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Abstract: The purpose of this study is to analyze the polyphenolic rich extract of Crocus sativus L.
petals (CSP) in modulating liver oxidative stress and inflammatory response status against rifampicin
isoniazid (INH-RIF) drug-induced liver injury. The INH-RIF was administered for 14 days with
varying doses in Wistar rats, while silymarin was administered as standard dose. We report the
defensive impacts of CSP against INH-RIF induced liver oxidative stress and proinflammatory
cytokine. The CSP treatment at both doses significantly controlled all modulating biochemical hepatic
injury indicators and resulted in the attenuation of arbitral INH-RIF damage. The components present
in CSP identified by LC–ESI-Q-TOF–MS were found to be flavonoids and fatty acids. It can be inferred
that CSP possesses a hepatoprotective capacity against INH-RIF-mediated hepatic injury, which may
prove to be a medically beneficial natural product for the management of drug-induced liver injury.

Keywords: anti-tuberculosis; Crocus sativus; cytokines; hepato-toxicity; polyphenols; silymarin

1. Introduction

Tuberculosis (TB) has been one of the major communicable diseases in the world over the past
two decades. Regardless of the development of various new diagnostic tools and medicines in the last
20 years, TB stays a worldwide emergency [1]. World Health Organization reported that in year 2017
around more than 10 million people became sick because of TB and approximately 3 million people
die each year [2]. Different medications are used in the treatment of susceptible or mono-resistant
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tuberculosis such as isoniazid (INH), rifampicin (RIF), pyrazinamide (PZA), ethambutol (EMB),
streptomycin, and durazinamide; however, the RIF and INH combinations act as a first-line treatment
regimen for 4 to 6 months [3]. Literature survey reported various adverse reactions of antituberculosis
(ATC) drugs. One of the adverse reaction of RIF and INH drugs is the development of drug-induced
hepatotoxicity (DIH); independently and in combination DIH is amplified in a synergistic manner [4].

Natural products are one of the main source of drugs used by humans worldwide and are currently
in huge demand within the context of health care provision and reform [5,6]. Across the globe, various
plants are used as traditional medicines for the management of hepatic ailments, currently there are
few allopathic medicines available on the market with hepatoprotective activity. Therefore, natural
products may offer efficacious, alternative source for the treatment of hepatic disorders [7].

Crocus sativus L. (CS) also popularly known as saffron is a flowering plant belonging to the Iridaceae
family and cultivated in countries such as Iran, Spain, Italy, etc., [8]. The chemical composition of
the CS varies from region to region, seasonal diversification and flora origin [9]. CS contains various
secondary metabolites that are responsible for different pharmacological activities. Traditionally CS
has been used for various ailments like antihypertensive [10], neuroprotective [11], antitussive [12],
aphrodisiac [13], antioxidant [14], antinociceptive [15], anti-inflammatory [16] activities.

Keeping in mind the above considerations, the purpose of the current study is to study the effect
of C. sativus petals extract (CSP) on the liver oxidative stress and inflammatory response status against
INH-RIF-induced liver injury.

2. Results

2.1. Chemical Profiling of CSP by LC–ESI-Q-TOF–MS

Polyphenolic rich extract was achieved by ultrasonic homogenizer extraction technique using
90% ethanol as a solvent as described. In the current study, the chemical profiling of CSP polyphenolic
rich extract was carried out by means of by LC–ESI-Q-TOF–MS; the molecular mass (m/z) and lambda
max (λmax) of the chemical compounds were compared with various database, literature survey, and
research articles shown in Table 1. According to the identification data, the chemical compounds
identified in CSP polyphenolic rich extract were flavonoids mostly flavonol derivatives along with
fatty acids derivatives as shown in Figure 1. The most dominating chemical compound present in the
CSP extract was rutin.

Table 1. Chromatographic condition and characterization of chemical profiling of Crocus sativus L.
petals (CSP) by LC–ESI-Q-TOF–MS.

Peak No. Retention Time
(min)

Molecular
Formula

Theoretical
(m/z)

Measured
(m/z) Compound Name

1 7.241 C25H37NO5 431.2722 432.2796 Hydroxysalmeterol
2 7.417 C15H10O7 302.0417 303.0490 Morin
3 7.704 C21H20O11 448.0995 449.1068 Quercetin
4 7.903 C27H30O16 610.1523 611.1595 Rutin

5 8.107 C30H44O3 452.335 454.3459
1alpha,25-dihydroxy-26,27-
dimethyl-20,21,22,22,23,23

-hexadehydro-24ahomovitaminD3
6 8.499 C15H10O6 286.047 287.0543 Fisetin
7 12.887 C13H20O3 224.1408 225.1481 Methyl jasmonate

8 13.477 C10H8O3 176.0473 177.0546 10-Hydroxy-8E-Decene-2,4,6-
triynoic acid

9 13.526 C17H26O5 310.1768 311.1841
Methyl 8-[2-(2-formyl-vinyl)-3-

hydroxy-5-oxo-cyclopentyl]
-octanoate

10 15.085 C12H25NO 200.2003 199.193 Odecanamide
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2. Materials and Methods 

Figure 1. Representative full scan chromatographic profile of CSP and the extracted ion chromatograms.

2.2. Estimation of TPC and TFC

Total phenolic content of CSP estimated by calibration curve with R2 = 0.992 was
89.63 ± 0.99 mg GAE/g, whereas the total flavonoids content with R2 = 0.989 was 65 ± 1.09 µg QE/g
Table 2.
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Table 2. Total phenolic content and flavonoids content of CSP.

Methods CSP R2

Total phenolic content (mg GAEa/g of extract) 89.63 ± 0.99 0.992

Total flavonoids content (µg QEb/g of extract) 65 ± 1.09 0.989
a Total phenolics content is expressed in terms of gallic acid equivalent (µg of GAE/g); b Total flavonoids content is
expressed in terms of quercetin equivalent (µg of QE/g). Values are expressed as mean ± standard deviation (n = 3).

2.3. In Vitro Antioxidant Activity

The IC50 value of DPPH and ABTS assays were 99.53 ± 0.63 with R2 = 0.992 and 116.63 ± 1.93 with
R2 = 0.990 of CSP at a concentration of 150 µg/mL respectively. The results were related with butylated
hydroxyanisole as standard sample, which shows an IC50 value of 65.46 ± 1.22 with R2 = 0.901 Table 3.

Table 3. Antioxidant activity of CSP.

CSP IC50 (µg/mL) R2 BHA IC50 (µg/mL) R2

DPPH Assay 99.53 ± 0.63 0.992 65.46 ± 1.22 0.901

ABTS Assay 116.63 ± 1.93 0.990 87.42 ± 0.990 0.989

All values are expressed as mean ± standard deviation (n = 3).

2.4. Elemental Analysis of the CS Petals Using ICP OES

The results of the elemental analysis by ICP OES revealed the presence of 25 micro and macro
elements in the CSP. The CSP was found to be very rich in potassium followed by calcium, phosphorous,
magnesium respectively as shown in Table 4.

Table 4. Concentration of elements in CSP using inductively coupled plasma-optical emission
spectrometry (ICP OES).

S. No Name of the Element Concentration (mg/Kg)

1. Silver 0.2

2. Aluminum 555

3. Arsenic 0.2

4. Boron 17.2

5. Barium 3.9

6. Beryllium <0.1

7. Calcium 4584

8. Cadmium <0.1

9. Cobalt 0.2

10. Chromium 1.6

11. Copper 9.6

12. Iron 1192

13. Potassium 22,256

14. Magnesium 1751

15. Manganese 33.9

16. Molybdenum 0.6

17. Sodium 211
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Table 4. Cont.

S. No Name of the Element Concentration (mg/Kg)

18. Nickel 3.4

19. Phosphorous 3569

20. Lead 0.7

21. Tin 0.1

22. Selenium 0.1

23. Strontium 9.1

24. Vanadium 1.2

25. Zinc 60.2

2.5. Biochemical Analysis

The findings showed that administration of INH-RIF combination in rats showed a significant
increase in the hepatic biomarker concentrations of ALT (p < 0.05), AST (p < 0.001), and ALP (p < 0.01)
in rats and a decrease in TP (p < 0.05) in rats compared to control group Table 5.

Table 5. Effects of the CSP on hepatic enzyme markers.

Groups ALT (IUL−1) AST (IUL−1) ALP (IUL−1) TP (g/dL)

Group I 62.23 ± 5.32 87.21 ± 5.23 100.43 ± 5.98 9.34 ± 0.21

Group II 143.90 ± 3.54 *** 302.43 ± 4.32 *** 278.21 ± 3.65 *** 3.18 ± 0.53 ***

Group III 90.98 ± 2.98 ### 95.01 ± 8.93 ### 138.32 ± 2.43 ### 7.02 ± 0.39 ###

Group IV 132.76 ± 4.34 ## 289.83 ± 8.93 # 193.43 ± 3.64 ## 3.98 ± 0.53 #

Group V 99.21 ± 7.03 ## 145.83 ± 6.83 ### 143.29 ± 4.83 ### 5.08 ± 0.98 ##

Annotation: *** p < 0.001 vs control, # p < 0.05, ## p < 0.01, ### p < 0.001 vs group II.

Whereas rats administered with CSP at doses of 100 mg/kg, 200 mg/kg b.wt and silymarin at
doses of 10 mg / kg b.wt demonstrated lower regulation of hepatic biomarkers (ALT, AST, and ALP)
and higher regulation of TP levels showing hepatoprotective activity of CSP. There was statistically
significant reduction of ALT, AST, and ALP levels in rats administrated with 200 mg/kg b.wt CSP as
compared with the toxic group.

2.6. Estimation of CAT, SOD, and MDA

The oxidative stress efficiency of CSP was measured against hepatotoxicity-stressed INH-RIF. The
findings showed that there was a statistically significant decrease in catalase (CAT) and superoxide
dismutase (SOD) concentrations in the toxic group and an increase in malondialdehyde (MDA)
concentrations compared to the control group.

The rats administrated with 100 mg/kg, 200 mg/kg b.wt, and silymarin at 10 mg/kg b.wt of CSP
prevented this induction and CAT, SOD, MDA levels were normalized to their control values. The CSP
at the dose of 200 mg/kg b.wt displayed maximum hepatoprotective as shown in Figure 2.
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Figure 2. Effect of different doses of CSP and INH-RIF in vivo antioxidant enzymes (a) superoxide
dismutase (SOD), (b) catalase (CAT), and (c) malondialdehyde (MDA). Values are mean ± S.E.M;
n = 6; ** p < 0.01, *** p < 0.001 vs. control, # p < 0.05, ## p < 0.01 vs. group II, n.s stands for not
statistically significant.

2.7. Proinflammatory Cytokine Analysis

The effect of CSP and INH-RIF treatment on (tumor necrosis factor alpha) TNF-α and
cyclooxygenase-2 (COX-2) inflammatory mediators was analyzed. There was an increase in TNF-α and
COX-2 levels in toxic group when compared with group I (p < 0.001). However, rats of group III, IV,
and V administrated with CSP and silymarin showed decreased TNF-α and COX-2 levels significantly
and dose dependently (Figure 3).
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Figure 3. Effect of different doses of CSP on INH-RIF induced proinflammatory cytokines (a) TNF-α
and (b) COX-2. INH-RIF showed steep rise in both the proinflammatory cytokines, administrated with
CSP and silymarin decreased TNF-α and COX-2 levels significantly and dose dependently. Values are
mean ± S.E.M; n = 6; *** p < 0.001 vs. control, # p < 0.05, ## p < 0.01, ### p < 0.001 vs. group II, n.s stands
for not statistically significant.

2.8. Histological Evaluation

Histopathological studies have shown that there is a change in normal liver building design
and apparent hepato-cellular necrosis and inflammation in group II compared to group I. Treatment
with silymarin in group III prevented all histopathological anomalies caused by INH-RIF. Group III
demonstrates highest regeneration of hepatocytes indicating its substantial hepatoprotective activity.
Likewise, group V also had shown noticeable recovery, but recovery was lower compared to group III
and much more noteworthy compared to group IV (Figure 4).
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Figure 4. Effect of different doses of CSP on liver histoarchitecture in INH-RIF induced liver injury.
Photomicrographs of staining of histological sections of colon depicting different experimental groups,
group I exhibited the normal integrated cellular architecture. Group-II shows extensive disintegration
of cells, which is the hallmark of INH-RIF toxicity. In groups III, IV and V CSP treatment showed
protection against INH-RIF-induced histopathological damage. magnification: 40×.

3. Discussion

In the current study, we investigated the effects of CSP on the INH-RIF-induced liver injury in
Wistar rats. The phytochemical screening of CSP by LC–ESI-Q-TOF–MS validated that the petals of CS
are rich source of flavonoids [17]. Nine different bioactive chemical compounds were present in the
CSP belonging mainly to flavonol, a derivative of flavonoids along with some fatty acid derivatives.
Fisetin was the predominating component apart from morin, quercetin, and rutin present in this
extract; all these compounds can negate the liver toxicity effect caused by INH-RIF via multiple
mechanisms [18,19]. Recent studies have shown the health benefits of flavonoids and their potent
antioxidant effects [20,21]. Flavonoid compounds are extremely important plant metabolites because
of their free radical scavenging ability due to their hydroxyl groups. Therefore, the flavonoid content
of plants may directly contribute specifically to their antioxidant and hepatoprotective activity [20–23].
Our results are compatible with the results of Bathaie and Mousavi [18], which showed that the C.
sativus stigma possessed higher phenolic, flavonoid content and consequently higher antioxidant
activity as compared to C. sativus petals [24]. The DPPH and ABTS assay are the most common method
used to assess the radical scavenging ability of the different compounds because they have the capacity
to give hydrogen free radicals. The mechanism behind the radical scavenging capacity is due to
flavonoids and phenolic acids, and these are generally weak in nature, and thus act as competent
electrons capable of responding to O2 ш–depending on the substitution within the phenolic ring [25].
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Our results are in line with previous literature that CSP was richest in essential and non-essential
minerals which are necessary for human wellbeing [26,27]. INH-RIF was selected as a hepatotoxic
because previously published studies have shown that INH-RIF induces significant changes in liver
cell fortification processes, both enzymatic and non-enzymatic [28–30]. During the metabolism of
INH by the liver, generation of acetylated metabolites like acetyl hydrazine and isonicotinic acid takes
place which are responsible for hepato-cellular injury [31–34]. Whereas, during the metabolism of RIF,
it gets converted to desacetyl rifampicin in liver which may lead to liver toxicity [34,35]. Previous
reports suggested that, RIF when co-administrated with INH resulted in increased hepatic oxidative
stress, and the synergistic effect of RIF and INH was assumed to be because of CytP−450 [36]. The
above caused the rise in level of ALT, AST, and ALP due to leakage of enzymes from the liver and
reduction in TP level in blood. It also changes the hepatocellular injury which includes hepatic cell
augmentation, cholestasis, and alteration of endogenous antioxidants [35]. This study showed, rats
treated with CSP at doses of 200 mg/kg b.wt and silymarin at 10 mg/kg b.wt have been shown to
more efficiently restore ALT, AST, and ALP enzyme levels to normal. In comparison with our report,
Omidi, et al. [36] reported that the C. sativus extract decreased the concentrations of hepatic enzyme
markers in INH-RIF mediated liver toxicity. CSP exhibits hepatoprotective activity in accordance to the
biological activity of flavonoid compounds in the erstwhile reports. Therefore, flavonoids like fisetin,
morin, quercetin, and rutin chemical compounds are responsible for antioxidant and hepatoprotective
activities of CSP [20,22,23,37,38].

According to Bansal et al. [39] the endogenous antioxidant enzymes present in our body play as a
defensive shield against the injury done by free radicals. The SOD enzyme whose purpose appears to
reduce the harmful effects due to hydroxyl radical (◦OH−) by scavenges O−2 to H2O2 consequently,
reduction of SOD level indicates hepatic injury. Similarly, CAT enzyme degrades H2O2 into water
and oxygen to protect tissue from reactive oxygen species [40–43]. The risks of hepatotoxicity were
raised because of an increase of free radicals and a lack of scavenging capacity of hepatocytes because
of increased rates of antioxidant biomarkers [44]. Whereas, increase in the MDA level caused liver
injuries because of oxidative stress [45,46]. Therefore, our results reveled that there is significant up
regulation of SOD and CAT enzyme levels and decrease in the levels of MDA in the serum of animals.
The results reveled hepato-protective activity of CSP at both doses.

The combination of INH-RIF metabolites stimulates Kuffer cells which cause activation of
proinflammatory cytokines receptors such as TNF-α and COX-2, which are in turn involved in apoptosis
and inflammation of the hepatocytes [47–51]. Our findings show that the concentrations of TNF-α and
COX-2 in the INH-RIF-treated animals significantly increased as compared to the controlled animals.
Nonetheless, following the administration of CSP and silymarin to INH-RIF-treated animals, the levels
of TNF-α and COX-2 decreased significantly. Our results further proposed that hepatoprotective
activity effects of CSP at 100 and 200 mg/kg b.wt were due to its potential to decrease the levels of both
proinflammatory cytokines markers.

Histopathology has also shown that the treatment of CSP has provided significant immunity
against hepatic damage. Metabolism of INH-RIF occurs largely in the liver, which is responsible for the
susceptibility of the organ to metabolic-dependent, drug-induced damage [52]. These metabolites may
be electrophilic compounds or free radicals that experience number of chemical reactions, like those of
depletion of reduced glutathione; covalent linking to proteins, lipids, or nucleic acids; or causing lipid
peroxidation [53]. CSP and its flavonoids demonstrated significant prophylactic impact as a result
of antioxidant activity and is apparently seen in histological findings of liver sections with distinct
hepatocytes, sinusoidal spaces, central veins, and mild degrees of fatty change, necrosis infiltration
almost comparable to the group III group. These findings are in accordance with the earlier reports
stating the role of flavonoids against hepatotoxicity and oxidative stress [25,54]. Previous studies have
also established that flavonoids reverse INH-RIF-induced fibrosis and necrosis [55].

The hepatic biochemical markers, the endogenous antioxidant enzymes, proinflammatory
cytokines markers the histological evaluation revealed that the CSP mostly at the dose of 200 mg/kg
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b.wt significantly attenuated the liver injury, which supports with the results of lower hepatic
biochemical markers.

4. Materials and Methods

4.1. Plant Material and Extraction

C. sativus L. petals (CSP) were collected from Pampore (34.02◦ N 74.93◦ E.), south of Kashmir,
India. After the collection, CS petals were dried in the shade and coarsely powdered. Then this coarse
powder was transferred into a 500 mL reagent bottles (Borosil®) and extracted with 90% ethanol using
the ultrasonic homogenizer for 60 min at 35 ◦C, 15 kHz (BioLogics, Inc. 300VT). The extract was filtered
with Whatman No. 1 filter paper (Supertex, grade 1), evaporated in vacuo (Buchi Rotavapor® R-210)
and lyophilized using BenchTop Pro with OmnitronicsTM freeze dryer. The CSP was then placed in the
desiccator for further testing.

4.2. Chemical Profiling of CSP by LC–ESI-Q-TOF–MS

The phytochemical testing of plant polyphenols was carried out using an LC-MS instrument
consisting of the Agilent 6200 series TOF/6500 series (Agilent ® Technologies, Palo Alto, CA, USA)
connected to the Agilent HPLC 1290 Infinity Binary Pump (Agilent ® Technologies, Palo Alto, CA,
USA) with an ESI interface. Zorbax Eclipse C18 column (5 µm, 150 mm × 2.1 mm) was used for
chromatographic separation at a flow rate of 0.2 mL/min with two separate mobile phases. Mobile
phase (A) water and mobile phase (B) 90 per cent acetonitrile (0.1 per cent formic acid) with gradient
system Table 6. The temperature of the column was maintained at 40 ◦C and injection volume was
3 µL with total run time of 30 min. The LC-MS operating parameters are as follows: the spectra were
obtained in ESI+ and ESI−modes in the range of m/z = 130–1000, gas temperature 250 ◦C, gas flow
13 L/min, nebulizer 35 psig, sheath gas temperature 300 ◦C, Sheath Gas Flow 11 capillary voltage
3.0 kV, and Fragmentor 125 V. All spectral data were collected using a PDA detector. All information,
acquisitions, and evaluation were regulated using the Agilent Mass Hunter Software version and the
Agilent Database Library was used to verify the compounds.

Table 6. Chromatographic condition (gradient system).

Time (min) Function Parameter

2.00 Change Solvent Composition Solvent composition A: 95.00% B: 5.00%
2.00 Change Flow Flow: 0.2 mL/min
2.00 Change Max. Pressure Limit Max. Pressure Limit: 1200.00 bar

15.00 Change Solvent Composition Solvent composition A: 5.00% B: 95.00%
15.00 Change Flow Flow: 0.2 mL/min
24.00 Change Solvent Composition Solvent composition A: 5.00% B: 95.00%
24.00 Change Flow Flow: 0.2 mL/min
25.00 Change Solvent Composition Solvent composition A: 95.00% B: 5.00%
25.00 Change Flow Flow: 0.2 mL/min
30.00 Change Solvent Composition Solvent composition A: 95.00% B: 5.00%

4.3. Estimation of Total Phenolic Content (TPC)

Folin-Ciocalteus assay was used to assess the total phenolic content of the CSP [51].

4.4. Estimation Total Flavonoid Content (TFC)

The colorimetric method was used to determine the total phenolic content of the CSP [56].

4.5. In-Vitro Antioxidant Activity

The antioxidant activity of CSP were determined by DPPH [24] and ABTS [57] assay.
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4.6. Elemental Analysis of the CS Petals Using ICP OES

Elements macro and micro were determined by using Spectro genesis ICP OES analyzer (SPECTRO
Analytical Instruments, Germany). Calibration curves of standard solutions were used to evaluate
each element.

4.7. Induction of Hepatotoxicity in Wistar Rats

Four to five-week-old male Wistar rats (165–190 gm) were used in the current study. All the
experimental animals were kept under controlled environment and acclimatized for a week, fed ad
libitum food and water. The investigations were conducted as per the “Committee for the Purpose
of Control and Supervision of Experiments on Animals Guidelines.” Thirty male Wistar rats (n = 30)
were included in the current study and are divided into five groups of six rats in each group. Group I
animals were administrated 0.9% normal saline for 14 days p.o., therefore served as control group.
Group II served as toxic group, animals were administrated only INH-RIF (1:1) 100 mg/ kg b.wt for
14 days i.p. After one-hour of administration of INH-RIF (1:1) 100 mg/ kg to the animals of groups
III, IV, and V, groups IV and V animals were administered with 100 mg/kg and 200 mg/kg b.wt CSP
p.o, respectively whereas group III animals were administered with silymarin 10 mg/kg b.wt p.o. for
14 days. All rats were anaesthetized (ISOPLAN ®) and sacrificed after final treatment and blood
samples were subsequently obtained for further experiments with dorsal venacava. The liver was
extracted from the body of the animals for various investigations.

4.8. Biochemical Analysis

Blood samples collected from all groups were centrifuged and serum was assessed for various
hepatic enzyme markers like aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline
phosphatase (ALP), and total protein TP by following reagent kits manuals.

4.9. Estimation of Catalase (CAT), Superoxide Dismutase (SOD) and Malondialdehyde (MDA)

The extracted liver was cleaned and homogenized in chilled buffered saline, the aliquot so obtained
was used for the estimation of CAT [58], SOD [59], and MDA [60].

4.10. Proinflammatory Cytokine Analysis

Inflammatory mediators TNF-α and COX-2 were evaluated in serum by a commercial
diagnostic kit.

4.11. Histological Evaluation

The histopathology study was evaluated by the procedure of Tahir et al. [61].

4.12. Statistical Analysis

Statistical Package for the Social Sciences (SPSS) Statistics Version 23 was used for the investigation
of all the data. Differences among the groups were assessed using the variance analysis taken after by
the Tukey-Kramer different comparison test and the least measure for measurable noteworthiness was
set at p < 0.05 for all comparisons.

4.13. Statement of Ethical Approval

All procedures for using experimental animals were checked and proper permission was obtained
from the Institutes animal ethics committee (Approval No: RAKMHSU-REC-7-2017-F-P).



Plants 2020, 9, 167 11 of 14

5. Conclusions

The current study demonstrated that CSP significantly decreased the levels of hepatic enzyme
and proinflammatory cytokines markers in the INH-RIF induced rats. The possible bioactive chemical
compounds responsible for the hepatoprotective activity of CSP are rutin, morin, festin, and quercetin.
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ALP Alkaline phosphatase
ALT Alanine aminotransferase
AST Aspartate aminotransferase
ATC Antituberculosis
CAT Catalase
COX-2 Cyclooxygenase
CS Crocus sativus L.
CSP Crocus sativus petals
DIH Drug-induced hepatotoxicity
DPPH 2,2-diphenyl-1-picry1hydrazy1
EMB Ethambutol
GAE/g Gallic acid equivalent per gram
IC50 Half maximal inhibitory concentration
ICP-OES Inductively coupled plasma—optical emission spectrometry
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LC-ESI-Q-TOFMS Liquid chromatography coupled with electrospray ionization-quadrupole-time of

flight-mass spectrometry
MDA Malondialdehyde
PZA Pymzinaide
QE/g Quercetin equivalent per gram
R2 Regression
RIF Rifampicin
SOD Superoxide dismutase
TB Tuberculosis
TFC Total flavonoid content
TNF-α Tumor necrosis factor alpha
TP Total protein
TPC Total phenolic content
WHO World Health Organization
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