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Abstract: Soil types and cropping systems influence the diversity and composition of the rhizospheric
microbial communities. Coptis chinensis Franch is one of the most important medicinal plants in
China. In the current study, we provide detailed information regarding the diversity and composition
of rhizospheric fungal communities of the C. chinensis plants in continuous cropping fields and fallow
fields in two seasons (winter and summer), using next-generation sequencing. Alpha diversity was
higher in the five-year C. chinensis field and lower in fallow fields. Significant differences analysis
confirmed more fungi in the cultivated field soil than in fallow fields. Additionally, PCoA of beta
diversity indices revealed that samples associated with the cultivated fields and fallow fields in
different seasons were separated. Five fungal phyla (Ascomycota, Basidiomycota, Chytridiomycota,
Glomeromycota and Mucoromycota) were identified from the soil samples in addition to the unclassified
fungal taxa and Cryptomycota, and among these phyla, Ascomycota was predominantly found.
FUNGuild fungal functional prediction revealed that saprotroph was the dominant trophic type in
all two time-series soil samples. Redundancy analysis (RDA) of the dominant phyla data and soil
physiochemical properties revealed the variations in fungal community structure in the soil samples.
Knowledge from the present study could provide a valuable reference for solving the continuous
cropping problems and promote the sustainable development of the C. chinensis industry.

Keywords: C. chinensis; continuous cropping; rhizosphere; fungi diversity; composition; structure

1. Introduction

Coptis chinensis Franch is a perennial plant, and is also one of the therapeutically most important
medicinal plants, and is commonly used in Chinese traditional medicine. The rhizome has a high
therapeutic value. Although the plant has a bitter flavor, the rhizome of the plant is being used as
a food ingredient, as well as being added to products such as honey and other drinks [1]. The roots
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alone or in the combination of other medicinal plants are being used to treat human diseases such as
diabetes, dysentery, jaundice, acute febrile and supportive infections, seasonal febrile disorders, sore
throat, fever and diarrhea [2].

The C. chinensis plant is mainly found in eastern Chongqing, western Hubei, northern Hunan,
southern Shanxi, Guizhou and other places of China. However, the main products of the plants are
being processed in the Shizhu County of Chongqing City and the Lichuan City of Hubei Province.
About thirty alkaloids have been extracted from the plants. Among the alkaloids, the berberine,
epi-berberine, palmatine, coptisine and jatrorrhizine are the main constituents [3]. The C. chinensis
plant grows in the shady, damp and cold climate and valleys of 500–2000 m above sea level.

Soil microorganisms play an important role in the ecosystem, and are the key factors associated
with soil quality, soil fertility and productivity. Changes in rhizospherice soil microorganisms affect
the absorption and transformation of soil nutrients [4–7]. Consistently, the quantity and species of
rhizospheric soil microorganisms are important factors that affect the growth, development and health
status of plants. Some studies have reported that continuous cropping affects the rhizospheric soil
microbial structure. In response, such alterations further contribute to the aggravation of continuous
cropping obstacles. Thus, the relationship between microbial community structure in the rhizospheric
soil and continuous cropping obstacles has attracted increasing attention [8–10]. Continuous cropping
is the cultivating of the same crop in the same soil for many years, and is a vital agriculture issue due
to depletion of the soil qualities and additions of harmful pests and soilborne microbial communities
resulting in yield decline [11]. Recently, an increasing number of studies have speculated that long-time
continuous cropping changed the diversity of microbial communities in soil [12,13].

Soil microbial communities are essential, and play critical roles in soil health and quality, soil
organic matter decomposition, nutrient availability and cycling. Both biotic and abiotic factors like
cropping system, plant species and soil types change the composition, diversity, structures and function
succession of these soil microbial communities found in the rhizosphere of the C. chinensis plants [14,15].
Among these soil microbial communities, the fungal communities in terms of abundance, composition,
activity and diversity play an important role in improving the ecosystem to guarantee soil quality and
the health of crops [16–18].

Previous studies on medicinal plant Rehmannia glutinosa suggest that monoculture can modify the
fungal community in the rhizosphere [18]. In another study, the amount of F. oxysporum increased
significantly in the rhizosphere of P. heterophylla under continuous cropping [19]. Moreover, continuous
cropping of C. chinensis resulted in a significant and constant decline in the richness and diversity
of the soil fungal population [20]. However, to the best of our belief, no studies are comparing the
diversity, composition, structure and functions of the rhizospheric fungal communities of C. chinensis
plants in different seasons and successive years.

In the present study, the composition, diversity, structure and functions of the rhizospheric fungal
communities of C. chinensis medicinal plants were observed for five years under continuous cropping
in two seasons, winter and summer. The study was conducted based on a large amount of data from
the next generation sequencing (NGS) platforms, such as Illumina MiSeq, using 18S fungal primers.
Further, the physicochemical properties of soil were also determined and correlated with the fungal
communities of the rhizosphere of the C. chinensis plant.

2. Method and Materials

2.1. Study Site and Soil Sampling

The soil samples were collected from crop fields of C. chinensis plants in Jiannan town, Lichuan
City, Hubei province, China (Coordinates: 108◦23′–108◦35′ E, 30◦18′–30◦35′ N), at an altitude of 1500 m,
where soil types are mostly sandy and clay, the average annual rainfall between 1198–1650 mm and
the average yearly temperature is 12.7 ◦C. The rhizospheric soil sampling (2 mm) was conducted from
different fields continuously cropped with C. chinensis for one-year (Y1), three-year (Y3), five-year (Y5)



Plants 2020, 9, 244 3 of 18

and fallow fields (FF), which were not cropped for more than three years over two seasons, winter
(15 August 2018) and summer (10 February 2019). Four C. chinensis fields were randomly selected
for the experiment. These Four fields were continuously cultivated areas, and another four sites
selected were fallow fields. One composite rhizosphere sample was taken per field from the roots
of 10 randomly selected C. chinensis plants. The plant roots were shaken vigorously to separate soil
that was not tightly adhering to the roots. In the fallow fields, there were no plants; the soil samples
were collected from the top 15 cm of soil. The soil was then transported to the laboratory in iceboxes.
In the laboratory, each soil sample was sieved to remove debris and stony materials using a 2 mm
sieve. Each sample was appropriately homogenized, and 10 g subsamples of soils were put into the
sterilized tubes and stored at −80 ◦C for DNA extraction, and other soils were saved for an analysis of
the physicochemical properties of this soil.

2.2. Analysis of Physicochemical Properties

A Mettler-Toledo TE 20 was used to test the soil pH by making a soil suspension with deionized
distilled water (1:20 w/v). The potassium dichromate internal heating method was used to measure the
soil organic matter (TOM). The total content of nitrogen (TCN) and phosphorus (TCP) was measured by
using a SMARTCHEM 200 Discrete analyzer, and the total content of potassium (TCK) was measured
by using the FP series multi-element flame photometer.

2.3. DNA Extraction and PCR Amplification

Microbial DNA was extracted from 0.5 g soil samples (dry weight) using the PowerSoil kit (MO BIO
Laboratories, Carlsbad, CA, USA) according to the manufacturer’s protocols. The DNA concentration
and purification were indicated by a Nano-Drop 2000 UV-vis spectrophotometer (Thermo Scientific,
Wilmington, DE, USA). Furthermore, DNA quality was screened by 1% agarose gel electrophoresis.
The DNA extract was pooled and kept at −80 ◦C until being used. The V5–V7 regions 18S rRNA
gene of fungi were amplified with primers SSU0817F (5′-TTAGCATGGAATAATRRAATAGGA-3′) and
1196R (5′-TCTGGACCTGGTGAGTTTCC-3′) [21,22] by the thermocycler PCR system (GeneAmp 9700,
CA, USA). PCR reactions were conducted using the program: 3 min of denaturation at 95 ◦C, 27 cycles
of 30 s at 95 ◦C, then 30 s for annealing temperature at 55 ◦C, 45 s for elongation at 72 ◦C and a final
extension at 72 ◦C for 10 min. PCR reactions were carried out in triplicate 20 µL mixtures containing
4 µL of 5× Fast-Pfu Buffer, 2 µL of 2.5 mM dNTPs, 0.8 µL of each primer (5 µM), 0.4 µL of FastPfu
Polymerase, 0.2 µL BSA and 10 ng of template DNA. The PCR products results were derived from a 2%
agarose gel. In addition, the purification was carried out by using the AxyPrep DNA Gel Extraction
Kit (Axygen Biosciences, Union City, CA, USA). The products were quantified using QuantiFluor™-ST
(Promega, Madison, WI, USA) according to the manufacturer’s protocol.

2.4. Illumina MiSeq Sequencing

Purified amplicons were pooled into equimolar and paired-end sequenced (2 × 300) on an Illumina
MiSeq-platform (Illumina, San Diego, CA, USA) according to the manufacturer’s protocol.

2.5. Processing of Sequencing Data

Raw FASTQ files were quality-filtered by Trimmomatic and merged by FLASH with the following
criteria. (i) The 300 bp reads were shortened at any site receiving an average quality score < 20
over a 50 bp sliding window, and discarding the truncated reads that were shorter the 50 bp. Reads
containing N-bases are also discarded. (ii) Sequences whose overlap was longer than 10 bp were
merged according to their overlap, with any mismatch being no more than two bp. (iii) Sequences
in each sample were separated according to barcodes (exactly matching) and primers (allowing two
nucleotide mismatching), and reads containing ambiguous bases were removed [23].

Operational taxonomic units (OTUs) cultivation by similarity using Mothur version 1.31.1 with
97% cutoff points and chimeric sequences, were removed by quantitative insights into microbial ecology
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(QIIME). The taxonomy of each gene sequence was examined against the Silva (SSU123) database with
a confidence threshold of 70% [24].

2.6. Statistic Analysis

Statistical analyses were conducted using Statistical Product and Service Solutions (SPSS) 18.0
software and the R vegan package. The remaining sequences of all of the samples were rarefied to the
same sequencing depth. Principal coordinates analysis (PCoA) of “the Bray–Curtis distances” was
performed using the R package “PCOA.” Venn diagrams were generated with the “venerable” package
in R. Redundancy analysis (RDA) of multiple correlation variations among environmental variables
(TOC, TCN, TCP, TCK, pH and community composition at the phylum level) was carried out by using
the “RDA” function, and the environmental factors were fitted with the ordination plots using the
vegan package in R with 999 permutations. The differential OTU abundances were calculated by using
the R package “DESeq2.” Differential abundance analysis was performed by fitting the generalized
linear model with a contrary binomial distribution to the normalized value of each out, and using a
Wald test to test the differential abundance. Enriched and depleted OTUs were defined as OTUs with
absolute differential abundance > 1.0 and p < 0.05.

One-way analyses of variance (ANOVA) with Tukey’s HSD multiple range tests were done
for multiple comparisons and the comparison of Pearson correlation coefficients between the soil
properties, and the abundances of fungal phyla were all calculated using SPSS v20.0 (SPSS Inc.,
Chicago, IL, USA). For alpha diversity, all analyses were based on the OTU clusters with a cutoff

of 3% dissimilarity. Chao, Shannon, Simpson and Phylogenetic diversity (Pd) were calculated to
estimate the richness and diversity of the fungal community of each sample in two times (winter and
summer) separately.

The fungal OTUs were transformed into text formatting, and the text was uploaded to
the FUNGuild Taxonomic Function (http://www.stbates.org/guilds/app.php) for fungal functional
prediction [25].

3. Result

3.1. Soil Physicochemical Properties

With the increased years of C. chinensis cultivation, the total content of nitrogen, phosphorus
and organic matter significantly increased in both winter and summer seasons. Soil organic matter
varied from 11.16 to 36.04 g kg−1 in the winter and from 8.35 to 33.90 g·kg−1 in summer. The soil
of the five-year (Y5) fields had the highest content of organic matter in winter and summer (36.04,
33.90 g·kg−1 respectively), and its lowest in the one-year (Y1) fields (11.16, 8.35 g·kg−1). The organic
matter contents were significantly lower in the continuous cropping fields than fallow fields (FF). The
soil total content of nitrogen varied from 0.99 to 3.27 g·kg−1 in winter and from 1.02 to 3.13 g kg−1 in
summer, among which the five-year (Y5) soil had the highest content in winter, and the FF had the
highest content in summer (3.27, 3.13 g·kg−1), while the one-year (Y1) fields had the lowest content in
both winter and summer.

The total content of phosphorus was higher in five-year (Y5) continuously cropped fields in both
winter and summer (4.18, 4.18 g kg−1 respectively), and the lowest content in fallow fields (FF) (1.17,
1.47 g·kg−1). Furthermore, the pH was slightly acidic, and varied from 4.49 to 5.84 in winter and from
5.59 to 6.48 in summer, being the highest value in one-year (Y1) and the lowest value in five-year (Y5)
in two seasons (Table 1).

http://www.stbates.org/guilds/app.php
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Table 1. Physiochemical characteristics of rhizospheric soil in winter and summer.

Seasons Samples TCN (g/kg) TCP (g/kg) TCK (g/kg) TOM (g/kg) pH

Winter

FF 2.66 ± 0.33ab 1.17 ± 0.04d 21.95 ± 0.58c 21.70 ± 0.64b 4.88 ± 0.08b

Y1 0.99 ± 0.16c 1.66 ± 0.03c 27.88 ± 1.13b 11.16 ± 1.45c 5.84 ± 0.33a

Y3 2.09 ± 0.26b 2.82 ± 0.44b 30.17 ± 1.03a 21.62 ± 1.57b 5.11 ± 0.32b

Y5 3.27 ± 0.68a 4.18 ± 0.23a 9.27 ± 0.22d 36.04 ± 3.33a 4.49 ± 0.01c

Summer

FF 3.13 ± 0.91a 1.47 ± 0.35c 21.86 ± 2.10b 21.44 ± 1.23b 6.20 ± 0.21b

Y1 1.02 ± 0.28b 1.97 ± 0.27bc 31.21 ± 2.97a 8.35 ± 1.12c 6.48 ± 0.25a

Y3 1.52 ± 0.78b 2.35 ± 0.71b 31.86 ± 1.71a 19.23 ± 0.68b 6.09 ± 0.13b

Y5 2.68 ± 0.48a 4.18 ± 0.38a 9.30 ± 1.17c 33.90 ± 4.49a 5.59 ± 0.10c

TCN: total content of Nitrogen; TCP: total content of phosphorus; TCK: total content of potassium; TOM: total
organic matter and pH. FF: fallow field soil; Y1: one-year C. chinensis cultivated the soil; Y3: three-year C. chinensis
cultivated the soil; Y5: five-year C. chinensis cultivated the soil. Values are means ± standard deviation (n = 4).
a,b,c,d; means followed by the same letter for a given factor are not significantly different (p < 0.05; Tukey’s HSD test).

3.2. Biodiversity

3.2.1. Alpha Diversity

Sequences were randomly selected from the modified sequences, and the number of sequences
was plotted against the number of OTUs they represent to build the rarefaction curves (Figure S1).
The curves trended to be flat as the number of sequences increased, and the upper limit of OTUs
for one-year (Y1), three-year (Y3), five-year (Y5) and fallow fields (FF) were 318, 257, 250 and 174,
respectively, in the winter season, and 357, 321, 307 and 246 in one-year (Y1), three-year (Y3), five-year
(Y5) and fallow fields (FF) respectively, in the summer season. Thus, we concluded that our sequencing
data were suitable for analysis, and that more sequencing data would not give many more OTUs.
The upper limit of OTUs for both three-year (Y3) and five-year (Y5) was lower than for one-year (Y1)
cropped fields, indicating that continuous cropping caused a decrease in the community diversity, and
it was evident by after one year of constant cropping, which corresponded with the diversity indices.
Rarefaction curves of OTUs were clustered at < 97% sequence identity for the four different C. chinensis
rhizosphere soil from 1, 3 and 5 years continuous cropping of one sample to the control fallow field.

Alpha diversity indices Chao, Shannon, Simpson, Observed OTUs and Phylogenetic diversity
(Pd), were used to reveal the diversity and richness within samples. The alpha diversity except for
the Simpson diversity indices was considerably higher in the one-year fields (Y1) as compared to the
three-year (Y3) and five-year (Y5) fields in winter and summer. The alpha diversity indices showed
higher in the winter seasons as compared with summer seasons. The diversity was lower in the fallow
fields (FF) as compared to the cultivated fields (Y1, Y3, and Y5). Among the cultivated fields, the
observed OTUs were significantly higher in the one-year (Y1) (Table S1 and Figure 1).
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Figure 1. Alpha diversity indices of the fungal community in C. chinensis rhizosphere soils and fallow
fields. Observed species richness (A), Shannon diversity index accounting for species abundance and
evenness of distribution (B), Inverse Simpson diversity (C), Chao that estimates the actual species
richness of sample (D), and the phylogenetic diversity (E) of FF, that is, the fallow field soil, where Y1
represents when one-year C. chinensis cultivated the soil, Y3 where three-year C. chinensis cultivated
the soil, and Y5 indicates that five-year C. chinensis cultivated the soil. There were four independent
replicates of each treatment.

3.2.2. Beta Diversity

Beta-diversity using the Bray–Curtis distance matrix revealed that the fungal communities in the
soil samples collected from the same fields in the same year were more similar to each other than the
corresponding soil samples of different years. For example, the fungal communities of the soil from
the one-year cropping fields (Y1) were clustered differently than the three-year (Y3) and five-year (Y5)
of cropping fields. However, the microbial communities of the three-year (Y3) and five-years (Y5) were
more similar to each other than those microbial communities of the one-year (Y1) (Figure 2).
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Figure 2. Bray–Curtis dissimilarity hierarchical cluster tree of soil fungal community; in winter (A)
and summer (B); FF: fallow field soil; Y1: one-year C. chinensis cultivated the soil; Y3: three-year C.
chinensis cultivated the soil; and Y5: five-year C. chinensis cultivated the soil.

Principle coordinate analysis (PCoA) based on UniFrac distances, i.e., unweighted and weighted,
revealed that the rhizospheric fungal communities of the C. chinensis in the different years clustered
separately in the summer season of the cropping years; however, the rhizospheric fungal communities
of the three-year (Y3) and five-years (Y5) were grouped in the winter season. The result indicates that
the fungal communities of the three-year (Y3) and five-years (Y5) are more similar to each other than
the fungal communities of the one-year (Y1) are. When cultivated fields are compared with the fallow
fields (FF), the fallow fields (FF) fungal communities clustered in different axis. The first two axes
explain 36.41% and 18.5% of the total variation for the winter data and 54.11% and 12.11% for summer
soil sample data. Additionally, in the winter, the fungal communities in the one-year (Y1) cultivated
field were separated from the other two three-years (Y3) and five-years (Y5) cultivated soil samples by
PC2, and the cultivated soil samples were separated by PC1 from the fallow field (FF). Furthermore,
three-year (Y3) and five-year (Y5) field soil samples in winter had the most similar fungal community
memberships (Figure 3).
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Figure 3. Principle coordinate analysis (PcoA); in winter (A) and summer (B); FF: fallow field soil; Y1:
one-year C. chinensis cultivated the soil; Y3: three-year C. chinensis cultivated the soil; and Y5: five-year
C. chinensis cultivated the soil.

Venn diagrams can show the similarity and overlap of the species between different samples
directly. There were 17, 3, 5 and 2 unique species which were present in the one-year (Y1), three-year
(Y3), five-year (Y5) and fallow (FF) fields in winter, respectively, while 20, 7, 10 and 21 unique species
were present in the summer sampling time, respectively. In winter, 100 (7.65%) common species were
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shared among the four groups of soil samples, which is the one-year (Y1) cultivated C. chinensis field
had in summer the highest species number. Whereas, in summer, 123 (7.36%) species were shared
among the samples.

A similar result in winter, the one-year (Y1) cultivated C. chinensis field had the highest species
number. In winter and summer, the cultivated fields had a more significant amount of species compared
with the fallow fields (Figure 4). These indicate that continuous cropping decreased the community
diversity of fungi in rhizospheric soil.
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3.3. Description of Fungal Communities

The OTUs present in these four samples and two seasons, including no-rank and unclassified,
were divided into 36 phyla, 114 families and 131 genera in the winter season, and 46 phyla, 172 families
and 209 genera in the summer season. Among the 36 phyla, the Ascomycota (55.20% of all sequence
reads), Basidiomycota (25.94%), unclassified fungi phyla (3.46%) and Glomeromycota (1.68%) were the
top four fungal phyla in winter. Whereas, among the 46 phyla, the Ascomycota (49.98% of all sequence
reads), Mucoromycota (21.48%), Basidiomycota (10.16%) and unclassified fungi (7.99%) were the four
most predominate fungal phyla in the summer season (Figure 5).

Multiple comparisons results showed that the mean proportions of Ascomycota were significantly
higher in fallow fields (FF) (69.67%) in summer. The relative abundance of Basidiomycota was
significantly higher in fallow fields (FF) (33.24%) in winter, but not significantly higher in three-year
(Y3) cropping fields (17.14%) in summer. Compare to the fallow fields (FF), the mean proportion of
Glomeromycota was markedly higher in one-year (Y1), followed by three-year (Y3) and five-year (Y5)
cropping fields in winter. The relative abundance of Mucoromycota was considerably higher in the
three-year (Y3) (26.98%) than the other fields in summer (Figure 5).

In the class taxonomic level, Sordariomycetes, Tremellomycetes, Lecanoromycetes and
Agaricomycetes in winter, and Sordariomycetes, Mucoromycota, Leotiomycetes, Tremellomycetes and
Agaricomycetes in summer were the most abundant fungal class (relative abundance > 2%) among the
20 most abundant fungal classes. The relative abundance of Sordariomycetes was significantly higher
in five-year (Y5) cropping fields (35.94, 35.57%, respectively) in winter and summer (Table S2).
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Figure 5. Multiple comparisons between the relative abundance of eight top fungal phyla: in winter
(A) and summer (B); FF: fallow field soil; Y1: one-year C. chinensis cultivated the soil; Y3: three-year
C. chinensis cultivated the soil; Y5: five-year C. chinensis cultivated the soil. * shows significant
difference (p-value<0.05), ** shows significant difference (p-value<0.01), *** shows significant difference
(p-value<0.001).

At the genus taxonomic level, Boeremia, Mrakia, Hypocrea, Fusarium, and Pseudoplatyophyra were
identified in winter and Chaetomium, Saitozyma, Heterocephalacria, Boeremia and Colpoda were defined
in summer. Among these genera, the relative abundance of Fusarium and Hypocrea were increased
with the increase of cropping years from 0.46%, 1.10%, respectively, in one-year (Y1) to 1.60%, 3.67% in
five-year (Y5) in winter, but in summer seasons the Fusarium and Hypocrea genera were not identified
(Table S3).

3.4. Functional Prediction of Fungal Communities

FUNGuild classified three main trophic modes (Pathotroph, Saprotroph and Symbiotroph),
including eight functional guilds in our samples. The OTUs without any assigned functions dominated
sequence richness (55.96%) in winter and (62.28%) in summer. In assigned OTUs with function, the
saprotroph was the dominant trophic type in winter and summer, except in the three years (Y3) block
in summer that was dominated by symbiotroph (27.41%). Besides, pathotroph was the dominant
fungal trophic mode in one-year (Y1) (13.60%) in summer and fallow fields (FF) (21.27%) in winter.
Moreover, the pathotroph trophic mode showed an increasing trend in winter and a decreasing trend
in summer with the increasing number of cultivation years. Conversely, the relative OTUs’ abundance
of symbiotroph was decreased from 10.62% in winter to 3.76% in summer. Symbiotroph becomes the
maximum abundance group in Y3 (27.41%) in summer and one-year (Y1) (5.25%) in winter (Figure 6A).

In the functional guild, Undefined Saprotrophs, Animal Pathogen, Dung Saprotroph and
Plant Pathogen were detected in higher abundances in one-year (Y1) (12.73%, 8.48%, 2.06% and
1.09%, respectively), in winter. However, in summer, Undefined Saprotroph, Animal Pathogen and
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Ectomycorrhizal had higher Relative OTUs abundances in FF 32.93%, 5.49% and 1.41%, respectively
(Figure 6B,C).
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Figure 6. The relative abundance of three trophic modes in rhizosphere soil (A) relative abundance
functional guild winter (B) and summer (C); FF: fallow field soil; Y1: one-year C. chinensis cultivated
soil; Y3: three-year C. chinensis cultivated soil; Y5: five-year C. chinensis cultivated soil.

3.5. Effect of Environmental Factors on Fungal Communities

Redundancy analysis (RDA) of the dominant phyla data and soil physiochemical properties
revealed variations in fungal community structure in the soil samples. The first two RDA components
(RDA1 and RDA2) explain 20.55% and 6.88% of the total variance, respectively, in winter, and 44.57%
and 1.93% (RDA1 and RDA2), in summer. No significant trends were observed between the soil
environmental factors and the abundances of the top 30 most common OTUs across the 12 soil samples
from four different fields. However, if we examine the phylum-level relative abundances, the strong
influence of soil environmental variables on overall fungal community composition is evident (Figure 7).
To investigate the significances of the effects of soil environmental factors on bacterial community
composition, we calculated the r2 and p-values. Among these soil environmental factors, the total
content of phosphorus (TCP) showed both the highest r2 value (r2 = 0.4375, p-values = 0.011) in winter,
indicating that TCP had the highest effect on fungal community composition.
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Figure 7. The length and angle of lines represent redundancy analysis (RDA) of the abundant fungal
phyla and environmental variables in winter (A) and summer (B); Correlations between RDA axes and
the environmental variables. Correlations between RDA axes and the rhizosphere fungal phyla are
represented by words (i.e., the fungal phylum names). FF: fallow field soil; Y1: one-year C. chinensis
cultivated soil; Y3: three-year C. chinensis cultivated soil; Y5: five-year C. chinensis cultivated soil; TCN:
total content of Nitrogen; TCP: total content of phosphorus; TCK: total content of potassium; TOC: total
organic carbon and pH.

Moreover, Spearman’s correlation coefficient was used to evaluate the relationship between soil
physicochemical properties and fungal phyla abundance (Figure 8). The Basidiomycota abundant
showed a positive correlation (r = 0.594) with TCK in winter, Glomeromycota was positively correlated
(r = 0.5) with TCP in winter, Chytridiomycota showed a negative relationship with TCP and TOC
(r = 0.717, r = 0.545) respectively, in winter. Cryptomycota phyla relative abundances were negatively
correlated with TCN and TOC and positively correlated with TCK in summer.
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Figure 8. The heatmap of the correlation between fungal phyla and physicochemical characteristics
of rhizospheric soil (A) in winter and (B) in summer. This heatmap was created according to the
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relationships are represented in blue. The significant correlations are presented as asterisks (*, p < 0.05;
**, p < 0.01; ***, p < 0.001).

4. Discussion

Continuous cropping obstacles are caused by complex factors within the soil–crop–microbial
system, and these need to be resolved through a combination of multiple methods. There are many
factors related to continuous cropping obstacles, such as soil enzyme activity, soil physical and chemical
properties and root exudates [26]. Numerous studies have reported that continuous cropping led
to the accumulation of organic acids and phenolic acids secreted by roots, promoting the growth
of pathogenic microorganisms and further affecting the structure of the rhizospheric soil microbial
community [6]. About 70% of medicinal plant species having tuber roots with different degrees are
affected by continuous cropping obstacles such as Rehmannia glutinosa, Pseudostellaria heterophylla, and
Panax notoginseng, etc. [18,27]. Our results showed that the continuous cropping of C. chinensis and
seasons significantly affected soil properties (Table 1). In this study, the total content of nitrogen,
phosphorus and organic matter all showed an increasing trend with the increase of cultivation years
in winter and summer, which may result from the misuse of inorganic fertilizers [28,29]. Moreover,
a similar result was also reported by Tan et al. [30] in continuous P. notoginseng cropping, which could
also be attributed to a long-term oversupply of chemical fertilizer [31]. Lower pH was observed in the
continuous cropping of C. chinensis fields, and possible reasons may be the long-term application of
nitrogen fertilizer and the aggregation of allelochemicals [32], leading to soil acidification in C. chinensis
fields [28,33]. Another possible reason for acidification in C. chinensis continuous cropping systems
may be the different bioactive catechins produced by roots, leaves and other residues, that are used in
the fields.

Microbial community richness and diversity play a critical role in soil quality, function and
productivity [2]. In this study, we found that the continuous cropping of C. chinensis resulted in a
considerable change in soil fungal community diversity and richness. The observed species richness,
Shannon diversity index, Chao1 and phylogenetic diversity indices showed a decreasing trend with
the increase in the number of crop years in winter and summer, and were significantly higher than
results from FF (Figure 1). Similarly, Song et al. [2] have found that the number of OTUs and the
Shannon diversity index declined consistently with the increase in the number of continuous cropping
years of C. chinensis. Similar results have also been observed in Notoginseng [34], tea [33], coffee [35],
soybean [36], etc. The decreases in fungal diversity and richness have been recognized as an essential
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threat to the ecosystem, resulting in loss of soil function [37,38], which may arise in reduced C. chinensis
production under continuous cropping practices.

The result of Hierarchical clustering analysis based on the Bray–Curtis distance and
UniFrac-weighted principal coordinate analysis (PCoA) in this study, demonstrated that the continuous
cropping of C. chinensis had strong effects upon the soil fungal community structure and showed
apparent variations in the fungal community (Figures 2 and 3). This result was consistent with the
outcome of Xiong et al. [28], that the continuous cultivation of vanilla had a significant influence
on alterations in the fungal community structure. This phenomenon has also been observed for
many other perennials and annual crops such as soybean [36,39], Panax notoginseng [30], potato [40],
coffee [35], peanut [14] and tea [35] continuous cropping systems. Thus, we can hypothesize that soil
microbial communities could be affected by continuous cropping.

In the agro-ecosystem, the soil microbial community as a soil quality indicator plays an essential
role in nutrient cycling and organic matter dynamics. Amendments in the composition of soil microbial
communities or microbial biomass resulted in changes in soil quality [30,41]. In the present study,
we found that Ascomycota (according to 55.20% and 49.98% RA, respectively) was the most abundant
fungal phylum in the samples in winter and summer (Figure 5). Moreover, the relative abundance of
Ascomycota was increased in five-year (Y5) continuous cropping compared with one-year (Y1), but
compared with fallow fields (FF), were decreased. Basidiomycota (according to 25.94% RA) was the
second most abundant fungal phylum in winter, and showed a decreasing trend in five-year (Y5)
cropping fields compared with one-year (Y1) and fallow fields (FF). Mucoromycota (according to 21.48%
RA) was a dominant phylum, and showed an increasing trend in five-year (Y5) continuous cropping
compared with one-year (Y1) and fallow fields (FF) in summer. These findings generally agree with
previous studies reporting that Ascomycota and Basidiomycota were the top two most abundant phyla
in continuous cropping [14]. Furthermore, similar results have also been found in forest soils and
other soil types in nature [42,43]. Sordariomycetes (according to 22.68% RA), Tremellomycetes (according
to 17.32% RA) in winter and Sordariomycetes (according to 24.20% RA), Mucoromycota (according to
19.71% RA) in summer were also dominant fungal classes. At the genus taxonomic level, the relative
abundance of Fusarium, Hypocrea were increased with the increase of cropping years from 0.46%, 1.10%,
respectively, in one-year (Y1) to 1.60%, 3.67% in five-year (Y5) in winter. Similarly, Song et al. [44]
observed that the continuous cropping of C. chinensis resulted in an increased relative abundance of
Fusarium and Hypocrea.

FUNGuild is a useful database for the function of members within the fungal community, and
could provide information on the functional roles of fungi from the way of trophic guilds rather than
resolving the purpose from individual taxa [45,46]. The undefined saprotroph dominated the functional
guilds in winter and summer (Figure 6), which could play central roles in organic decomposition [25].
Furthermore, the result was consistent with Wei et al. [47] animal pathogen and plant-pathogen are
the significant functional guilds, and are mostly intracellular and parasitize plants more widely than
animals [48]. However, in the present study, the relative abundance of the plant pathogens showed
significantly lower proportions than that of animal pathogens in winter and summer (Figure 6). Animal
pathogens showed a lower percentage in five-year (Y5) continuous cropping compared with one-year
(Y1) in winter, but a higher proportion in five-year (Y5) compared with one-year (Y1) in summer. On the
other hand, the relative proportion of plant pathogen showed a lower percentage of five-year (Y5)
compared with one-year (Y1) in winter and summer. This study demonstrated that the similar function
of these OTUs had different distributions, suggesting the essential roles of rare fungal sub-community
in standard features.

Soil physicochemical properties have an essential role in structuring microbial communities [49].
According to some reported studies, Soil properties could be a significant factor in controlling microbial
community structure [43,50,51]. RDA analyzed the impacts of the total content of nitrogen, phosphorus
and potassium, soil pH and organic matter content on the fungal community. This result was in
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agreement with some previous studies in which the rhizospheric soil fungal community composition
and structure were significantly altered based on the number of continuous cropping years [2,30,36].

Determining the correlation between the diversity of the soil fungal community and the soil
environmental factors could provide a better understanding mechanisms of continuous cropping
obstacles [28]. In this study, we found that the Basidiomycota abundance showed a positive correlation
with TCK in winter, Glomeromycota was positively correlated with TCP in winter, and that Chytridiomycota
showed a negative relationship with TCP and TOC in winter. The relative abundance of the Cryptomycota
phylum was negatively correlated with TCN and TOC, and positively correlated with TCK in summer
(Figure 8). Changes in fungal community structure in response to the continuous cropping of C. chinensis
could not be only referred to deviations in soil chemical properties, but may also be under long-term
influences of C. chinensis plant root exudates or residues [52], which could not be determined in the
range of this study.

5. Conclusions

Our results show that the continuous cropping of C. chinensis led to significant ascends in the
total content of nitrogen, phosphorus and organic matter, and declines in pH and fungal community
richness and diversity. Furthermore, in this study, we found that cropping years had a significant
influence on soil fungal community composition and structure. In addition, considerable variation
was found among the fungal trophic guilds group in soil samples, which were affected by continuous
cropping years. Thus, these results provide a platform for developing sustainable agricultural research
to enhance microbial activity and boost C. chinensis production in continuous cropping soils, which is
vital for C. chinensis production in China.
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