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Abstract: Vegetables require an optimum supply of mineral elements like silicon (Si). Si is second
to oxygen in its abundance in the earth crust, and its role is quite significant in tackling biotic and
abiotic stresses of vegetables. Si application also improves several agronomic and quality traits of
vegetables. Hence, Si application is recommended as a strategy for the improvement of vegetable
crops production. Although the research about the role of Si in vegetable dicots still lags far behind
than cereals. Recently, omics-based approaches were used to provide a deeper understanding of
the role of Si in vegetable protection. Here, we have compiled the studies focusing on the role of Si
for vegetables, thus, enabling all of the important information regarding the effect Si application to
vegetables at one place.
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1. Introduction

Vegetables are vulnerable to a wide range of biotic and abiotic stresses; to overcome these stresses,
vegetables requires an optimum supply of macro and micronutrients [1–3]. Silicon (Si) is crucial for
plants; moreover, Si is always present in large quantities near the plant roots. [4]. Si occurs as silicates
or silicon oxides, and around 27.7 percent of earth’s crust is composed of Si, but still, the available
forms of Si meant for plants are scarce. Plants commonly use monosilicic acid (H4SiO4) as the source of
Si and H4SiO4 exists in the liquid form in soil. Moreover, the concentration of H4SiO4 is not correlated
to the total Si quantity of the soil. [5,6]. Regardless of the plentiful publications that establish Si
application advantages in agriculture, Si is not regarded as an essential element. Si is classified as a
quasi-essential element for plants [7]. Therefore, based on Si uptake, vegetables are divided into three
groups, i.e., active, passive, and rejective. Whereas, based on the accumulation of Si in the cell wall
apoplast, vegetables are classified as accumulators, excluders, and intermediate types [8,9]. The role
of Si on plant health has been tested under open field conditions, hydroponic cultures, and under
greenhouse/glasshouse environment [10]. Still, presently there are a limited number of studies which
demonstrate there are advantages of Si application for greenhouse crops.

Meeting the growing demand for vegetables under situations of biotic and abiotic stresses
is a big challenge. Si application is considered as an eco-friendly approach for crop production;
therefore, Si application is commonly recommended under package and practices for cereals. Likewise,
in vegetables, Si application has been documented to reduce the attack of diseases [11]. For example,
potassium silicate treatment of pea seedlings was observed to increase chitinase and β-1,3-glucanase
activity against the fungal pathogen Mycosphaerella pinodes and it is the causes of blight disease in
pea [12]. Similarly, Si application has considerably reduced the root rot and powdery mildew disease
in cucumber and the rust disease of cowpea [13–15]. Moreover, nano-silicon application can prevent
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postharvest diseases of vegetables [16,17]. In this direction, studies have also demonstrated that higher
Si content in plant tissues reduced the incidence of several insect pests. [18]. Correa et al. [19] reported
that soil or as a foliar spray of Si as calcium silicate to cucumber plants increases the mortality of the
nymphs of Bemisia tabaci.

Correspondingly, several abiotic stresses affecting the vegetables are eradicated by the application
of Si [20]. Si application was reported to alleviate high-temperature stress in vegetables [21].
Si application protects vegetables against the UV-B radiation by increasing photosynthesis and
antioxidant levels [22]. Recently, omics-based approaches were applied to gain a genomic level
perception of the mechanisms by which Si application aids vegetables in unfavorable circumstances. [23].
Heavy metals are detrimental for plant growth, and plants commonly accumulate heavy metals that are
hazardous to human health. Si application is useful in reducing heavy metal toxicity. However, the role
of Si for vegetables (dicots) is not well studied as compared to the model plants like Arabidopsis
and rice. Subsequently, in many of the recent reviews on the role of Si in plants, the vegetable
crops are underrepresented [24–26]. Therefore, we have structured our review focusing on the role
of Si application for vegetables, especially, in tackling biotic and abiotic stresses, as well as the role
of Si application on agronomic and quality traits of vegetables, thus, collating all of the important
information regarding the effect of Si application to vegetables in one place.

2. Biotic Stress

2.1. Fungal Pathogens

2.1.1. Cucurbitaceae

The efficacy of Si application has been reported against many fungal pathogens. Using scanning
electron microscopy, Samuels et al. [27] observed an overall negative correlation between the amount of
Si and the growth of the causal agent of powdery mildew disease of cucumber (Sphaerotheca fuliginea).
El-Samman [28] reported controlling the root rot of cucumber caused by Pythium aphanidermatum and
Fusarium solani using the soluble formulation of Si. Foliar and root applied Si was determined to
control the powdery mildew disease of cucumber [14]. Further, increased activities of plant protectants
like superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) in addition to the contents of
ascorbate (AsA) and glutathione (GSH) were observed in the leaves of cucumber with Si application [29].
Si application was also effective against the oxidative stress induced by Phytophthora melonis infection
in cucumber [30].

In 2006, Heine et al. [31] determined the ability of symplastic Si to reduce the spread of
P. aphanidermatum in the roots of tomato and bitter gourd [32]. In 2010, Yu et al. [33] reported that Si
application enhanced cucumber seedling growth and resistance level against Fusarium oxysporum f.sp.
cucumerinum [34]. Si application as sodium silicate was found to be more effective against powdery
mildew in melon as compared to nano-sized Si [35]. The effect of Si application on the severity and
incidence of powdery mildew and quality traits like total soluble solids and dry matter contents have
been reported for melon landraces carosello (3.6 ◦Brix and 4.81 g 100 g−1 FW) and barattiere (4.0 ◦Brix
and 4.95 g 100 g−1 FW) [36,37].

Increased activities of biochemical defense enzymes viz., peroxidase, polyphenol oxidase, and
pathogenesis-related proteins (chitinase and β-1,3-glucanase) have been observed in bitter gourd with
the application of soluble Si [38]. Guo et al. [39] used Si (silicon oxide and sodium silicate) for the
control of postharvest pink rot (Trichothecium roseum) in Chinese cantaloupe. Si nutrient solution,
have been tested for enhancing the tolerance to powdery mildew of hydroponically grown zucchini
squash (Cucurbita pepo L.) [40]. The effectiveness of soil amendments for providing Si nutrition has
been tested on pumpkin in contrast to the powdery mildew [41].
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2.1.2. Solanaceae

In tomato, Diogo et al. [42] devised an alternative strategy for the management of fusarium crown
and root rot (Fusarium oxysporum f.sp. radices lycopersici) using Si application to the tomato plant. [43].
Moreover, a positive effect of Si supplementation on post-harvest quality traits has been observed in
tomato [44].

In capsicum and chilli pepper, the potential of Si application to decrease the symptoms of Phytophthora
blight (Phytophthora capsici) development has also been confirmed [45]. Jayawardana et al. [46] reported Si
induced resistance against anthracnose disease (Colletotrichum gloeosporioides) in chilli pepper.

2.1.3. Leguminosae

In soybean, absorption of Si in leaves of different soybean cultivars was quantified and correlated
with the ability to enhance the resistance against soybean (Glycine max) rust (Phakopsora pachyrhizi) [47,48].
Similarly, a study indicated that the delay in disease onset was the possible cause of the final reduction
in area under soybean rust progression curve [49].

2.2. Bacterial Pathogens

Si application is also effective against bacterial pathogens. For the first time, Dannon and
Wydra [50] reported a significant effect of Si application against bacterial wilt disease of tomato
(Ralstonia solanacearum). In this direction, Wydra et al. [51] found that Si accumulation mainly happened
in the roots, and a negative correlation was reported between root Si content and bacterial growth.
Ghareeb et al. [52] reported the up-regulated expression of the jasmonic acid/ethylene marker genes
(JERF3, TSRF1, and ACCO) with Si application that induced resistance in tomato plants against
R. solanacearum infestation [53]. With Si application, a significant boost in activities of enzymes viz.,
soil urease and soil acid phosphatase were reported under pathogen-inoculated conditions [54].
The resistance of tomato leaves to bacterial wilt mediated by Si application has been associated with
the activation of defense-related enzymes such as peroxidase (POD) and phenylalanine ammonia lyase
(PAL) [55].

2.3. Insect Pest and Nematodes

Studies have shown that Si application can increase the degree of resistance of host plants to insect
pests. In this direction, the effect of Si application for resistance, against the whitefly (Bemisia tabaci) has
been evaluated in tomato and cucumber [19,56,57]. Si application diminished the whitefly population
on cucumber plants by reducing the insect oviposition, increasing growth cycle, and by causing high
mortality at the nymph stages [19]. Whereas in soybean, Si application did not affect insect oviposition
preferences but caused significant mortality at the nymph stages [56]. Recently, Callis-Duehl et al. [57]
studied the role of Si application against D. balteata and B. tabaci of cucumber. Plant protection against
insect pests with Si application is further correlated with the amount of increment of biochemical
compounds like indols [58]. Recently, Dugui-Es et al. [59] demonstrated the effect of Si concentration and
the frequency of application in managing the root-knot nematode, Meloidogyne incognita, in cucumber.
The observed effects of Si application on biotic stresses faced by vegetables are presented in Table 1.
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Table 1. Summary of the effects of Si application against biotic stresses.

Vegetable Crop Form of Silicon Applied Observed Effect of Silicon Reference

Fungal Pathogen

C. sativus Silicate fertilizer Promoted the growth and yield and also reduced the damage caused by wilt disease [60]

Cucumis sativus Soluble silicates Reduced the size of fungal colonies (S. fuliginea) [27]

C. sativus Soluble silicon Decreased the receptivity of plants to mildew infection caused by S. fuliginea [61]

C. sativus. and Solanum lycopersicon Potassium silicate Reduced the infection caused by Pythium and F.solani [28]

C. sativus Potassium silicate added to hydroponic
nutrient solutions Suppressed powdery mildew (PM) caused by S.fuliginea [62]

C. sativus Soluble silicon Significantly decreased the powdery mildew disease (caused by S. fuliginea) index [29]

C. sativus Potassium metasilicate Significantly suppressed powdery mildew (P. xanthi) [14]

C. melo Sodium silicate and nanosized silicon Significantly decreased the severity of mildew powder [35]

S. lycopersicon and M. charantia Silicic acid Symplastic Si was associated with the reduction of the spread of the fungus (P.
aphanidermatum) in roots [31]

C. sativus Significantly reduced the incidence of damping-off (P. aphanidermatum) [32]

C. melo Sodium silicate Reduced the postharvest rot (T. roseum) [39]

C. sativus Significantly decreased the disease index (S. fuliginea) [63]

C. melo Potassium silicate Reduced the severity and incidence of powdery mildew (S. fuliginea) [36]

C. pepo Potassium silicate Enhanced the tolerance to salinity and resistance to powdery mildew (P. xanthii) [40]

C. sativus Sodium silicate Reduced downy mildew (P. cubensis) disease index [33]

C. annuum Calcium silicate Potentially reduce the severity of Phytophthora blight [45]

C. sativus Sodium silicate Enhanced crop resistance to oxidative stress induced by P. melonis infection [30]

S. lycopersicon Sodium metasilicate nonahydrate Reduced the disease severity of Fusarium crown and root rot (F. oxysporum f.sp.
radicis-lycopersici) [43]

G. max Wollastonite Controlled the soybean rust (P. pachyrhizi) [49]

C. melo Potassium silicate Controlled the powdery mildew (P. xanthi) [37]

C. sativus Carbon Silpower solution Inhibited powdery mildew (P. xanthi) development [64]

G. max Potassium silicate Protected plants against soybean rust (P. pachyrhizi) [48]

S. lycopersicon Sodium silicate Suppressed anthracnose disease (C. gloeosporiodes) [44]

S. lycopersicon Potassium silicate Reduced the severity and incidence of Fusarium wilt (F. oxysporum f. sp. lycopersici) [65]

S. lycopersicon Potassium silicate Reduced Fusarium wilt (F. oxysporum f. sp. lycopersici) [66]
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Table 1. Cont.

Vegetable Crop Form of Silicon Applied Observed Effect of Silicon Reference

C. annuum Potassium silicate Enhanced resistance to anthracnose (Colletotrichum gloeosporioides) [46]

S. lycopersicon Sodium silicate Controlled anthracanose disaese (C. gloeosporioides)and improved postharvest quality
of fruits [67]

M. charantia Potassium silicate Strengthened resistance in plants against powdery mildew (Erysiphe sp.) [38]

C. pepo Calcium silicate, CaMg silicate slag,
wollastonite and MontanaGrowTM Suppressed Powdery mildew (P. xanthii) [41]

S. lycopersicon Silicon rich rice hull Enhanced anthracnose resistance (C. dematium) [68]

C. sativus Sodium silicate Enhanced resistance to Fusarium wilt (F. oxysporum f. sp. cucumerinum Owen) and
altered soil microbial communities [34]

Bacterial pathogen

S. lycopersicon Monosilicic acid Acted as an inducer of resistance against R. solanacearum [50]

S. lycopersicon Significantly reduced the incidence of bacterial wilt (R. solanacearum) [51]

S. lycopersicon Soluble silicon Reduced wilt incidence ( R. solanacearum) [53]

S. lycopersicon Monosilicic acid and aerosol powder Induced basal resistance against R. solanacearum [42]

S. lycopersicon Reduced severity and incidence of bacterial wilt (R. solanacearum) [69]

S. lycopersicon Monosilicic acid Induced resistance against R. solanacearum [52]

S. lycopersicon Monosilicilic acid Induced resistance against bacterial wilt (R. solanacearum) [70]

S. lycopersicon Supa Sílica and calcium silicate Reduced the symptoms of bacterial speck ( P. syringae pv. Tomato) [71]

S. lycopersicon Potassium silicate Controlled R. solanacearum incidence by changing the soil microorganism amount and
enzyme activity [54]

Cucumis melo L. Calcium silicate Induced resistance against bacterial fruit blotch (A. citrulli) [72]

S. lycopersicon Monosilicic acid Induced systemic resistance against bacterial wilt (R. solanacearum) [73]

S. lycopersicon Suppressed bacterial wilt (R. solanacearum) [55]

S. lycopersicon Potassium silicate Induced resistance against bacterial wilt (R. solanacearum) [74]

Cucumis melo L. Calcium silicate Enhanced resistance to bacterial fruit blotch (A. citrulli) [75]

Insect pest and nematodes

C. sativus Calcium silicate Acted as resistance Inducers against the Whitefly (B. tabaci) [19]

G. max Silicic acid significantly decreased the Silverleaf whitefly populations [56]

S. lycopersicon AgrosilícioTM Controlled leafminer (T. absoluta) owing to toxic and anti-feeding effect to the
larval stage [58]

C. sativus Potassium silicate Acted as an anti-herbivore defense [57]

C. sativus sodium metasilicate Significantly reduced the activity of root-knot nematode (M. incognita) [59]
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3. Abiotic Stresses

3.1. Salinity

Salinity is a significant cause of yield losses in vegetables [76,77]. Salt stress results in the cations
build-up that causes toxicity to the plant roots [78–81]. Salinity drastically affects the vegetables
fresh and dry weight, photosynthetic rate, mesophyll conductance, and photosynthetic water use
efficiency [82]. Several studies have reported the effect of Si application on salinity stress in vegetable
crops (Table 1). Si mediated alleviation of salinity stress is associated with, a significant increase
in the activities of antioxidants and decrease in the contents of electrolytic leakage percentage [83].
Likewise, the increase in activities of antioxidants like superoxide dismutase (SOD), catalase (CAT),
was reported in spinach and bitter gourd under salinity [84,85]. The relationship between the amounts
of antioxidants and plant growth under salinity stress has been studied for cucumber [86,87] and
soybean [88].

Si application improved leaf turgor potential (42%), net photosynthesis rates (20%), water use
efficiency (17%) and the ratio between plant dry matter and plant water uptake (16%) in tomato [89].
It has also been concluded that exogenous application of Si in combination with phyto-extracts of
Melia azadirachta (Chinaberry) can effectively alleviate salinity-induced hazardous effects in pea [90].
Tantawy et al. [91] demonstrated that nano-Si is more effective and efficient in mitigating salinity stress
in sweet pepper plants. Similarly, the use of nano-SiO2 has been reported in squash for activating the
defense mechanisms of plants against salinity [92].

The mechanism of Si mediated salt tolerance is still not fully understood, and the possible role
of Si in alleviating salt-induced osmotic stress with the underlying mechanism is still unexplored.
Although, based on a study conducted on cucumber plants, it was suggested that Si application
improved the salt tolerance by enhancing root water uptake, and also by up-regulating of aquaporin
gene expression [93]. Si application during salinity stress prevented oxidative damage by increasing the
activities of antioxidant enzymes and recovered the nutrient imbalance in C. annuum [94]. Si application
increased the accumulation of polyamine in cucumber plants for salt tolerance [95].

3.2. Drought

Adequate regulation of plant nutrients may be helpful to maintain or even improve the plant water
status thereby making the plant tolerant to drought stress. Si has been reported to confer tolerance
to drought by regulating the leaf relative water content, transpiration, and stomatal conductance of
plants [96,97]. Shen et al. [88] observed significant effects of Si application on photosynthesis and
antioxidant parameters (viz., catalase, peroxidase) of soybean seedlings grown under drought stress.
Si application mediated alleviation of drought stress on growth has been confirmed in soybean [98].

Likewise, application of exogenous Si improved seed germination and alleviated oxidative stress
at the seedling stage of tomato [99] and by increasing the net photosynthetic rate in tomato leaves
under water stress [100,101]. Shi et al. [102] suggested the role of Si-mediated decrease in membrane
oxidative damage in increasing the root hydraulic conductance and water uptake hence improving
water stress tolerance in tomato plants. Recently in 2017, Cao et al. [103] showed the role of changes in
radial hydraulic conductivity and cell wall stability with Si application in tomato.

3.3. Other stresses

For osmotic stress studies, effects of Si on photosynthesis of young cucumber seedlings [104], and
the activity of antioxidant enzymes in cucumber seedlings have been evaluated [105,106]. Whereas,
for chilling stress, Liu et al. [107] showed that exogenous Si leads to greater deposition of endogenous Si
and thereby increases antioxidants; and reduces the lipid peroxidation induced by chilling in cucumber.
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3.4. Mineral Toxicity

3.4.1. Aluminum

Si has been used in vegetable crops for alleviating the toxic effect of aluminum. For the first time in
soybean, Baylis et al. [108] showed the alleviation of Al toxicity by Si. On these lines, Bityutskii et al. [109]
highlighted the importance of both Fe and Si supply in exclusion of Al under acidic conditions from
cucumber plants. Recently, Dorneles et al. [110] demonstrated that Si partially alleviated the damage
caused by Al in the root growth parameters in potato via the elevated activity of antioxidant enzymes
such as SOD and POD.

3.4.2. Manganese

In the case of manganese (Mn) toxicity, a study showed that Si supply alleviated Mn toxicity
by the detoxification of apoplastic Mn [111]. In various studies, this alleviation of Mn toxicity by
Si supply is related to the significant increase in the activities of antioxidants such as PPO, PODs,
etc. [112–115]. In 2016, Dragišić Maksimović et al. [116] observed an enhanced cell wall stability owing
to inert deposition of Si in the leaf cell walls of cucumber resulting in the decreased amount of toxic
free Mn within the plant tissues.

3.4.3. Cadmium

The high amount of cadmium (Cd) is hazardous for vegetables, and Si has been used to
ameliorate its effects in plants [117]. In cucumber, application of Si under cadmium stress protected the
photosynthetic machinery from damages and improved the activities of nitrogen metabolism enzymes
such as nitrogen reductase (NR) and glutamine synthetase (GS) [118]. Likewise, Wu et al. [119] also
confirmed that Si application was reducing Cd uptake by roots in cucumber; whereas, in tomato,
Si application was decreasing root-to-shoot Cd transport.

3.4.4. Ammonium

Excessive ammonium is associated with various physiological disorders in plants. Role of
Si application has been investigated to minimize these disturbances in cucumber and tomato.
Campos et al. [120] reported that the application of Si, independent of the cucumber variety, mitigates
the toxicity of ammonium and thereby enhances the dry matter of cucumber plants. Barreto et al. [121]
recommended the use of Si in the nutrient solution (Si = 1mmolL−1) for the tomato plants grown under
ammonium stress. The observed effects of Si application on abiotic stresses faced by vegetables are
presented in Table 2 and Figure 1.

Table 2. Summary of the effects of Si application against abiotic stresses.

Vegetable Crop Form of Silicon Applied Observed Effect of Silicon Reference

Salinity

C. sativus Potassium silicate Alleviated salt stress and increased antioxidant
enzymes activity [83]

S. lycopersicon Sodium silicate Alleviated salt toxicity [122]

S. lycopersicon Potassium silicate Alleviated the deleterious salt effect [89]

C. sativus Potassium silicate Alleviated the salinity stress [123,124]

Spinacia oleracea Sodium silicate Increased stress tolerance [84]

C. sativus Enhanced salinity tolerance [125]

M. charantia Potassium silicate Alleviated salt stress and increases antioxidant
enzymes activity [85]

G. max Sodium metasilicate Alleviated the detrimental effect of salinity stress [126]

C. sativus Sodium silicate Increased resistance against salinity [127]
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Table 2. Cont.

Vegetable Crop Form of Silicon Applied Observed Effect of Silicon Reference

Trigonella foenumgraceum Sodium silicate Increased the tolerance to salt stress [128]

S. lycopersicon Alleviated the effect of salinity stress [129]

S. lycopersicon Silicon and nano silicon Improved the salt tolerance [82,130]

C. sativus Sodium silicate Alleviated salt-oxidative stress [86,93]

Cucurbita pepo nano-SiO2 Improved the defense mechanisms of plants against salt
stress toxicity [92]

C. sativus Silicic acid Enhanced the salt tolerance [131]

Pisum sativum Potassium silicate Alleviated the salinity-induced deleterious effects [90]

C. annumn Nano Silicon Improved salinity tolerance [91]

S. lycopersicon Sodium silicate Alleviated salinity stress [132]

C. sativus Sodium silicate Alleviated oxidative damage and improved plant growth
and photosynthetic performance [95,133]

C. annuum Potassium silicate Mitigated salinity stress [94]

S. lycopersicon Nano-silicon Regulated the expression of salt tolerance genes under
salinity stress [134]

S. tuberosum Silicon dioxide
nanoparticles Improved the salinity tolerance [135]

S. lycopersicon Potassium silicate Manipulated ion Distribution of plants under salt stress [136]

S. lycopersicon Silicic acid Improved nutrient levels and yields under saline
conditions [137]

S. lycopersicon Silicon nanoparticles Enhanced salinity tolerance and improved plant growth
with exopolysaccharide-producing bacteria [138]

Drought

Capsicum annuum Increased the tolerance to water deficit [96]

C. annuum Sodium metasilicate Alleviated negative effects of water deficiency [97]

G. max Sodium metasilicate Alleviated seedling damage under drought and
ultraviolet-B radiation [88]

G. max Silicic acid Mitigated the adverse effects of salt and drought stress [98]

S. lycopersicon Sodium metasilicate Increased total chlorophylls under water-deficient
conditions [139]

S. lycopersicon Silicic acid Improved seed germination and alleviated oxidative stress
under water deficit stress [99]

S. lycopersicon Sodium silicate Restrained chlorophyll degradation and increased optimal
photosynthetic efficiency under drought stress

[100,101,
103]

S. lycopersicon Potassium silicate Enhanced the water stress tolerance [102,140]

Mineral toxicity

G. max Soluble silicon Alleviated the symptoms of Al toxicity [108]

Vigna unguiculata Potassium silicate Alleviated Mn toxicity [111]

C. sativus Potassium silicate Alleviated the Mn toxicity [112]

C. sativus Silicic acid Alleviated Mn toxicity and modulated the metabolism and
utilization of phenolic compounds [113]

C. sativus Sodium silicate Alleviated the adverse effects of excess Mn and cadmium
(Cd) toxicity [114,118]

C. sativus Improved antioxidant capacity of plant under Cd toxicity [141]

C. sativus Silicic acid Ameliorated manganese toxicity by decreasing hydroxyl
radical accumulation [115]

S. lycopersicon Calcium silicate Mitigated the inhibitory effects of arsenic [142]

S. lycopersicon and
C. sativus

Sodium metasilicate
nonahydrate Alleviated Cd stress [119]

C. sativus Sodium silicate Alleviated autotoxicity caused by 3-phenyl propionic acid
during seed germination [87]

C. sativus Silicic acid Enhanced leaf remobilization of iron under limited iron
conditions [116]
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Table 2. Cont.

Vegetable Crop Form of Silicon Applied Observed Effect of Silicon Reference

C. sativus Potassium silicate Mitigated the toxicity of ammonium [120]

S. lycopersicon Monosilicic acid Mitigated ammonium toxicity [121]

C. sativus Sodium silicate Alleviated autotoxicity and Cd toxicity [87]

C. sativus Silicic acid Mitigated the Al toxicity under acidic conditions [109]

P. sativum Orthosilicic acid Alleviated Cd toxicity [143]

S. tuberosum Sodium silicate Improved the defense ability against Al toxicity [110]

Osmotic

C. sativus Induced alleviation of growth reduction under osmotic
stress [104]

C. sativus Silicon spray Enhanced the capacity of scavenging active oxygen species
and improved photosynthesis [105]

C. sativus Sodium metasilicate Contributed tolerance against osmotic stress [106]

S. lycopersicon Monosilicic acid Regulated osmotic stress tolerance by differential
accumulation of relevant amino acids [144]

Cold

C. sativus Potassium silicate Provided chilling tolerance [107]

UV-B

G. max Sodium metasilicate Enhanced nutrient acquisition under UV-B Radiation [22,88]
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4. Methods of Silicon Application on Vegetable Crops

Various methods have been employed for applying the Si on plants such as Si solution, Si fertilizers,
and foliar spray. The foliar spray could be an efficient method of application of Si, but it has not been
adequately tested. In this direction, an effort was made by Wolff et al. [64] who evaluated the efficiency
of foliar applications of two commercially available Si-based products viz. Carbon Silpower®and
Carbon Defense for their effect in reducing powdery mildew development in commercial greenhouse
cucumber production. Results showed the starring role of foliar spray of Si for significantly reducing
the severity and incidence of disease.

Si is commonly applied in the form of a solution. To our knowledge, for the first time
Samuels et al. [27] raised cucumber plants in media supplemented with 100 ppm SiO2, (+Si) and
studied the distribution pattern of Si in cucumber leaves during infection under powdery mildew
fungus. Whereas foliar sprays with Si compounds are also applied. Further foliar sprays can be
classified mainly into four categories, such as (a) foliar sprays with silicates viz. calcium silicate on
melon [72], (b) foliar sprays with silicic acid viz. spray on soybean plants [56], (c) foliar sprays with
other Si compounds, such as silica nanoparticles (nano-SiO2) on cucumber plants [1]; (d) foliar spray
of commercially available Si-based products such as Carbon Silpower®and Carbon Defense® [64].
Nowadays, researchers are more focused on the use of nano form of Si for alleviating the effects of
salt stress.

5. Omics-Based Studies

Some omics-based studies have been conducted in various vegetable crops to identify the
differentially expressed genes to study the effect of Si application. For example, in the case of tomato,
Kurabachew et al. [70] performed a transcriptome analysis in tomato plants treated with Si following
inoculation with R. solanacearum and reported 174 differentially regulated genes (113 up-regulated
and 61 down-regulated). Functional characterization of genes showed that most of the up-regulated
genes were involved in defense. In another study, a transcriptomic survey of stress response-associated
genes revealed that exposure of tomato plants to arsenic up-regulated glutathione reductase (LeGR).
This inhibitory effect was mitigated by the addition of Si in the form of CaSiO3 [142]. In 2015,
Zhu et al. [93] suggested that Si can improve salt tolerance of cucumber plants through up-regulation
of the central plasma membrane aquaporin gene expression. Whereas, in the case of pea, recently
in 2017, Rahman et al. [143] provided the mechanistic evidence on the beneficial effect of Si on Cd
toxicity in pea plants, and transcriptome analysis revealed a predominant up-regulated expression of
GSH1 (phytochelatin precursor) and MTA (metallothionein) transcripts in roots and down-regulated
expression of pea Fe transporter (RIT1) in shoots.

In the case of proteomics, Chen et al. [74] explored the role of Si-mediated resistance to Ralstonia
solanacearum in tomato root by a proteomics approach. They identified a total of 53 proteins. Forty-eight
out of 53 proteins were significantly influenced by Si application. On these lines, a proteomics study
in Capsicum annuum revealed that Si treatment up-regulated the accumulation of proteins involved
in several metabolic processes, particularly those associated with transferase activity and nucleotide
binding and modulated the expression of proteins involved in ubiquitin-mediated nucleosome pathway
and carbohydrate metabolism [79]. In 2017, Bityutski et al. [109] highlighted the importance of both
Fe and Si supply in plant exclusion of Al under acidic conditions; they reported that Si modulated
the increase in root succinate and facilitated the long-distance transport of Fe, thereby hindering Al
transport from roots to shoots. Recently, Ali et al. [144] reported that Si is vital in regulating the
metabolic content of tomato leaves under osmotic stress. They observed a change in the metabolite
profile in roots (22) and leaves (27), respectively.
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6. Silicon Transporters

Si is absorbed by the plant roots in the form of silicic acid [145]. High Si accumulation in plants has
been attributed to an efficient Si uptake system. However, to our knowledge, the molecular mechanism
for Si uptake in vegetable crops is less understood and has only been reported in pumpkin [146,147],
soybean [148], and cucumber [55,149]. For the first time in the dicotyledonous crop, an influx transporter
of Si (CmLsi1: CmLsi1 B+ and CmLsi1 B−) was identified in two pumpkin cultivars, significantly differing
for Si accumulation. Si transporters, expressing in all root cells were localized plasma membrane and
other at the endoplasmic reticulum (ER) [146]. Si uptake by plants is controlled by the actions of influx
(Lsi1) and efflux (Lsi2) transporters. Deshmukh et al. [148] identified, characterized, and cloned two
putative Si transporter genes, GmNIP2-1 and GmNIP2- 2 from soybean. Both genes, localized at the
plasma membrane were expressed in shoot and root tissues. Two putative Si transporter genes (CSiT-1
and CSiT-2) have also been cloned and characterized in cucumber plants [131]. Recently, Sun et al. [149]
isolated and characterized a gene CsLsi1, encoding a Si influx transporter in cucumber that shared
around 55.70% and 90.63% homology with the Lsi1s of rice and pumpkin, respectively. This gene was
localized at the plasma membrane for expression in roots.

7. Conclusions

Si is among the abundant elements on the earth. Here, we have discussed the role of Si application
in protecting vegetable crops against several biotic and abiotic stresses. Although, Si absorption and
availability to vegetables under natural conditions is low. The forms of Si commonly used for the plant
application are potassium silicate, silica sol, slow-and NH4-silicates, etc. With the advancement in the
omics-based approaches, information regarding the role of Si, in shaping vegetable crops protection
against abiotic and biotic stress is increasing. Further research regarding the uptake of Si by vegetables,
to determine the newly available form of Si for plants, as well as the mechanisms behind Si application
and plant stress elevation, has to be determined. This review focused on the role of silicon application
for vegetables. For cereals, Si is on the verge of becoming a regular fertilizer, and we hope for an
imitative trend in vegetables. The pathway of silicon, even in extensively cultivated vegetables remains
to be explored. Hence, there is a need to employ omics-based approaches to identify in details the
pathways and the genes responsible for the Si uptake by the vegetables to develop vegetable varieties
with better Si uptake mechanisms.
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