phylogenetic analysis software, MEGA 6.06 and Bayesian evolutionary analysis by sample
tree (BEAST). First, 16 complete CP genome sequences were downloaded from the GenBank of
National Center for Biotechnology Information (NCBI) database. Those cp genomes underwent a
sequence alignment by the Multiple Alignment using Fast Fourier Transform (MAFFT) program [72]
(https://www.ebi.ac.uk/Tools/msa/mafft/). Then by using Mega 6.06 [65], maximum likelihood (ML)
analysis of those 16 CP genomes was performed [65] to find the best models, which is GTR + G + I,
and then construct ML tree, taking the CP genome sequences of Salvia japonica, Pogostemon cablin as
the outgroup. Support was estimated through 1000 bootstrap replicates to assess the reliability of

https://chlorobox.mpimp-golm.mpg.de/geseq.html
https://bibiserv2.cebitec.uni-bielefeld.de/reputer
http://genome.lbl.gov/vista/index.shtml
http://genome.lbl.gov/vista/index.shtml
https://www.ebi.ac.uk/Tools/msa/mafft/
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the phylogenetic tree. BEAST 2.0 analysis was conducted under the guidance of the online tutorial
(http://www.beast2.org/tutorials/). The first step is to upload the sequence alignment document to
the Bayesian Evolutionary Analysis Utility (BEAUti), which is a user-friendly program for setting the
evolutionary model and options for the Markov chain Monte Carlo (MCMC) analysis. The second
step is to actually run BEAST using the input file that contains the data, model and settings. The
phylogenetic tree was constructed using the figtree (http://tree.bio.ed.ac.uk/software/figtree/).

5. Conclusions

The CP genome of L. chinense is 155,756 bp in length and has a relatively conserved genome
structure as well as gene content. Forty-nine repeated sequences and 231 SSRs, which are informative
sources for the development of new molecular markers, were determined and analyzed. The genome
structure and composition are similar among the four species belonging to the Solanaceae family.
Comparing the CP genome organization of different species helps us to more deeply understand the
process of chloroplast evolution. The results of the phylogenetic analysis, which is conducted among
16 species, demonstrate that L. chinense has a close relationship with L. barbarum. In a word, this paper
will promote the further investigation of L. chinense.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/8/4/87/s1,
Table S1: Codon usage in the L. chinense chloroplast genome, Table S2: RNA editing predicted in the chloroplast
genomes of L. chinense by the PREP, Table S3: Chloroplast genomes used to study their phylogeny relationship in
this study.
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