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Abstract: Salinity is one of the major abiotic stress causing yield losses and decreasing product quality.
The beneficial effects of biostimulant products to enhance plant tolerance to abiotic stresses have been
reported in several crops, but their mode of action is poorly understood. This work aims to better
understand the effect of salt stress on wild rocket treated with a borage extract. The expression of
some of the transcription factors (TFs) typically involved in salt stress response was studied within a
24 h period. Physiological parameters such as chlorophyll, chlorophyll a fluorescence, carotenoids,
phenols, and anthocyanin were analyzed. Results obtained showed that salt stress induced a general
increase in the expression levels of almost all TFs studied, whereas the treatment with the plant-base
extract only induced an increase at specific time points. Moreover, the approach adopted allowed
indagating the change in gene expression during time. Different pathways such as sugars metabolism,
cuticular wax biosynthesis, and brassinosteroids signaling took part in plant responses.
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1. Introduction

Salinity stress is a major abiotic stress affecting plant growth, quality, and productivity. More than
30% of the irrigated land of the world is affected by salinization and this number was projected to
increase considering the climate change scenario and the environmental pollution [1,2]. Therefore,
the study of the physiological and molecular mechanisms of tolerance to salt stress is crucial to obtain
crops able to survive without loss of productivity under stressful conditions.

It is known that salt stress impairs plants ‘performance for different reasons: it causes hyperosmotic
stress, ion imbalance and, as consequence, oxidative damage. In the short term (after minutes, hours,
and the first day of stress), salt stress is perceived by the roots as osmotic stress caused by the reduced
ability of the plants to take up water. In the long term (days, weeks, or years), plant growth is limited
by the ion toxicity and nutrient imbalance occurring in the cytoplasm due to the accumulation of
salt and the competitive uptake mechanisms with other ions. The first phase, when the salt has not
penetrated in plant tissues, is also known as the water-deficit effect of salinity and the cellular and
metabolic processes involved are in common with drought stress. The second phase is the salt-specific
effect and it is due to the excess of ions inside the plant [3].

Several metabolic processes such as photosynthesis [4,5], respiration [6], phytohormones
regulation [7], and protein biosynthesis can be altered by salinity. The effects of the stress on
plants vary depending on different factors, such as the level of salt concentration, the duration of the
exposure, the phenological stage, the interaction with the environmental conditions, and the ability of
a species or cultivar to grow in saline condition. According to this ability, plants are generally divided
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into glycophytes and halophytes. Glycophytes growth is inhibited by concentrations of NaCl around
100-200 mM, whereas halophytes can survive at higher concentrations of NaCl, typically around
300-500 mM [8]. The threshold value used as criteria to define if a plant belongs to glycophytes or
halophytes changed during time and according to different authors. For instance, Flowers et al. [9]
initially proposed a value of 300 mM and then 200 mM, whereas other authors referred to a lower
threshold about 85 mM [10]. This situation has led to a confusion in the number of the species belonging
to one or the other categories.

Wild rocket (Diplotaxis tenuifolia L.) is a perennial plant grown in the Mediterranean basin present
in coastal areas that has been recently classified as salt tolerant with potential as vegetable crops for
saline agriculture. De Vos et al. [11] investigated the responses of this species under the effects of
increasing salinity and they observed that no growth reduction appeared at up to 100 mM NaCl and a
decrease about 20% occurred at 200 mM, mostly due to the modifications in leaf morphology rather
than salt toxicity. Moreover, rocket plants were able to survive at concentrations of around 300 mM.

Tolerant plants are able to use different adaptation strategies including morphological,
physiological, biochemical, and molecular changes in order to cope with the salinity stress and
complete their growing cycle. Salt stress is primarily perceived by the roots and the two main strategies
that plants adopt for salt tolerance are the minimization of the uptake of salt by the roots and its
distribution in all tissues in order to avoid the accumulation in the leaves [12]. During the osmotic-stress
phase, plant growth in saline condition seems to be regulated by hormonal regulation. Among the
different plant hormones, abscisic acid (ABA) is the main candidate in this mechanism since it is
present in xylem sap and it increases after drought and salt stress. In the second phase, specific
mechanisms controlling Na* and CI~ concentrations occur, such as the exclusion of salt from the
phloem, its accumulation in the older leaves, in the leaf base or stems, and its compartmentalization in
the vacuoles.

Shavrukov [13] pointed out the differences between salt stress and salt shock, considering salt
concentration and exposure. Salt shock is considered as an extreme form of salt stress and is defined
as the sudden exposition of plants to high levels of NaCl. This situation rarely occurs in natural or
agricultural system where the NaCl increases gradually, but it is still applied in plant studies of salt
stress responses. The osmotic and the ionic component can be also distinguished in salt shock, albeit
with some differences. Indeed, when the plants are exposed to salt shock, they have to face a large
difference in the osmotic pressure, causing plasmolysis and the leakage of the nutrient solution in the
apoplast. Genes involved in the osmotic responses are rapidly activated in roots cells. During this
phase the plants are not able to control the movement of the solutes and salt is quickly transported
from the roots to the leaves.

Plant response to abiotic stresses can be described as a complex regulatory network involving
different physiological pathways and interactions among signaling molecules, defense proteins,
and stress-responsive genes [14]. Tolerant plants may have some peculiar stress-responsive genes
which are not present in susceptible plants. Therefore, most of the research is focused on the
identification of these salt tolerance associated genes and their role in the molecular mechanisms
of tolerance. These genes encode various salt stress responsive proteins and transcription factors
(TFs). The first ones act directly against salt stress by protecting the plants from the dehydration and
regulating the biosynthesis of osmo-protectants, while the latter are involved in the regulation of the
gene expression and the signal transduction.

TFs have different domains, a transcriptional domain and DNA binding domains. TFs bind to
specific cis regulating DNA sequence modulating the expression of salt-responsive genes. Several TFs
share the same binding domain and on the basis of this sequence they are classified in families, such as
NAM-ATAF1.2-CUC (NAC), APETALA2/Ethylene Responsive Factor (AP2/ERF), Basic Leucine Zipper
Domain (bZIP), MYB, and WRKY [15]. Cavaiuolo et al. [16] performed a transcriptomic analysis
of short-term acclimation in Diplotaxis tenuifolia L. after salt shock exposition and identified 20879
active genes and 12995 silent genes in response to stressful conditions. Among these, 29 TFs were
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upregulated and 44 downregulated under salinity, with NAC, AP2/ERF, and bZIP families being the
most represented.

The study of TFs role, their regulation, and the target genes represents one of the modern
genetic engineering strategies to improve crop tolerance against abiotic stresses. TFs are considered
to be a good target since most of them are early responsive genes under stress condition and they
are able to control a set of genes involved in plant stress resistance [17,18]. This approach reveals
the complexity of transcriptional regulation networks of plant genes since an overlap in the TFs
expression in responses to multiple abiotic stresses often appears. Indeed, besides the regulation of
stress responses, TFs participate in different biological and physiological processes, such as plant
development or senescence, regulating a cluster of downstream target genes [19,20]. Thus, linking
specific TFs with a single stress response in a big network of pathways is a big challenge.

Beside the study of plants stress responses mechanisms, transcriptome analysis is a strategy more
frequently used to understand the effects and the mode of action of biostimulants on plants [21-24].

The object of this study was to evaluate the response of Diplotaxis tenuifolia L. to salt stress
and the effect of an aqueous borage extract as biostimulant treatment to counteract salinity stress.
The expression of some of the TFs typically involved in salt stress response was studied. Moreover, plant
response was analyzed in terms of change in different physiological parameters, such as chlorophyll,
chlorophyll a fluorescence, carotenoids, phenols, and anthocyanins. The borage extract used in this
experiment showed positive effect both on primary and secondary metabolism of lettuce and rocket
plants grown under non-stressful conditions in previous experiments [25].

2. Results

2.1. Gene Expression Analysis

The quality and concentration of RNA extracted from rocket leaves subjected to salt stress and
treated with borage extract were measured using the NanoDrop instrument. On average, the A260/280
ratio of RNA samples was 2.30 and the ratio of A260/230 was 2.20, indicating that the RNA was not
contaminated by proteins or phenols.

Selected primers were preliminary tested in a qRT-PCR in order to check if they bind and amplify
the RNA via melting curve analysis. The results obtained showed that all primers worked successfully.

The changes in the expression of the transcription factors involved in the salt stress response are
clustered into a heatmap (Figure 1). The results of statistical analysis and the graphs representing the
expression analysis of each transcription factor are reported in the Supplementary Table S1 and Figures
S1-511. Different trends in the transcript levels were found in response to salt stress, borage treatment,
and over time. Under no stress condition a similar pattern of expression was observed for DtRD29A,
DtbHLH122, DtNAC72, DtNAC29, DtC3H49, and DtRABC2B with a progressive decrement within 24 h.
Their trends did not change in response to borage treatment. The minimum level was observed for
DtNAC?29 after 9 h and for DtRABC2B after 24 h. In contrast, a constant increment of the expression
levels was observed for DIDREB2A and DtHB7 within 9 h. After 24 h the expression of almost all
of TFs was downregulated in plants grown under non-stress condition, regardless of the treatment.
In contrast, stressful growing condition induced a general increase in the expression levels of TFs,
as shown by the abundance of the red color in the right side of the heatmap (Figure 1). In particular,
an induction of the expression levels was observed in response to salt stress after 6 h and 9 h.
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Figure 1. Heatmap showing temporal expression (278ACY) of selected transcription factors associated
with salt stress responses in rocket plants grown under salt stress condition and treated with a borage
extract. The rows represent the transcription factors and within each row, the blue shaded areas indicate
downregulated gene expression, whereas the red shaded areas indicate upregulated gene expression.

A constant decrease in the expression levels of DtRD29A was found in non-stressed leaves within
24 h, both in treated and control plants. An opposite trend was detected in rocket grown under salt
stress conditions; a gathering but slight increase was observed in control plants, whereas the expression
of DtRD29A rose faster in plants treated with borage extract. In particular, a constant increase was
observed within 6 h, followed by a decrease at 9 h and a final growth after 24 h. At this time point,
the 2724Ct value of treated plants was almost eight times larger than the initial point (non-stressed and
non-treated at 2 h).

The gene expression of the selected transcription factors belonging to AP2/ERF family showed
different patterns in response to the experimental conditions. The expression levels of DtDREB2A
increased within 9 h and decreased at 24 h in untreated and unstressed plants. This trend did not
change in response to the application of the borage treatment or after the exposition to high salinity.
Only few differences appeared in specific time points. In particular, the expression was higher (+72%)
in plants treated with borage extract at 9 h under no stress condition if compared with the control ones
at the same time point. In contrast, the highest level was reached in control plants grown under salt
stress condition, and the expression resulted almost 24-fold higher than the calibrator (non-stressed
and non-treated at 2 h).

The expression levels of DtERF107 and DtERF039 in unstressed and untreated plants were
generally low. The expression of DtERF107 did not change in response to borage treatment, except after
9 h where the 2722t value increased more than 12 times. Salt stress slightly induced the accumulation
of DtERF039 mRNA in all samples, regardless of the treatment.

DtERF003 expression levels were very low in control plants both under non-stressed and stressed
conditions. Two different trends emerged in plants treated with the borage extract depending on the
stress condition. In particular, under optimal condition borage treatment led to three times increase
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in the expression levels by within 9 h, whereas salt stress generally lowered all values and the trend
observed in treated plant was similar to that of control.

The expression levels of selected transcription factors belonging to the bHLH family were very
low and only few differences were observed in response to stress or borage treatment. The expression
of DtbHLH122 in control plants grown under non-stressful conditions was double at 4 h compared
with the control, then constantly decreased after 24 h. Borage treatment affected the trend anticipating
the peak at 2 h. Salt stress generally induced the expression of this TF, mostly after 4 and 6 h in plants
treated with borage extract.

No change was observed in the expression of DtBEE2 in response to stress or treatment, only a
slight increase was detected in non-stressed and treated plants after 9 h.

Different patterns were detected in the expression of DtHBI1-like. In particular, a constant decrease
to 0.2 was observed within 24 h in response to salt stress both in control and in treated plants. No clear
effect related to salt stress, time, or treatment appeared in the expression of DtIBH1-like.

Under non-stressful condition the expression of DtMYB30 in control plants was similar to the
calibrator and only a peak appeared at 4 h. In plants treated with borage extract the expression
increased within 9 h reaching the 2-BACt yalue of 7.4, then decreased at 24 h. Salt stress did not affect
the expression of DtMYB30, only a peak in the expression appeared in combination with borage
treatment after 6 h. The expression levels of DtMYB94 in control plants showed a similar pattern of
those observed in the expression of DtMYB30 with an increase at 4 h followed by a constant decrease
up to 0.2 at 24 h. Similar trend was found also in plants treated with borage extract. Salt stress generally
induced the expression levels mostly after 4, 6, and 9 h, both in non-treated and treated samples.

Different expression patterns were found in response to the experimental condition from the
analysis of the TFs belonging to the NAC family. As previously mentioned, a constant decrease
was observed within 24 h in the expression levels of DINAC29 and DtNAC?72 of plants grown under
non-stressful condition, regardless the treatment. Under salt stress they showed two different trends.
In particular, within 9 h the salt stress did not affect the expression of DtNAC29 in untreated plants
while the expression slightly increased in treated plants. After 24 h the expression levels increased by
four and three times, in treated and non-treated samples, respectively. The expression of DINAC72 was
induced four times after 2 h of stress in control plants. Afterwards, the amount of transcript decreased
within 6 h and slightly increased at 24 h. The expression of DENAC69 in untreated and unstressed plants
increased more than three times at 4 h, then progressively decreased within 24 h. The accumulation of
the transcripts was not affected by the borage treatment, except after 6 h, when a peak more than five
times higher appeared. In contrast, salt stress generally induced their accumulation. The expression
levels of DtNAC92 in control plants grown under non-stressed condition increased more than double
within 9 h and subsequently decreased at 24 h. The expression levels of DINAC019 were similar to
those observed in DtRD29A. Indeed, under non-stressed condition the expression did not change
during time or in response to borage treatment. In contrast, salt stress induced a constant increase in
all samples. In particular, values increased from a 2-22t.value of 4 to almost 18 after 24 h of exposure
to salt stress.

A similar pattern of expression was observed for DtC3H49 and DtZAT12-like. In particular,
DtC3H49 was strongly downregulated after 6 h in all growing conditions, whereas after 2 and 4 h
of salt stress exposition, the expression slightly increased both in control and in treated plants. In a
similar way, DtZAT12-like expression was downregulated both under stress and non-stress conditions
at9hand 24 h.

The expression of DtABF3 was generally low and all values ranged from 1 to 3 within 9 h in plants
grown under non-stressful condition. After 24 h the expression was downregulated, regardless of
the borage treatment. Salt stress induced a general increase in the expression of DtABF3 within 9 h.
In general, no change was observed in the expression of DtbZIP63 within 6 h, neither in control nor in
treated plants and regardless of the growing conditions. Under non-stressful conditions, the expression
of DtbZIP63 was three times higher at 24 h in control plants, whereas it was strongly upregulated
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in treated plants after 9 h and 24 h and the values were 5 and more than eight times higher than
the calibrator.

The expression levels of DtWRKY54 in control plants were generally low within 24 h, both in
non-stressed and in stressed conditions. In contrast, borage treatment slightly induced its accumulation,
mostly under a non-stress condition. After 2 h the 272Ct value was three times higher than control but
it constantly decreased during time, apart from a peak after 9 h. Under salt stress the expression levels
were reduced and the highest value of around 3 was found in treated plants after 9 h of exposure to
high salinity.

The expression of both DtHB12 and DtHB?7 increased in response to salt stress. In particular,
the expression of DtHB12 in plants grown under non-stressful condition did not change during time
and the maximum level was reached in control plants after 4 h. After 9 h the TF was downregulated,
both in treated and control plants. The same effect was observed in plants grown under salinity. The
maximum levels were reached after 24 h of exposure both in control and in treated plants; the values
were eight and 12 times higher than the internal target, respectively. The expression pattern of DtHB7
was very similar to those of DtHB12 in control and treated plants. Moreover, expression levels increased
in response to salt stress, but the trend did not change. The maximum value was reached after 9 h
of salt exposure and the expression was almost 30 times higher than the internal calibrator, both in
control and in treated plants.

The expression levels of DtRABC2B in rocket leaves revealed a general downregulation within
24 h. In particular, under non-stressed condition the 2-22Ct value of control plants dropped to 0.2
after 4 h and reached the minimum point (0.04) after 24 h. A similar trend was found in plants grown
under salt stress, even if the decrease started 2 h late. Plants treated with borage extract showed higher
values, mostly in combination with salt stress.

The expression of an unknown transcription factors named Unknown2 grew for the first 6 h in
unstressed and untreated plants, then decreased to 0.6 at 24 h. Borage treatment slightly led to a
decrease of the expression level at 2 h whereas a peak almost seven times higher emerged after 9 h.
Under salt stress, both control and treated plants had the same trend excluding at 24 h.

2.2. Physiological Analyses

2.2.1. Chlorophyll

The chlorophyll content measured in vivo did not show any significant change one day after the
beginning of the stress (Figure 2a), not in response to salt, nor to borage treatment. All values were
around 10 r.u. A significant interaction between stress and treatment was observed after two days of
stress (Table S2). In particular, under a non-stress condition, the chlorophyll content of plants treated
with borage extract was significantly lower than control while an opposite effect was found under a
stress condition (Figure 2b). After four days (Figure 2c) chlorophyll content was similar in stressed
plants (regardless of the treatment) and non-stressed plants treated with borage extract. However,
their values were significantly lower than those observed in control plants grown without salt stress.

Chlorophyll content showed different trends during the experimental time course: under a
non-stress condition, chlorophyll content increased in control plants from 10 r.u. to almost 15 r.u., while
it did not change in plants treated with a borage extract. Stressed plants did not show any variation
over time, only a slight increase was observed after two days in plant treated with borage extract
(Figure 2b).

Chlorophyll concentration obtained with the destructive method (Figure 3) did not show the
same trend of the in vivo analyses. In particular, no significant change appeared in chlorophyll a + b
concentration of rocket leaves after one and two days of stress (Figure 3a and b) and the average values
were around 1 ug mg~! FW. In contrast, salt stress induced a significant decrease in the concentration
of chlorophyll a + b in plants treated with borage extract after four days of stress (Figure 3c).
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Figure 2. Chlorophyll content determined in vivo in rocket leaves treated with water (CONTROL) and
with borage extract (TREATMENT) and subjected to salt stress (200 mM). Measures were taken after one
day (a), two days (b), and four days (c) of stress. Values are means + SE (n = 11). Data were subjected
to two-way ANOVA. Different letters, where present, represent significant differences (p < 0.05).
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Figure 3. Chlorophyll a + b concentration in rocket leaves treated with water (CONTROL) and with
borage extract (TREATMENT) and subjected to salt stress (200 mM). Measures were taken after one
day (a), two days (b), and four days (c) of stress. Values are means + SE (n = 4). Data were subjected to
two-way ANOVA. Different letters, where present, represent significant differences (p < 0.05).

2.2.2. Total Carotenoids

The concentration of carotenoids (Figure 4) in rocket leaves showed the same trend observed
in chlorophyll a + b analyses. In particular, no significant change was detected after 1 and two days
of stress and all values were similar to non-stressed control (Figure 4a,b). After four days of stress,
carotenoids level of plants treated with borage extract significantly decreased, while it did not change
in control plants (Figure 4c).
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Figure 4. Carotenoids concentration in rocket leaves treated with water (CONTROL) and with borage
extract (TREATMENT) and subjected to salt stress (200 mM). Measures were taken after one day (a),
two days (b), and four days (c) of stress. Values are means + SE (n = 4). Data were subjected to two-way
ANOVA. Different letters, where present, represent significant differences (p < 0.05).

2.2.3. Phenolic Index and Anthocyanin

Phenolic index and anthocyanin content measured in rocket leaves are listed in Table 1.
Both parameters were not affected by the salt stress, in any of the time points analyzed. Moreover,
statistical analysis did not detect any significant difference between samples in response to borage
treatment (Table S2).
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Table 1. Phenolic index and anthocyanin concentration in rocket leaves treated with water (CONTROL)
and with borage extract (TREATMENT) and subjected to salt stress (200 mM). Measures were taken
after one day, two days, and four days of stress. Values are means + SE (1 = 4). Data were subjected to
two-way ANOVA. Different letters, where present, represent significant differences (p < 0.05).

Phenolic Index [ABS320 nm g711 Anthocyanin [Cyanidin eq. mg/100 g]
1DAS 2DAS 4 DAS 1DAS 2DAS 4 DAS
NO STRESS CONTROL 19.67 £2.15 13.83+3.62 20.00+1.88 1959+154 1931+202 21.17+171
NO STRESS TREATMENT  19.87 + 0.86 20.10 £ 0.63 19.06 + 0.79 21.27 £ 0.58 2091 £ 0.44 19.43 + 0.54

STRESS CONTROL 1822+094 1758+0.86 1743 +1.08 1945+0.26 19.45+0.63 1922+0.77
STRESS TREATMENT  1819+184 1645+1.18 1637+080 1874+1.67 17.55+1.01 18.00 + 0.87

Stress Treatment

2.2.4. Chlorophyll a Fluorescence

The maximum quantum efficiency of PSII (Fv/Fm) gives an information on the plant’s potential
photosynthetic ability and can be used as stress marker since its sensitivity to different stressful
conditions. Generally, an average value of 0.83 is considered the stress threshold for herbaceous plants,
whereas lower values indicate stressful conditions for the plants with limitation of physiological
processes [26]. A significant interaction between stress condition and treatment was observed after one
day of stress (Table S2). Fv/Fm values were really close to the threshold in non-stressed plants and the
same value was observed in control plants grown under salt stress. In contrast, stressed plants treated
with borage extract had a lower value of about 0.73 (Figure 5a). After two and four days of stress
(Figure 5b,c) the Fv/Fm ratio increased exceeded the 0.83 threshold, regardless of the stress condition
or the treatment.

2 DAS (b) o2 4DAS (c)

CONTROL
EA TREATMENT

NO STRESS STRESS ' NO STRESS STRESS

Figure 5. Maximum quantum efficiency of PSII (Fv/Fm) measured in rocket leaves treated with
water (CONTROL) and with borage extract (TREATMENT) and subjected to salt stress (200 mM).
Measures were taken one day (a), two days (b), and four days (c) of stress. Values are means + SE
(n =9). Data were subjected to two-way ANOVA. Different letters, where present, represent significant
differences (p < 0.05).

The performance index (PI) did not show any significant change, not in response to salt stress,
neither to treatment. After one day of stress (Figure 6a) the results had a similar trend to Fv/Fm ratio
and stressed plants treated with borage extract had a lower value if compared with the other conditions.
With the exception of this, all of the values averaged from 2.2 to 2.8. After two and four days of
stress the Pl increased in all samples and values averaged from 2.8 and 3.7 (Figure 6b,c). Salt stress
significatively affected the PI, however no significant difference emerged among samples (Table S2).
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Figure 6. Performance index (PI) measured in rocket leaves treated with water (CONTROL) and with
borage extract (TREATMENT) and subjected to salt stress (200 mM). Measures were taken after one
day (a), two days (b), and four days (c) of stress. Values are means + SE (n = 9). Data were subjected to
two-way ANOVA. Different letters, where present, represent significant differences (p < 0.05).

2.2.5. Nitrate

In general, salinity significantly caused a decrease of the nitrate concentration in rocket leaves,
regardless the treatment. After one day (Figure 7a) nitrate contents of non-stressed plants were 3836
and 4264 mg kg~! FW in control and after borage treatment, respectively. At the same time nitrate
levels were halved under stress condition. In particular, nitrate concentrations were 1856 mg kg™
FW in control plants and 2423 mg kg™! FW in plants treated with borage extract. A similar effect has
been observed also after four days, while after two days, a significant interaction between stress and
treatment was detected (Table S2).

8000 1 DAS 4 DAS C
g (a) ( ) 22 CONTROL
; )
e EZ& TREATMENT
2
[
E
Q
s
=

STRES:

Figure 7. Nitrate concentration in rocket leaves treated with water (CONTROL) and with borage
extract (TREATMENT) and subjected to salt stress (200 mM). Measures were taken after one day (a),
two days (b) and four days (c) of stress. Values are means + SE (1 = 4). Data were subjected to two-way
ANOVA. Different letters, where present, represent significant differences (p < 0.05).

2.2.6. Reducing and Total Sugars

A significant effect of salinity was detected one day after the beginning of the stress (Figure 8a)
when the average value of reducing sugars increased from 2.9 mg g~} FW in non-stress condition to
7.5 mg g~! FW under salt stress. A slight but not significant increase was also observed in non-stressed
conditions, in response to borage treatment. After two and four days of stress the concentration of
reducing sugars decreased and no significant differences were observed among samples. In particular,
all values were similar to control plants grown in non-stressful condition and values ranged from 2.4 to
3.9 mg g~! FW. A similar trend was found in the concentration of total sugars, as reported in Figure 9.
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Figure 8. Reducing sugars concentration in rocket leaves treated with water (CONTROL) and with
borage extract (TREATMENT) and subjected to salt stress for 24 h. Measures were taken after one day
(a), two days (b) and four days (c) of stress. Values are means + SE (n = 4). Data were subjected to
two-way ANOVA. Different letters, where present, represent significant differences (p < 0.05).
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Figure 9. Total sugars concentration in rocket leaves treated with water (CONTROL) and with borage
extract (TREATMENT) and subjected to salt stress (200 mM). Measures were taken after one day (a),
two days (b), and four days (c) of stress. Values are means + SE (n = 4). Data were subjected to two-way
ANOVA. Different letters, where present, represent significant differences (p < 0.05).

2.2.7. Lipid Peroxidation

The level of lipid peroxidation in control plants grown under non-stressed conditions was around
12 nmol g~! FW at each time point, and a similar value was observed in response to borage treatment.
After one day of stress (Figure 10a) a significant difference was found between plants treated with
borage extract under stressed and non-stressed condition, while only a slight increase was observed in
control plants. In particular, the highest level of lipid peroxidation was found in plants treated with
borage extract and grown under salt stress (20.7 nmol g_l FW). After two and four days, the level
of lipid peroxidation in stressed samples slightly decreased to about 15 nmol g~} FW. However,
it remained significantly higher than non-stressed samples.
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Figure 10. Concentration of malondialdehyde (MDA) in rocket leaves treated with water (CONTROL)
and with borage extract (TREATMENT) and subjected to salt stress (200 mM). Measures were taken one
day (a), two days, (b) and four days (c) of stress. Values are means + SE (n = 4). Data were subjected to
two-way ANOVA. Different letters, where present, represent significant differences (p < 0.05).

2.2.8. Osmolytes

The levels of osmolytes in rocket leaves (Figure 11) was not affected by the stress condition or
by the borage treatment, in any of the time point analyzed. In particular, after one day of salt stress,
all values averaged from 0.12 and 0.17 Osm kg~'g™!. A slight increase appeared after two and four
days (Figure 11b,c), however no significant difference was detected among the samples.
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Figure 11. Osmolytes concentration in rocket leaves treated with water (CONTROL) and with borage
extract (TREATMENT) and subjected to salt stress (200 mM). Measures were taken after one day (a),
two days (b), and four days (c) of stress. Values are means + SE (n = 4). Data were subjected to two-way
ANOVA. Different letters, where present, represent significant differences (p < 0.05).

2.2.9. Abscisic Acid

After one and four days (Table S2) a significant effect of the stress was found in the ANOVA.
Initially, the average concentration of ABA in non-stressed samples was around 60 mg g~! and no
significant effect was detected after the application of the borage extract. The ABA contents in plants
grown under stress conditions were significantly higher than in non-stressed ones, and averaged from
110.4 to 178.5 mg g~!. The highest level was reached in samples treated with borage extract and it was
three times higher than in non-stressed samples (Figure 12a). After two days of stress (Figure 12b)
the concentration of ABA did not change in almost all samples if compared with the previous time
point. Moreover, the ANOVA showed a significant effect of treatment (Table S2). After four days the
concentration of ABA in all samples decreased, and no significant difference was detected even if ABA
levels in stressed samples were higher than non-stressed ones (Figure 12c).
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Figure 12. Abscisic acid concentration in rocket leaves treated with water (CONTROL) and with
borage extract (TREATMENT) and subjected to salt stress (200 mM). Measures were taken one day (a),
two days (b) and four days (c) of the stress. Values are means + SE (n = 4). Data were subjected to
two-way ANOVA. Different letters, where present, represent significant differences (p < 0.05).

3. Discussion

Diplotaxis tenuifolia can be considered as salt tolerant species due to its ability to maintain
considerable growth rates under increasing salinity without any relevant variation to physiological
parameters [11,27]. In the present study, rocket plants have been exposed to 200 mM NaCl for
four days, just before the harvest, in order to evaluate the plant responses to salt shock with no
acclimatization period. To better understand the nature of the different processes activated to cope
the stress, a transcriptome analysis and the evaluation of different physiological and biochemical
mechanisms in biostimulant-treated and not-treated rocket plants were analyzed.

At a molecular level, the transcriptional regulation depends on the interaction between
transcription factors and a broad range of target genes involved in different stress responses pathways.
TFs are involved in the primary stress responses, through the repression/activation of a set of genes
associated with abiotic stress responses during the first few hours of stress exposure. For these reasons,
24 transcription factors belonging to different families and a stress-related gene (RD29A) were chosen
and their expression within 24 h of salt stress was analyzed. Since TFs expression is dynamic and often
transient, the measure at one single time point is not enough to understand their activity, thus their
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expression over time after 2, 4, 6,9, and 24 h was evaluated. Most of the genes studied in this work
showed a trend in their expression that might suggest a circadian control.

RD29A is considered as a stress-response marker gene and has been studied in response to
different abiotic stress treatments. In this experiment the DtRD29A expression constantly decreased
under control conditions, both in untreated and treated plants. These values are consistent with
those reported in another study, in which the gene was not expressed at significant levels during
normal plant growing conditions [28]. As expected, DfRD29A transcripts increased under salt stress
conditions, whereas its expression was particularly affected by the combination of NaCl and borage
treatment. This result might suggest that rocket plants treated with borage extract were more sensitive
to salt stress than the non-treated ones. Interestingly, Lee et al. [29] observed that RD29A expression
pattern changed when exposed to single or combined (salt and ABA) treatments and the combination
of the inputs led to unique dynamic behaviour that cannot be explained by the sum of the single
responses. Li et al. [30] proposed an interaction between an ABRE binding protein (ABF3) and another
transcription factor (NAC?72) in the regulation of the expression of RD29A.

In our experiment, a rapid increase of DtNAC72 expression induced by salt exposure, similar to
that reported by Tran et al. [31] in Arabidopsis thaliana exposed to 250 mM NaCl for 24 h was observed.
Fujita et al. [32] observed a slower increase of the expression over time, probably due to the lower
concentration of NaCl used in their experiment. Moreover, the same authors reported the existence
of two different pathways for the NAC72 expression, one ABA-dependent in non-stressful condition,
and the other ABA-independent under salt stress. It might explain why borage treatment induced
the expression of DINAC72 under salinity and not under normal growing conditions. In contrast,
a gradual increase appeared in the expression of DENAC019 in response to salt stress but in this case
borage extract did not show any effect. Even if NAC019 and NAC72 are homologs, their response to
salt and biostimulant treatment is quite different. Results obtained in the present study confirmed that
both TFs are involved in stress response and may act in two different pathways.

Similar to DtNAC72, the expression of DtABF3 was rapidly affected by salt stress. ABF3 plays an
important role in ABA signaling both in normal and stressful conditions and it is induced by ABA and
osmotic stress, as can be seen in reference [33].

MYB is a large family of transcription factors that are well-known to be involved in drought
responses [34]. In this experiment the expression of two MYB TFs, DtMYB94 and DtMYB30 was
examined. The expression of DtMYB94 constantly increased in response to salinity and was similar to
those results reported for Arabidopsis [35]. At the same time, DtMYB30 expression showed a different
pattern in response to salt and borage treatment. In general, its expression was lower in plants grown
under stress. Recent studies reported that both MYB30 and MYB94 are involved in the activation of
cuticular wax biosynthesis [35,36]. Moreover, MYB30 acts as a positive regulator of ABA signaling
response [37], in the accumulation pattern of very-long-chain fatty acids such as waxes, phospholipids,
and complex sphingolipids [38], and promoting the expression of a subset of brassinosteroids (BRs)
target genes [39,40]. As mentioned above, an increase in lipid peroxidation was found in plant grown
under salt stress and treated with borage extract. These finding may suggest that rocket plants reacted
to salt stress through the accumulation of cuticular waxes and the production of new lipids molecules.

WRKY54 as well as MYB30 are involved in the BRs signaling pathway [41]. DtWRKY54 was
expressed at low levels in control and untreated plants and was slightly induced by salt stress. A similar
result was observed in Arabidopsis by Zhou et al. [42]. Moreover, the authors reported an increased
tolerance to salt in transgenic soybean plants over-expressing WRKY54 gene. In rocket plants treated
with borage, extracting the expression of DtWRKY54 was induced under normal growing conditions,
whereas it caused a general downregulation in plants exposed to salinity. Since WRKY54 co-operate
with WRKY70 as negative regulators of the plant response to osmotic stress [43], so the lower expression
levels observed in plants treated with borage and then exposed to salt stress might suggest a better
tolerance to osmotic stress.



Plants 2020, 9, 20 13 of 24

Rocket plants grown under salt stress showed high levels in the expression of DtHB7 and DtHB12.
Both TFs belong to the HD ZIP family and are negative regulators of ABA signaling by acting as
positive regulators of a protein phosphatase (PP2C) genes [44]. DtHB7 was more upregulated than
DtHB12, confirming what was observed by Zimmermann et al. [45]. Moreover, plants overexpressing
AtHB7 showed a higher chlorophyll content [46], and this might be linked to the high chlorophyll
levels observed in rocket plants grown under salt stress.

ERF003, ERF107, and ERF39 are members of the ERF transcription factor subfamily and they
are involved in abiotic stress responses through binding the ethylene-responsive element (ERE) [47].
Their expression has been reported to increase in response to high concentration of salt and to contribute
to salt and drought tolerance [48-50]. In this study DtERF107 and DtERF39 expressions were induced
in plants exposed to salt stress, in accordance with what is reported above. In contrast, the expression
of DtERF003 rapidly increased in response to borage treatment but no changes appeared in plants
exposed to salinity, suggesting that in rocket DtERF003 is not involved in salt stress response.

An overall upregulation of DtbHLH122 expression was found in rocket plants exposed to salt
stress. BHLH122 has been reported to be a positive regulator of drought and osmotic stress signaling
resistance and its expression is at least partly independent from ABA signaling [51]. The same authors
reported that Arabidopsis plants overexpressing bHLH122 showed an increased resistance to water,
salt and osmotic stresses. Moreover, PHLH122 was able to repress a gene involved in ABA catabolism,
leading to the accumulation of ABA. These results might explain the increased content of ABA observed
in rocket plants grown under salt stress and treated with borage extract.

Besides bHLH122, the expression of other three TFs of bHLH family: BEE2, HBI1, and IBH1, all of
which are involved in the brassinosteroids signaling pathway, was also analyzed. BEE2 and HBI1-like
are induced by BRs and are repressed by ABA, while IBH1 is reported to inhibit both BEE2 and HBII.
Moreover, plants overexpressing IBHI showed a decreased stress response [52]. All TFs were generally
expressed at very low levels in rocket plants regardless the growing condition. These results, together
with the low expressions levels of DtMYB30 and DtWRKY54 and the up regulation of DtNAC72
(a negative regulator in the BRs signaling pathway) might suggest that for the specific condition tested
in this study, stress responses in rocket plants are mediated more through ABA signaling pathways
than through brassinosteroids signaling.

This is further confirmed by the increased concentration of ABA observed in rocket plants grown
under salt stress. It is also known that an antagonistic interaction between ABA and BRs exists [53].

bZIP63 is a transcription factor involved in the processes regulating the circadian phase through
the regulation of low-energy response. Itis a target of a sugar-sensing kinase (SnRK1), a conserved gene
usually activated during starvation [54,55]. In our experiment, we observed that DtbZIP63 expression
was low in control plants and only a peak was observed after 24 h. This time point corresponds to
8:00 am, and the accumulation of DtbZIP63 transcripts might be linked to a low concentration of
sugars at night. Indeed, it has been reported that bZIP63 expression is usually repressed by sugars
and ABA [56]. Interestingly, borage extract induced the expression of the gene under non-stressful
conditions, even if the level of sugars and ABA in rocket leaves did not change. Moreover, bZIP63 is
reported to function as a negative regulator of osmotic stress tolerance in Arabidopsis during seeds
germination [57], thus the low expression detected in stressed plants might also confirm the mechanism
of tolerance of rocket plants.

RABC2B is a protein involved in signal transduction and intracellular transport. In rocket plants
DtRABC2B was generally expressed at low levels in both growing conditions, in contrast to those
reported by Liu et al. [58], who observed an induction in response to salt stress in Arabidopsis. Borage
treatment induced DfRABC2B expression, mostly after 2 and 4 h of stress exposition. However, to date
there has been scarce information about the biological role and the regulation of these proteins in plants.

NAC92, NAC29, and NAC69 are involved in multiple abiotic stress responses. Their expression
levels were generally low in leaves under non-stress conditions, as reported also by Xue et al. [59],
and were induced by salt stress at different time points.
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The trend of expression of the unknown transcription factor was similar to those observed in
DtHB7 and DtDREB2A. Moreover, as well as DtBEE2, DtWRKY54, and DtERF107, a peak of transcript
appeared after 9 h.

An overall upregulation of the gene expression appeared in response to salt stress conditions.
In general, the results obtained in the present experiment confirmed those reported in the transcriptome
for most of the TFs analyzed. Novel findings emerged from the bZIP63, ERF107, DREB2A, and NAC92
expression. Moreover, the analysis of the gene expression over time allowed us to see the different
trends in the TFs. For example, the expression levels of C3H49 and RABC2B were higher in plants
exposed to salt stress than with the unstressed controls after 24 h, as reported by Cavaiuolo et al. [16].
However, the trend of their expression shows a constant decrease during time.

The content of chlorophyll and the chlorophyll fluorescence-related parameters did not significantly
change in response to salt stress. These results are consistent with those reported in other studies,
in which salt stress did not cause significant alteration in photosynthetic apparatus after few days
of exposition to stressful conditions [60-62]. It is known that these parameters are considered as
biochemical markers of salt tolerance, since chlorophyll levels and PSII efficiency usually decrease
quickly in sensitive plants [63]. The content of chlorophyll in green leafy vegetable is also important
because it defines the visual appearance of the product and influences the consumer choice [64].
The application of biostimulant products has been shown to increase the biosynthesis of chlorophyll in
different vegetables [65,66].

This experiment confirms that D. tenuifolia is a salt tolerant crop [11] due to its ability to counteract
a sudden exposition to a high level of salinity, at least under our experimental conditions. At the same
time, the short treatment time with the borage extract did not increase the chlorophyll content as well as
the PSII efficiency in rocket plants grown under salt and non-salt conditions. In contrast, after one day
of exposition to salt stress plants treated with borage extract showed a significant decrease of Fv/Fm
ratio. Since this value did not change in untreated plants in response to salt treatment and in plant
treated with the borage extract grown in non-stressful condition, it may indicate that treatment induced
the plant temporarily susceptible to salinity. The same effect observed in chlorophyll concentration was
found also in carotenoids level and it makes sense because of their role as accessory light-harvesting
pigments and protecting chlorophyll molecules. These results were compatible with those obtained by
Bulgari et al. [25] after two applications of the same borage extract on rocket and lettuce plants grown
under non-stressful conditions. No significant modification of chlorophyll and carotenoids content
were also detected in Eruca sativa Mill. grown under salt stress, as reported by Barbieri et al. [67].

A moderate salinity has a positive effect increasing the concentration of phytochemicals, such as
flavonoids, phenolic acids, and tannins [68—71]. These polyphenolic compounds play an important
role in plant protection against reactive oxygen species (ROS), which are produced in plant tissues
when physiological metabolism is impaired by various environmental stresses.

Besides their roles in plants, phenolic compounds exert an important function for human health
due to their potential health benefits [72].

Several biostimulant products were reported to enhance the secondary metabolism and increase
the synthesis of phytochemicals [73]. Borage extracts have shown to be effective in improving total
phenols, flavonoids, and antioxidant capacity in lettuce plants [25]. This was not the case in the
present study, as no significant changes were recorded, not in response to salt, not to treatment. A high
variability in total phenols concentration was also observed by Hamilton et al. [74] within species
and between trials. The different response obtained in our experiment compared to those reported
by Bulgari et al. [25] by applying the same extract might be due to the number of applications or to
genetic diversity of the treated plants. Moreover, the imposition of a significant level of salt might
have “hidden” the effects of the borage extract observed in other experiments, probably related to the
presence of molecules involved in the activation of signaling or exerting a hormone activity.

A significant increase of total sugars appeared in leaf tissues after one day of salt exposition,
both in treated and non-treated plants. Afterwards, values declined to non-stress levels and remained
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stable until harvest (four days of salt stress). This trend may be related to the increased reduction
of sugar concentrations observed. The accumulation of sugars has been reported in different plants
species exposed to salinity [75,76]. Carbohydrates are products of photosynthesis and they are the
building blocks and source of energy for plant growth. Besides these roles, sugars are involved in
several processes related to plant stress responses, acting as signaling molecules, osmo-protectants,
or antioxidants [77,78]. As reported by Shavrukov [13], when plants are suddenly exposed to a high
level of salinity, they suffer osmotic shock and plasmolysis, regardless of their level of tolerance.
Indeed, the only difference between a sensitive and a tolerant plant is the degree of damage and the
time needed to restore physiological functions. In accordance with this, a significant increase in lipid
peroxidation was detected in all stressed samples. The MDA content in unstressed plants treated and
non-treated, was similar to the one observed by Ozdener et al. [79] in Eruca sativa Mill. suggesting that
the application of borage extract did not cause any damage to cell membranes.

The accumulation of osmolytes is a typical response of plant exposed to salt stress condition in
order to maintain the cell turgor pressure and stabilize proteins and other cell components against
denaturing effects. Plants with an improved osmolyte biosynthesis generally showed an enhanced
stress tolerance [80-82]. In this experiment no significant change in osmolytes accumulation was
observed, and this result was unexpected.

Abscisic acid is a plant hormone with several roles in plant growth and development as well as
in response to abiotic stresses. It has been suggested that some responses to osmotic stress could be
modulated by ABA [83]. Frike et al. [84] reported that ABA accumulates in leaf tissues more than
six times within 10 min in response to an environmental stress and within the first hour following
the stress event, ABA has a growth-promoting function. A slight but non-significant increase in ABA
levels was observed in plants grown under salt stress. This is in line to those results observed by He
and Cramer [85]. They compared the ABA accumulation in two Brassica species and found that ABA
concentration increased more in salt-sensitive species than in tolerant ones. Results obtained in the
present experiment showed a slight increase of ABA content in treated plants, mostly in combination
with the salinity. This may suggest that borage extract could have a slight positive effect on the
production of ABA.

Rocket is a nitrate-accumulating vegetable and it is known that nitrate content in rocket leaves
changes depending on the cultivation systems as well as on the environmental conditions, such as
the light intensity, photoperiod, temperature, and abiotic stresses [86,87]. In humans, after ingestion,
nitrates undergo different reactions that may lead to the formation of cancerogenic compounds like
nitrosamines [88]. For this reason, the European Commission Regulation established limitations on the
commercialization of several leafy vegetables (EU No 1258/2011). The maximum levels of nitrate for
rocket salad are 7000 mg NO3;~ kg~ ! if harvested from October to March, and 6000 mg NO3~ kg1 if
harvested from April to September. In this experiment, reduced nitrate content was observed in plants
exposed to salinity for one, two, and four days. These findings are consistent with those reported by
Barbieri et al. [67] and Urrestarazu et al. [89] studies, in which a reduction of nitrate levels in rocket
and lettuce salad was found after a high salinity treatment. Strategies to decrease the concentration
of nitrate are important for the production of fresh vegetables and different biostimulant products
showed a positive effect reducing the nitrate levels in several crop species [66,90,91]. However, nitrate
contents were not affected by borage treatment, not under control or stress condition. This result was
unexpected since, in contrast, Bulgari [92] observed an increase of NR activity in vivo and a substantial
reduction of nitrate concentration in rocket plants treated with the same borage extract. This variability
might be due to differences in the experimental plans (period of cultivation, number of treatments,
timing of the application).
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4. Materials and Methods

4.1. Plant Material, Stress Treatment and Experimental Plan

The trial was carried out at the Faculty of Agricultural and Food Science of Milan in 2018. Rocket
plants (Diplotaxis tenuifolia, L.; ISI Sementi S.P.A., Italy) were grown hydroponically into plastic tanks
(35 x 25 x 20 cm) with 10 L of a modified Hoagland medium and the concentration of nutrient in
the solution used was composed by 11.05 mM N, 1.4 mM P, 7 mM K, 2.19 mM Ca, 0.8 mM Mg,
and 1.8 mM S, and Hoagland’s concentration for micronutrients. Seeds of rocket were manually sown
into polystyrene trays filled with an agri-perlite substrate on 20 February 2018. Cultivation took place
in an experimental greenhouse under controlled conditions.

The experimental design was a combination of two factors: stress and treatment, each of them
with two levels. Salt stress was imposed by transferring plants to a fresh nutrient solution containing
200 mM NaCl, 35 days after sowing at 08.00 h (on March the 26 2018). The nutrient solution of
non-stressed plants was also changed with a fresh one.

Treatments consisted of 20 mL of water (control) and 20 mL of a borage extract. The plant extract
used in this experiment had been previously prepared and tested by our research group, as described
by Bulgari et al. [25]. The borage flower extract diluted 10 mL L~! has been chosen as a treatment since
the positive effects obtained in this study and in previous unpublished experiments. Treatments were
applied on 25 March 2018, as foliar spray onto leaves until run-off 24 h before the beginning of the
stress. For gene expression analyses, leaf tissues were collected after 2, 4, 6, 9, and 24 h of exposure to
salt (10.00 h, 12.00 h, 14.00 h, 17.00 h, and 8.00 h). Samples were shock frozen in liquid nitrogen before
storage at —80 °C and were then used for RNA isolation. For physiological analyses, leaf tissues were
collected from four biological replicates after one, two, and four days of stress. Sampled material was
stored at —20 °C prior to analyses.

4.2. Total RNA Isolation and Analysis of Gene Expression

Starting from the Diplotaxis tenuifolia L. RN Aseq database (SRP study accession number SRP102718)
created at the University of Milan [16], the sequences of 25 genes were identified in order to be used
as molecular markers for salt stress (Table S3). The sequences were selected among those showing
significant changes in their expression (RPKM) in response to 24 h of exposure to salt stress conditions.
Annotation for all sequences was verified by using NCBI BLAST database and their involvement in
salt stress responses mechanisms has been confirmed through the literature review. Among them,
23 TFs have been identified and 1 did not show any correspondence to known gene sequences, thus it
has been reported as unknown 2. Specific primers (Table S4) for all selected sequences (24 transcription
factors and RD29A) were designed using the program Primer-Blast available at the National Center for
Biotechnology Information website (https://www.ncbi.nlm.nih.gov/tools/primer-blast/).

Frozen leaves of rocket plants were thoroughly ground with liquid N using cold mortar and
pestle. Approximately 100 mg were transferred to a cryotube and stored at —80 °C. Total RNA was
isolated using the Spectrum Plant Total RNA Kit with on-column DNase-treatment (Sigma-Aldrich,
Italy) following the steps of protocol A with a slight modification.

The concentration and the purity of RNA were assessed by measuring the absorbance at 230 nm,
260 nm, and 280 nm using a NanoDrop N-1000 spectrophotometer (NanoDrop technologies). A ratio
of absorbance at 260 and 280 ~ 2.0 is generally accepted as pure for RNA and expected 260/230 values
are commonly in the range of 2.0-2.2, usually higher than the respective 260/280 value.

Three ng of RNA were reversely transcribed to cDNA using the SuperScript III cDNA Synthesis
Kit according to the manufacturer’s instructions (Invitrogen, Italy).

The SYBR® Green PCR Master Mix (Applied Biosystems) was used for the quantitative RT-PCR
analysis. The reaction mix was prepared by adding 10 uL of SYBR Green, 0.4 pL of forward and reverse
primers, 2 pL of cDNA diluted 1:20, and 7.2 uL of RNase free water. The total volume for each PCR
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reaction was 20 puL. Analysis was performed using the ABI7300 (Applied Biosystem) thermocycler and
PCR program and reactions were run in triplicate from two biological replicates.

The expression levels were analyzed with the AB software program and results were calculated
using the 222 method described by Livak and Schmittgen [93]. According to this method, the data
are presented as fold change in gene expression normalized to a housekeeping gene and relative to a
calibrator. The Elongation factor 1 alpha (EF1c) was used as reference gene (housekeeping) since the ct
values showed high stability in the same species grown under similar experimental conditions [61],
whereas the non-stressed and non-treated sample after 2 h was chosen as an internal calibrator.

4.3. Physiological Analyses

4.3.1. Chlorophyll

Leaves chlorophyll content was estimated in vivo using a chlorophyll content meter (CL-01
Chlorophyll Content Meter, Hansatech Instruments). The results were expressed as a chlorophyll
index (relative units).

4.3.2. Chlorophyll a Fluorescence

Chlorophyll a fluorescence was measured in vivo using a hand-portable fluorometer (Handy-PEA,
Hansatech Instruments). Before all measurement leaves were dark-adapted with the leaf clips for
3040 min. then were exposed to a saturating light (3000 pmol m~2 s~!) provided by an array of three
high-intensity light-emitting diodes for 1 s. Information about the structural and functional status of
photosynthetic apparatus was provided by the parameters measured, such as the maximum quantum
of photosystem II (Fv/Fm) or the performance index (PI) derived from the JIP test calculation [94].

4.3.3. Total Chlorophylls and Carotenoids

Chlorophylls and carotenoids were extracted from rocket leaves using 5 mL of 99.9% (v/v)
methanol. Leaf disc samples (30 mg), obtained with a 5 mm diameter cork borer were kept in a
dark room for 24 h at 4 °C. After that absorbance reading were measured at 665.2 and 652.4 nm
for chlorophylls and 470 nm for total carotenoids with a spectrophotometer. Pigments levels were
calculated by Lichtenthaler’s formula and expressed on a fresh weight basis [95].

4.3.4. Phenolic Index and Total Anthocyanin

Phenolic index and total anthocyanin were determined from leaf disc samples (30 mg), obtained
with a 5 mm diameter cork borer. Leaf samples were transferred to a tube containing 3 mL of methanol
acidified with hydrochloric acid (1%) and were kept in dark room for 24 h at 4 °C. Absorbance readings
were measured at 320 nm for total phenols, and at 535 nm for anthocyanin with a spectrophotometer.
Phenolic index was expressed as Abs320 nm g~! FW [96]. Anthocyanins concentration was expressed
in cyaniding-3-glucoside equivalents using a molar extinction coefficient (&) of 29,600 L M~ cm™! [97].

4.3.5. Nitrate

Nitrate concentration was determined by the method of Cataldo et al. [98]. Fresh leaf tissue
was homogenized in distilled water (1 g fresh tissue per 4 mL distilled water). The homogenate
was centrifuged at 4000 rpm for 15 min at RT (ALC centrifuge-model PK130R) and the recovered
supernatant was used for the colorimetric analysis. Twenty microliters of the extract were added
to 80 mL of 5% (w/v) salicylic acid in concentrated HySO4 (SA-HySO4). Afterwards, 3 mL of 1.5 N
NaOH were added. The samples were cooled to RT and absorbance at 410 nm was measured with a
spectrophotometer. Nitrate content was calculated referring to a KNOj3 standard calibration curve.
Nitrate concentration was expressed as mg of NO3-N per kg of fresh weight.
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4.3.6. Reducing and Total Sugars

Reducing sugars were measured using the dinitrosalicylic (DNS) acid method. This colorimetric
technique consists of a redox reaction between the 3,5-dinitrosalicyclic acid and the reducing sugars
present in the sample [99]. Approximately 1 g of leaf tissue was homogenized in a mortar with 3 mL of
water. The mixture was centrifuged at 4000 rpm for 15 min at RT. DNS assay was performed by mixing
0.2 mL of supernatant with 0.2 mL of DNS and incubated in a water bath at 100 °C for 5 min, then
1.5 mL of water was added to samples. After cooling at room temperature, the optical density was
determined spectrophotometrically at 530 nm, using a glucose standard curve.

The total sugars were determined on the same extract using the anthrone method with slight
modifications [100]. The anthrone reagent (10.3 mM) was prepared dissolving anthrone in 95% H;SOj.
The reagent was left to stand for 30—40 min before use, 0.5 mL extract was placed on top of 2.5 mL of
anthrone reagent incubated in ice for 5 min and then vortexed vigorously. The tubes were heated to
95 °C for 10 min and left to cool in ice. Readings were performed at 620 nm. Calibration curve was
carried out using a glucose standard solution.

4.3.7. Lipid Peroxidation

Lipid peroxidation was determined by measuring thiobarbituric acid reactive substances (TBARS)
in accordance with the method described by Heath and Parker [101]. Approximately 1 g of leaf tissue
was homogenized in a mortar with 3 mL of 0.1% (w/v) trichloroacetic acid (TCA). The mixture was
centrifuged at 4500 rpm for 10 min at room temperature. TBARS assay was performed by mixing 1 mL
of supernatant with 4 mL of 20% (w/v) TCA, 25 uL of 0.5% thiobarbituric acid (TBA) and incubated in a
water bath at 95 °C for 30 min. After being cooled on ice, the tubes were centrifugated at 4000 rpm for
10 min and the optical density was determined spectrophotometrically at 532 and 600 nm. Absorbance
at 600 nm was subtracted from the absorbance at 532 nm (as an index of non-specific turbidity) and
the concentration of TBARS was calculated using the Lambert-Beer law with an extinction coefficient
eéM =155 mM~! em™! and expressed as malondialdehyde (MDA) equivalents (nmol g~!) in line with
Du and Bramlage [102].

4.3.8. Osmolytes

Fresh leaf tissue was homogenized in distilled water (1 fresh tissue per 4 mL distilled water).
The homogenate was centrifuged at 4000 rpm for 15 min at RT and the recovered supernatant was
analyzed. Its osmolarity was determined using an automatic freezing point depression osmometer
(Digital Osmometer, Roebling, Berlin, Germany) calibrated with sodium chloride solutions.

4.3.9. Abscisic Acid

Approximately 1 g of leaf tissue was homogenized in a mortar with 3 mL of water, the mixture was
centrifuged at 4000 rpm for 15 min at RT and the supernatant was collected and then stored at —80 °C
until analysis. The abscisic acid (ABA) concentration was determined by an indirect enzyme linked
immuno-sorbent assay based on the use of DBPA1 monoclonal antibody, raised against S(+)-ABA
following the procedures of Trivellini et al. [103].

4.4. Statistical Analyses

Data obtained from physiological analyses were subjected to a two-way ANOVA, whereas data
related to gene expression analysis were subjected to a three-way ANOVA. Differences among means
were determined using the Tuckey post-test (p < 0.05). Statistics were performed using GraphPad
Prism version 6 or 8 for Windows (GraphPad Software, La Jolla California USA, www.graphpad.com).
Additional information is reported in each figure’s legend.
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5. Conclusions

In conclusion, results obtained in this work allowed understanding of some of the mechanisms
used by Diplotaxis tenuifolia L. to cope with a significant level of salt stress, in response to a foliar
treatment with a borage extracts, and the combination of both factors. Moreover, it also allowed us to
study the pattern of expression of several transcription factors belonging to different families involved
in salt stress responses over time. Transcription factors were found to be involved in the regulation of
several pathways such as the biosynthesis of cuticular waxes, phospholipids and brassinosteroids, the
sugar metabolism, and the intracellular transport. The results obtained in this work about the response
of rocket to the borage extract application as a biostimulant highlighted the difficulty of determining
the exact mode of action of these products.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/1/20/s1,
Figure S1: Changes in the expression of DtRD29A in rocket leaves treated with water (CONTROL) and with
borage extract (TREATMENT) and subjected to salt stress (200 mM). Measures were taken 2, 4, 6, 9, 24 h after the
initial exposure to salt stress, Figure S2: Changes in the expression of DtDREB2A (a), DtERF107 (b), DtERF003
(c), DtERF039 (d) in rocket leaves treated with water (CONTROL) and with borage extract (TREATMENT) and
subjected to salt stress (200 mM). Measures were taken 2, 4, 6, 9, 24 h after the initial exposure to salt stress,
Figure S3: Changes in the expression of DtbHLH122 (a), DtBEE2 (b), DtHBI1-like (c) and DtIBH1-like (d) in
rocket leaves treated with water (CONTROL) and with borage extract (TREATMENT) and subjected to salt stress
(200 mM). Measures were taken 2, 4, 6, 9, 24 h after the initial exposure to salt stress, Figure S4: Changes in
the expression of DIMYB30 (a) and DtMYB94 (b) in rocket leaves treated with water (CONTROL) and with
borage extract (TREATMENT) and subjected to salt stress (200 mM). Measures were taken 2, 4, 6, 9, 24 h after the
initial exposure to salt stress, Figure S5: Changes in the expression of DINAC29 (a), DtNAC72 (b), DtANAC69
(c), DINAC92 (d) and DINACO019 (e) in rocket leaves treated with water (CONTROL) and with borage extract
(TREATMENT) and subjected to salt stress (200 mM). Measures were taken 2, 4, 6, 9, 24 h after the initial exposure
to salt stress, Figure S6: Changes in the expression of DtC3H49 (a) and DtZAT12-like (b) in rocket leaves treated
with water (CONTROL) and with borage extract (TREATMENT) and subjected to salt stress (200 mM). Measures
were taken 2, 4, 6, 9, 24 h after the initial exposure to salt stress, Figure S7: Changes in the expression of DtABF3
(a) and DtbZIP63 (b) in rocket leaves treated with water (CONTROL) and with borage extract (TREATMENT)
and subjected to salt stress (200 mM). Measures were taken 2, 4, 6, 9, 24 h after the initial exposure to salt stress,
Figure S8: Changes in the expression of DtWRKY54 in rocket leaves treated with water (CONTROL) and with
borage extract (TREATMENT) and subjected to salt stress (200 mM). Measures were taken 2, 4, 6, 9, 24 h after the
initial exposure to salt stress, Figure S9. Changes in the expression of DtHB12 (a) and DtHB7 (b) in rocket leaves
treated with water (CONTROL) and with borage extract (TREATMENT) and subjected to salt stress (200 mM).
Measures were taken 2, 4, 6, 9, 24 h after the initial exposure to salt stress, Figure S10: Changes in the expression of
DtRABC2B in rocket leaves treated with water (CONTROL) and with borage extract (TREATMENT) and subjected
to salt stress (200 mM). Measures were taken 2, 4, 6, 9, 24 h after the initial exposure to salt stress, Figure S11:
Changes in the expression of an unknown transcription factors named Unknown?2 in rocket leaves treated with
water (CONTROL) and with borage extract (TREATMENT) and subjected to salt stress (200 mM). Measures were
taken 2, 4, 6,9, 24 h after the initial exposure to salt stress, Table S1: Statistical results of gene expression analyses
on rocket plants treated with borage extract and grown under salt stress condition. “S” means STRESS, “T” means
TREATMENT, “t” means TIME, “x” means the INTERACTION between factors, Table S2: Results of ANOVA of
physiological analyses on rocket plants treated with borage extract and grown under salt stress condition after 1, 2
and 4 days from the sawing (DAS). “S” means STRESS, “T” means TREATMENT, “x” means the INTERACTION
between factors, Table S3: Transcription factors selected from the Diplotaxis tenuifolia RNAseq EST database,
grouped by family and divided according to the results obtained by Cavaiuolo et al., (2017), Table S4: Accession
number, primers sequences and melting temperature (Tm) for qRT-PCR analysis.
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