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Abstract: The soybean (Glycine max (L.) Merr.) is an important oil and food crop. Its growth and
development is regulated by complex genetic networks, and there are still many genes with unknown
functions in regulation pathways. In this study, GmNMHC5, a member of the MADS-box protein
family, was found to promote flowering and maturity in the soybean. Gene expression profiling in
transgenic plants confirmed that the 35S:GmNMHC5 T3 generation had early flowering and precocity.
We used CRISPR-Cas9 to edit GmNMHC5 and found that late flowering and maturity occurred in
Gmnmhc5 lines with stable inheritance. Remarkably, in the 35S:GmNMHC5 plants, the expression of
flowering inhibitors GmFT1a and GmFT4 was inhibited. In addition, overexpression of GmNMHC5 in
ft-10 (a late flowering Arabidopsis thaliana mutant lacking Flowering Locus T (FT) function) rescued the
extremely late-flowering phenotype of the mutant A. thaliana. These results suggest that GmNMHC5 is
a positive transcription factor of flowering and maturity in the soybean, which has a close relationship
with FT homologs in the flowering regulation pathway. This discovery provides new ideas for
the improvement of the flowering regulation network, and can also provide guidance for future
breeding work.
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1. Introduction

The MADS-box family is an important transcriptional regulator in plants. Members of this
family have a similar secondary structure including the N-terminal DNA-binding MADS-box
domain. The MADS-box domain is followed by an intervening region, the K-box, involved in
protein–protein interactions, and the C-terminus, in which the divergence among members is greater [1].
MADS-box family proteins play a wide range of functions in plants, especially in the regulation of
flowering time and the development of various reproductive organs [2–4]. The Arabidopsis MADS-box
genes, e.g., AGAMOUS-LIKE 20 (AGL20), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1
(SOC1), and AGAMOUS-LIKE 28 (AGL28), positively regulate the flowering process [5–7]. In turn,
AGAMOUS-LIKE 18 (AGL18) negatively regulates flowering [8].

Some MADS-box genes are also involved in the regulation of root development. GmNMH7,
a MADS-box transcription factor (TF), was found to inhibit root development and nodulation of
the soybean [9]. ARABIDOPSIS NITRATE REGULATED 1 (ANR1) functions nutrient response in
the roots and controls lateral root elongation in response to nitrate [10]. Recent studies have shown
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that AGL17 is also involved in the regulation of flowering time, which can promote the flowering of
Arabidopsis by promoting the expression of LFY and AP1 [11]. Early research has shown that nmhC5,
which is orthologous to root-expressed AGL17 subfamily proteins in Arabidopsis, forms homodimers
and performs its functions by binding to a CArG consensus sequence in vitro [12]. GmNMHC5 was
originally cloned from soybean (Glycine max) root nodules and was confirmed to promote the growth
of soybean lateral root and root nodules using the soybean root transformation system [13].

The entire growth cycle of plants is influenced by the external environment and regulated
by internal factors, of which the transformation from vegetative growth to reproductive growth is
particularly important for determining the flowering time of plants. In most cases, how these genes act
in regulating flowering time is not clear, but fundamental insights into the mechanisms underlying
the transformation have been presented in recent years [14]. The soybean is a typical short-day plant,
and its flowering process is strictly regulated by photoperiod. Its flowering process can be reversed
when switching from short-day (SD) to long-day (LD) conditions [15]. Recent studies have revealed the
maturity gene E9 is FT2a, an ortholog of Arabidopsis FLOWERING LOCUS T [16]. Located downstream
of the complex flowering regulation network, the Flowering Locus T (FT) homologs play very important
regulatory roles, and have become a hotspot in the field of plant research.

Many studies suggest that FT has a central position in mediating the floral transition, being
induced and transported to the apical meristem from leaves to perform functions [17,18]. Ten FT
homologous genes have been identified in the soybean, but their roles in flowering regulation are
different. GmFT2a and GmFT5a in soybeans were shown to be positive promoting factors of the
flowering process [19–22]. GmFT4 was shown to delay flowering in Arabidopsis [23]. In a recent study,
GmFT1a was found to inhibit the flowering of the soybean [24]. FT was also revealed to be an important
integrating factor in the photoperiodic pathway that was regulated by CONSTANS (CO) [25] and the
FT/FD protein complex [26].

In this study, we found that overexpression of GmNMHC5 promoted early flowering and early
maturation of the soybean, and the CRISPR-Cas9-edited Gmnmhc5 lines showed an obvious late
flowering phenotype, with the mature stage being delayed accordingly. We also created Arabidopsis
transgenic lines 35S:GmNMHC5-ft-10 and used them to reveal the relationship between GmNMHC5
and FT in regulating the flowering pathway. Taken together, we propose that GmNMHC5 is a positive
regulator of flowering, and the soybean has developed a balanced pathway to control flowering
through coordinated regulation between the flowering promoter GmNMHC5 and repressors GmFT1a
and GmFT4.

2. Results

2.1. Overexpression of GmNMHC5 Significantly Promoted Flowering in Soybeans

To investigate the function of GmNMHC5, a constructed plasmid containing the GmNMHC5 CDS
driven by the CaMV 35S promoter was transformed into the soybean Jack cultivar at mid-maturity.
In the T2 generation, we compared the flowering time between GmNMHC5 overexpression transgenic
lines and WT plants under natural conditions (summer) in Beijing, China. We found that GmNMHC5
overexpression in homozygous lines promoted flowering. The T3 progeny of the homozygous
GmNMHC5-T3#5, GmNMHC5-T3#25, and GmNMHC5-T3#32 lines were grown under both LD and SD
photoperiodic conditions, and the genotypes were subsequently examined to confirm that GmNMHC5
was stably overexpressed when inherited from the T2 generation (data not shown).

In terms of flowering, 35S:GmNMHC5 mutants showed early flowering under both LD and SD
(Figure 1a,b). The WT plants flowered at 35.4 days after emergence (DAE) under SD conditions,
while the GmNMHC5 transgenic lines flowered at 22.6 DAE (line 5), 21.0 DAE (line 25), and 21.7 DAE
(line 32). Under LD conditions, the WT plants flowered at 46 DAE, while the flowering dates of the
three transgenic lines were 38.8 DAE (line 5), 39.2 DAE (line 25), and 37.9 DAE (line 32). Through
statistical analysis of sufficient samples, we confirmed that GmNMHC5 promoted soybean flowering
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under both LD and SD conditions (Figure 1d). At the same time, the GmNMHC5 overexpression plants
also showed precocious maturation (Figure 1c,e). Under SD conditions, GmNMHC5 transgenic strains
were matured at 44.0 DAE (line 5), 45.0 DAE (line 25), and 45.4 DAE (line 32), respectively, while the
WT matured at 55.4 DAE. Under LD conditions, WT plants matured at 69.8 DAE, and the maturation
time of the three transgenic strains was 61.1 DAE (line 5), 59.4 DAE (line 25), and 55.4 DAE (line 32).
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Figure 1. Phenotypes of the GmNMHC5 transgenic soybean plants. (a) An overview of WT soybean
plants, 35S:GmNMHC5 at 37 days after emergence (DAE) under long-day (LD) conditions, and a
close-up view of the flower areas framed by the boxes. (b) An overview of WT soybean plants,
35S:GmNMHC5 at 25 DAE under short-day (SD) conditions, and a close-up view of the flower areas
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framed by the boxes. (c) An overview of WT soybean plants, 35S:GmNMHC5 at 48 DAE under LD
conditions, and a close-up view of the areas framed by the boxes. (d) Flowering times of 35S:GmNMHC5
mutants and WT plants. The exact numbers of individual plants are shown. Under LD conditions: WT
(n = 15), line 5 (n = 14), line 25 (n = 16), line 32 (n = 17); under SD conditions: WT (n = 13), line 5 (n = 13),
line 25 (n = 5), line 32 (n = 16). A one-way analysis of variance (ANOVA) was used to compare the
significance: **, p < 0.01. (e) Maturation times of 35S:GmNMHC5 and WT plants. The exact numbers of
individual plants are shown. Under LD conditions: WT (n = 15), line 5 (n = 14), line 25 (n = 16), line 32
(n = 18); under SD conditions: WT (n = 14), line 5 (n = 16), line 25 (n = 14), line 32 (n = 15). A one-way
analysis of variance (ANOVA) was used to compare the significance: **, p < 0.01. Scale bar: 10 cm.(n =

15), line 5 (n = 14), line 25 (n = 16), line 32 (n = 17); under SD conditions: WT (n = 13), line 5 (n = 13),
line 25 (n = 5), line 32 (n = 16). A one-way analysis of variance (ANOVA) was used to compare the
significance: **, p < 0.01. (e) Maturation times of 35S:GmNMHC5 and WT plants. The exact numbers of
individual plants are shown. Under LD conditions: WT (n = 15), line 5 (n = 14), line 25 (n = 16), line 32
(n = 18); under SD conditions: WT (n = 14), line 5 (n = 16), line 25 (n = 14), line 32 (n = 15). A one-way
analysis of variance (ANOVA) was used to compare the significance: **, p < 0.01. Scale bar: 10 cm.

2.2. Flower Development of the 35S:GmNMHC5 Lines Occurred Earlier than That of the Wild-Type Lines

Paraffin sections of the wild-type and 35S:GmNMHC5 materials in different periods were made
to compare their anatomical structure. Under the same growth conditions, the flower primordia
structure of the 35S:GmNMHC5 lines appeared at 30 DAE, while no flower structure was observed in
the WT. At 36 DAE, the wild-type flower primordia had formed. At 46 DAE, the flower structures
of wild-type plants was complete, but the GmNMHC5 overexpression plants had already completed
pollen formation (Figure 2).
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Figure 2. Flower structure development of wild-type and 35S:GmNMHC5 strains displayed in paraffin
sections. All plants were treated under LD conditions. Apical raceme primordium appeared at 30 DAE
in the transgenic lines, while the wild-type plants were still in the vegetative growth stage. A terminal
floral bud of 35S:GmNMHC5 mutant was observed at 36 DAE while the flower bud structure of wild
type had just appeared. Similar structures were found at 46 DAE in WT. (Abbreviations, a: Anther,
am: Apical meristem, c: Carpel, fp: Floral primordium, fm: Floral meristem, po: Pollen, pp: Pistil
primordium, st: Stamen, pep: Petal primordium, and p: Pistil). Scale bar: 200 µm.

2.3. Targeted Mutagenesis of Gmnmhc5 Induced by CRISPR-Cas9

GmNMHC5 was edited by the editing tool CRISPR-Cas9. One target site (named GmNMHC5-SP1)
in the second exon of GmNMHC5 was chosen (Figure 3a), and the corresponding sgRNA-Cas9 vector
was transformed into the soybean cultivar Jack via Agrobacterium tumefaciens mediated transformation.
In this experiment, we obtained 12 transformed plants (87 seeds) in the T0 generation, which were
tested by sequencing including three edited strains (Gmnmhc5-#5-1 to Gmnmhc5-#5-3). We separately
planted individual edited plants. The T1 generation seeds were detected as for T0. After sequencing,
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we got successfully edited three lines plants (Gmnmhc5-#5-1 to Gmnmhc5-#5-3) in these T1 homozygous
lines. After sequencing comparison, we detected one mutation right at the target site GmNMHC5-SP1
(112-bp insertion and 6-bp mutation) (Figure 3b,c). The type of frameshift mutations induced by
CRISPR-Cas9 at the target site of GmNMHC5 generated premature translation termination codons
(PTCs) (Figure S1). Therefore, the GmNMHC5 gene will not be translated and the function will be
lost. We therefore chose these 3 lines for continuous breeding and subsequent phenotypic analyses.
By planting Gmnmhc5-#5-1 to Gmnmhc5-#5-3 separately, we obtained a T2 generation (including 33
plants) with stable inheritance of editing type and conducted phenotypic analyses. In addition, we also
tested the marker gene bar with a test strip, and the test strips were all positive (Figure S2), indicating
that CAS9 cassette still exists in the mutant strain. Thus, the stable inheritance of induced mutation
(Gmnmhc5-#5-1 to Gmnmhc5-#5-3) was obtained.
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Figure 3. (a) Gene structure of Gmnmhc5 with target site of CRISPR-Cas9 designed in the second
exon. Pink stripe: Exon. Black line: Intron. Gray stripe: Untranslated regions (UTR). The underlined
nucleotides indicate the target sites (named GmNMHC5-SP1). Nucleotides in red represent protospacer
adjacent motif (PAM) sequences. (b) Sequences of wild type and representative mutation type induced
at target site GmNMHC5-SP1 are presented (mutations and insertions). (c) Sequence peaks of wild type
and representative mutation type at target site GmNMHC5-SP1. The red arrow indicates the beginning
location of mutations.
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2.4. Gmnmhc5 Showed Obviously Late Flowering in Soybean

In the T1 generation of Gmnmhc5, we compared the flowering time between the mutants and
the WT and found that homozygous mutagenesis of Gmnmhc5 at the target site delayed flowering
time. The T2 progeny of homozygous Gmnmhc5-#5-1 to Gmnmhc5-#5-3 lines were grown under both
LD and SD photoperiodic conditions. Under LD conditions, the T2 Gmnmhc5 mutants did not have
floral buds when WT plants had already flowered. When Gmnmhc5 flowered, the WT plants began to
produce pods (Figure 4a). Under SD conditions, the T2 Gmnmhc5 mutants did not have floral buds
when WT plants were flowering, and when Gmnmhc5 began to flower, the WT plants had obvious pods
(Figure 4b). The comparison of flowering time between T2 homozygous Gmnmhc5 mutants and WT
plants under both LD and SD conditions is shown in Figure 4d. In addition, the Gmnmhc5 mutants also
showed late maturation (Figure 4c,e). The fact that loss of function of GmNMHC5 delayed flowering
and maturation phenotype under both LD and SD conditions strongly suggests that GmNMHC5 is a
positive factor of flowering.

2.5. Overexpression of GmNMHC5 Inhibited the Expression of FT1a and FT4

To further investigate the molecular mechanism of GmNMHC5 on flowering, we used transcriptome
sequencing (RNA-Seq) to explore differential gene expression in response to overexpression of
GmNMHC5. Compared with the WT, there were 4414 and 1522 differentially expressed genes (DEGs)
in the two independent transformation events (line 32 and line 25) (Table S1,2). Among them, there
were 1081 genes with common differences between two independent transformation events (Table
S3). To ensure the reliability of the data, we only used these 1081 DEGs in the following analysis.
Comparative analysis using the Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html) and Uniprot
(https://www.uniprot.org/) databases indicated that at least 22 overlapping DEGs (including GmNMHC5)
showed homology with known flowering time-associated genes from Arabidopsis. The heat map of the
differentially expressed genes in the transcriptome data and the results of GO enrichment analysis
are uploaded to the Figure S3. In the two parts of up-regulation and down-regulation, the top ten
pathways with the most DIGs were selected, and the specific contents of these analyses were listed in
the supplementary documents (Table S4,5).

Two flowering inhibition genes, GmFT1a and GmFT4, were severely suppressed by overexpression
of GmNMHC5, while the key promotion genes, GmFT2a and GmFT5a, in the classical flowering
pathway showed no clear up or down trend in the 35S:GmNMHC5 transgenic lines, implying that the
overexpression of GmNMHC5 might cause early flowering in soybeans through inhibiting the flowering
suppressor genes. To further confirm this conjecture, we performed qRT-PCR assays with leaf samples
to verify the expression of the four genes (GmFT1a, GmFT2a, GmFT4, and GmFT5a) identified from the
RNA-Seq analysis (Figure 5). The results suggested that the expressions of these genes were consistent
with the RNA-Seq results. The primers used in this section are also shown in Table S6.

https://phytozome.jgi.doe.gov/pz/portal.html
https://www.uniprot.org/
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Figure 4. Phenotypes of the CRISPR-Cas9-induced Gmnmhc5 soybean plants. (a) An overview of WT
soybean plants and homozygous T2 Gmnmhc5 at 54 DAE under LD conditions, and a close-up view of
the flower areas framed by the boxes. (b) An overview of WT soybean plants and homozygous T2
Gmnmhc5 at 44 DAE under SD conditions, and a close-up view of the flower areas framed by the boxes.
(c) An overview
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of WT soybean plants and homozygous T2 Gmnmhc5 at 62 DAE under LD conditions, and a close-up
view of the areas framed by the boxes. (d) Flowering times of WT and Gmnmhc5 plants. The exact
numbers of individual plants are shown. Under LD conditions: WT (n = 13), Gmnmhc5-5-1 (n = 15),
Gmnmhc5-5-2 (n = 9), Gmnmhc5-5-3 (n = 11); under SD conditions: WT (n = 13), Gmnmhc5-5-1 (n = 14),
Gmnmhc5-5-2 (n = 7), Gmnmhc5-5-3 (n = 10). A one-way analysis of variance (ANOVA) was used to
compare the significance: **, p < 0.01. (e) Maturation times of WT and Gmnmhc5 plants. The exact
numbers of individual plants are shown. Under LD conditions: WT (n = 14), Gmnmhc5-5-1 (n = 11),
Gmnmhc5-5-2 (n = 8), Gmnmhc5-5-3 (n = 11); under SD conditions: WT (n = 14), Gmnmhc5-5-1 (n = 11),
Gmnmhc5-5-2 (n = 7), Gmnmhc5-5-3 (n = 10). A one-way analysis of variance (ANOVA) was used to
compare the significance: **, p < 0.01. Scale bar: 5 cm.Plants 2020, 9, 792 8 of 16 
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Figure 5. Expression of the selected flowering-related genes by qRT-PCR. Expression levels of
GmNMHC5, GmFT1a, GmFT4, GmFT2a, and GmFT5a in leaves at 31 DAE under LD conditions were
measured. The relative expression levels are normalized to GmActin. CK stands for wild-type plants,
and the data of the CK histogram in panels 1 and 2 correspond to the value on the left coordinate axis
(arrow pointing). The data are means ± SE of three biological replicates. Statistical significance was
determined using a one-way analysis of variance (ANOVA): ** p < 0.01, *** p < 0.001.

2.6. GmNMHC5 Could Rescue the Extremely Late Flowering of ft-10 in Arabidopsis

In order to further explore the relationship between GmNMHC5 and FT in the flowering regulatory
network, GmNMHC5 was overexpressed in ft-10 of Arabidopsis. The late flowering phenotype of ft-10
was rescued after heterologous expression of GmNMHC5 (Figure 6a). The flowering time of transgenic
plant 35S:GmNMHC5-ft-10 was basically the same as that of wild Arabidopsis thaliana (Figure 6b),
revealing the functional complementarity effect of GmNMHC5 on FT. This result provided a basis for
further study on the positioning of GmNMHC5 in the flowering network, especially in the regulatory
relationship with FT.
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Figure 6. Phenotypes of the 35S:GmNMHC5-ft-10 transgenic Arabidopsis plants. (a) An overview of
wild-type Arabidopsis (Col-0) plants and 35S:GmNMHC5-ft-10 at 28 d under LD conditions (upper panel),
and a close-up view of the areas framed by the boxes (lower panel). (b) Flowering times of WT, ft-10,
and 35S:GmNMHC5-ft-10-2, 35S:GmNMHC5-ft-10-4, 35S:GmNMHC5-ft-10-5, and 35S:GmNMHC5-ft-10-9
plants under LD conditions. The exact numbers of individual plants are ≥ 21. A one-way analysis of
variance (ANOVA) was used to compare the significance: **, p < 0.01.

3. Discussion

The gene GmNMHC5 belongs to the MADS-box family. The MADS-box family has been confirmed
as important transcription factors (TFs) involved in multiple stages of plant growth and development.
Previous studies have revealed that they participate in development of angiosperm flower organs [27],
in regulating the time of flowering initiation and tissue differentiation [28,29], and in the regulation of
pollen [30] and fruit development [31,32]. Moreover, the MADS-box family also plays an important
role in plant root development. For example, AGL19 has been shown to be specifically expressed in
root meristem and central column cells of mature roots in Arabidopsis [33]. Our research group also
confirmed that GmNMHC7 inhibits nodulation [9]. In addition to the genes that regulate flowering
and root development alone, there are also some genes that are involved in both flowering and root
development, such as SHP1, SHP2, STK, AGL20 [34,35], and AGL12 [36,37], highlighting bi-functional
genes. Our previous research showed that GmNMHC5 promotes soybean and lateral root development
and nodule formation [13]. In this study, overexpressing this gene promoted flowering under both LD
and SD, while using the CRISPR-Cas9 to edit GmNMHC5 delayed flowering, showing that GmNMHC5
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is a soybean flowering promoting factor. These results indicate that GmNMHC5 has dual functions in
the regulation of flowering and in the nodulation process.

In Arabidopsis, SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) (also a member of
the MADS-box family), a very important TF that integrates the signaling from the gibberellin
(GA)-dependent pathway, can induce flowering in non-flowering mutants [38]. Overexpression
of SOC1 promotes flowering under both LD and SD, while soc1 mutants exhibit late flowering [5,39].
Since a similar regulatory function was observed in GmNMHC5, we can infer that GmNMHC5 may
have a similar regulatory pattern as SOC1. Since GmNMHC5 and SOC1 have the same pattern in
the regulation of flowering, we believe that GmNMHC5 has the same important function as SOC1 in
the regulation pathway of flowering. This conjecture adds a new element for further study of the
flowering regulation network of soybean.

FT is the key point to integrate signals from various flowering pathways to regulate flowering.
Therefore, the relationship between relevant genes and FT in the flowering regulation network has
gradually become a research hotspot. The flowering promotion of FT, as a component of florigen, is
conserved in many plants [40]. In recent years, it has been found that the FT gene differentiated in
the process of evolution, resulting in its ability to inhibit flowering. For example, in sugar beet (Beta
vulgaris L.), there are two FT homologous genes, BvFT1 and BvFT2, which have completely opposite
regulatory effects on flowering [41]. Similarly, Kong et al. found at least ten FT genes in the soybean,
among which GmFT2a and GmFT5a were induced under SD and could interact with GmFDL19 to
promote soybean flowering [20,21]. After targeted editing by CRISPR-Cas9, the GmFT2a mutants
showed obviously late flowering [22]. Therefore, the potential flowering inhibition of GmFT1a and
GmFT4 proves that FT genes in the soybean also have functional differentiation, that is, they jointly
control the direction of plant growth.

In this study, transcriptome analysis showed that the expression levels of GmFT1a and GmFT4 in
GmNMHC5 overexpressed transgenic lines were significantly lower than those in the wild type, while
there was no significant difference between GmFT2a and GmFT5a. These results were also confirmed
by QT-PCR. Therefore, we hypothesized that GmNMHC5 promoted flowering and inhibited the
flowering-inhibiting genes. As there is currently no further evidence to prove a clear causal relationship
between the two, the conjecture has certain limitations, suggesting a direction for future research.

However, experiments in which GmNMHC5 was overexpressed in ft-10 suggested that GmNMHC5
could rescue the function of the deficient FT, so we speculated that GmNMHC5 was located downstream
of FT in the flowering pathway of Arabidopsis. This seems contradictory, but there can only be one
explanation, that is, they are located in two different regulatory pathways and thus do not have a simple
upstream and downstream relationship; parallel pathways likely exist. In Arabidopsis, Yamaguchi et al.
have shown that TWIN SISTER OF FT (TSF) is located in a specific flowering regulation pathway other
than that carried out by FT, despite it also being a homologous gene of FT [42]. Therefore, we speculate
that GmFT1a and GmFT4 (both flowering suppressor genes) and the promotion genes (GmFT5a and
GmFT2a) are similar to the regulatory pattern of TSF and FT in Arabidopsis suggested by Yamaguchi et
al. Namely, the two gene groups also show a parallel regulatory relationship in soybean flowering.
Based on the GmNMHC5 regulation, this study also elucidates the regulation mode of this group of
homologous FT genes, providing a new idea for further research on the localization of the ten members
of FT homologs in the soybean in the flowering regulation network.

The soybean is sensitive to photoperiod, and switches from vegetative growth to reproductive
growth only after the sunshine length is shortened to a certain limit. A cultivar can thus only be
grown in a limited area. The discovery of the function of GmNMHC5 in regulating flowering in this
study is expected to be used in breeding practice to coordinate with other genes that control flowering
and adjust the photoperiod sensitivity of soybeans so as to expand or adjust the applicable area of
soybean varieties. Further research on this gene is likely to have important guiding significance in
future breeding work.
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4. Material and Methods

4.1. Plant Materials and Growth Conditions

In this study, the soybean (Glycine max (L.) Merr.) cultivar Jack was selected as the wild type.
Non-transgenic strains of Jack were used as the control group, and denoted WT. The experimental
groups contained 35S:GmNMHC5 mutant plants (overexpression of the GmNMHC5 gene) and Gmnmhc5
plants (targeted mutagenesis of GmNMHC5 induced by CRISPR-Cas9), constructed from the wild-type
Jack. DNA extracted from leaf tissue was used to examine the CRISPR-Cas9-induced mutations at the
target site using PCR and DNA sequencing analysis. The T0 transgenic lines containing the T-DNA of
the sgRNA-Cas9 vectors were identified, and then, all collected seeds from these self-pollinated T0
lines were planted under natural conditions (summer) in Beijing, China. Site-directed mutagenesis of
Gmnmhc5 was also observed at the target site in the T1 generation. Seeds of WT, 35S:GmNMHC5 (from
T1 generation), and Gmnmhc5 (from T1 generation) homozygous mutants were separately grown in a
controlled culture room under long-day (LD, 16 h light/8 h dark) and short-day (SD, 12 h light/12 h
dark) photoperiodic conditions at 27 ◦C with 50% relative humidity. After screening, we successfully
obtained stable genetic overexpression lines 35S:GmNMHC5#5, 35S:GmNMHC5#25, 35S:GmNMHC5#32,
and Gmnmhc5#5 (edited by CRISPR-Cas9).

The seeds of Arabidopsis were disinfected using sodium hypochlorite for 15 min, and rinsed four
to five times with ddH2O. They were seeded onto 1/2 MS medium and incubated at 4 ◦C for 2–3 d, then
transferred to 22 ◦C in a light incubator and cultured (16 h light per day). When the Arabidopsis grew to
4–6 leaves, they were planted in the vermiculite/nursery substrates soil (1:1) mixture, covered with cling
film, and grown for 3 to 5 d (22 ◦C, 16 h light). To screen for transgenic Arabidopsis 35S:GmNMHC5-ft10,
selected seeds (T1 generation) were planted on 1/2 MS medium containing screening agent hygromycin
(hpt, Roche®, Basel, Switzerland) [43]. The positive transgenic Arabidopsis plants were further screened
by sequencing. The primers used for sequencing are listed in Table S6. The T2 generation seeds were
first cultured on the screening medium and then transferred to 1/2 MS medium. Seeds after the T3
generation were directly planted on 1/2 MS medium for the subsequent experiments.

4.2. Time Measurements and Statistical Analyses

Soybean flowering time is calculated based on the time from days after emergence (DAE) to
the R1 stage when the first flower is present on any node. In order to eliminate any defects in the
formation and development of floral organs, we also uploaded a picture of wild-type flowering as a
control in Figure S4. The maturation time was confirmed from the day when 95% of the pods had
reached maturity (R8 Stage) [44]. For phenotypic statistics of flowering time, at least 13 plants were
analyzed for each genotype of soybean. Microsoft Excel was used for statistical analyses. A one-way
analysis of variance (ANOVA) was used to compare the significance of differences between controls
and treatments at the 0.01 probability level. Origin 2017 (https://www.originlab.com/) was used for
drawing the figures.

4.3. Paraffin Sectioning

The top buds of soybean seedlings in the same growth period were selected, dissected with an
anatomical needle and fixed in formaldehyde-acetic acid-ethanol (FAA) for 24 h. The treatments were
as follows: 50%, 70%, and 85% alcohol solutions were used to dehydrate each tissue for 30 min, samples
were then placed in 95% alcohol containing 0.5% eosin for 3 h, and anhydrous alcohol for 1 h (2 times);
the alcohol solutions of 25%, 50%, and 75% were used for xylene transparentizing for 30 min, and 100%
xylene for 30 min (3 times). After treatment in 50% xylene + 50% paraffin, samples were embedded
within pure wax in a 60 ◦C oven. The samples were sliced using a Leica RM 2235 slicer, displayed and
baked in an oven. Then, slices were dewaxed with xylene, alcohol, and distilled water, mordanted
with 4% iron alum for 30 min, dyed with 0.5% hematoxylin, and finally treated with 2% alum for
color separation. After washing and returning to blue, slices were dehydrated with alcohol solution.

https://www.originlab.com/
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After being redyed in 95% alcohol containing 1% eosin, and after being sealed, the slices were observed
under an Olympus BX 51 optical microscope. Photoshop was used to prepare the pictures [45].

4.4. sgRNA Design and Construction of the CRISPR-Cas9 Expression Vector

A plasmid vector carrying both sgRNA and Cas9 cassettes was constructed. The Cas9 sequence
was codon-optimized and assembled downstream of the CaMV2 35S promoter, together with the
specific sgRNA driven by the Arabidopsis U6 promoter. The bar gene was used as a screening marker.
Information on the gene GmNMHC5 was from the Phytozome (https://phytozome.jgi.doe.gov/pz/

portal.html). sgRNA was designed by using the CRISPR-P (http://cbi.hzau.edu.cn/crispr/) [46] with
5′-NGG (PAM, protospacer adjacent motif) in the strand. In this study, an sgRNA with GmNMHC5 as
the target was finally selected, and we named it Gmnmhc5-SP1.

4.5. Transformation of CRISPR-Cas9 in Soybeans and Screening for Mutations by Sequencing Analysis

In the transformation experiment, the CRISPR-Cas9 expression vector was transferred to
Agrobacterium tumefaciens EHA105 by electroporation, and the soybean variety Jack was selected
for tissue culture and transformation [47]. In order to confirm the mutations, plants were screened
by dabbing leaves with 160 mg/L glufosinate solution, and were genotyped for the presence of the
transgene using PCR. The leaves of each plant were collected, and genomic DNA was extracted
from the leaves. Subsequently, the regions around the target site were amplified by PCR using
Phanta® Super Fidelity DNA Polymerase (Vazyme Biotechnology, Nanjing, China) with forward
(5-CCAGCCATCCTCTTGCGTTA-3) and reverse primers (5-ATGCTTGGGAAGTCGGAAGG-3) of
GmNMHC5. Sequencing was performed to determine whether the edit was successful. The type of
gene editing can be determined by sequencing a peak map. CRISPR-Cas9-induced base insertions or
deletions (not multiples of 3) can eventually result in transcoding mutations that cause a loss of gene
function. By analyzing the peak diagram of sequencing results, overlapping peaks from the target site
to the end of the sequence were considered a heterozygous mutation with successful editing. However,
the wild type and unedited lines would not have any overlapping peaks. Then, homozygous mutants
were determined based on sequence comparison with the wild type. T1, T2, and T3 plants were also
tested by this method.

4.6. Transcriptome Analysis and Gene Functional Annotation

For the transcriptome analysis, two biological replicates of transgenic mutants were analyzed.
We used wild-type Jack as the control group, and 35S:GmNMHC5#25 and 35S:GmNMHC5-#32 as the
experimental groups. The materials were grown in a controlled culture room at 28 ◦C under LD
conditions, and leaf samples were taken at 31 DAE. Each sample consisted of material collected from
three individual plants. All collected tissues were frozen immediately in liquid nitrogen and stored at
−80 ◦C. mRNA extracts from the samples were sequenced with the HiSeq 4000 platform (Illumina,
San Diego, CA, USA) following the manufacturer protocols. Raw data were initially processed
using in-house Perl scripts. In this step, clean reads were obtained by removing those containing
adapters. The clean reads were aligned to the soybean reference genome using TOPHAT v.2.0.9
(tophat.cbcb.umd.edu/). HTSEQ v.0.5.4p3 (https://htseq.readthedocs.io/en) was used to count the read
numbers mapped to each gene. Then, the fragments per kilobase of transcript per million mapped
reads of each gene were calculated based on the length of the gene and fragment count mapped
to this gene. Differential expression analysis was conducted using the DESEQ R package (v.1.10.1)
(http://bioconductor.org/packages/2.11/bioc/html/DESeq.html), and the p-value results were adjusted
using the Benjamini–Hochberg method to control for the false discovery rate. Genes with adjusted p <

0.05 were considered as differentially expressed genes (DEGs).

https://phytozome.jgi.doe.gov/pz/portal.html
https://phytozome.jgi.doe.gov/pz/portal.html
http://cbi.hzau.edu.cn/crispr/
https://htseq.readthedocs.io/en
http://bioconductor.org/packages/2.11/bioc/html/DESeq.html
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4.7. Gene Expression Validation by qRT-PCR

AnABI7900 thermocycler (Applied Biosystems, Foster City, CA, USA) and Takara SYBR premix Ex
Taq (Takara, Kusatsu, Japan) were used for quantitative RT-PCR (qRT-PCR). A total of three biological
replicates and three technical replicates were used. Microsoft Excel was used to analyze the qRT-PCR
data. Table S6 shows the primers used in the experiment. The samples of gene expression detection
were collected at 12:00 AM, selecting the expanded trifoliate leaves of 31-DAE soybeans under long
day conditions. The internal reference gene is actin. A total of 34 cycles were used for RT-PCR analysis.

4.8. Accession Numbers

The clean data of the RNA-seq were deposited in the SRA database of NCBI under the accession
number PRJNA635458.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/6/792/s1,
Figure S1: Frameshift mutations at the target sites of GmNMHC5. The mutants generated premature translation
termination codons (PTCs). CDS, coding sequence. Figure S2: Detection of the selectable marker gene bar by
test strip. Figure S3: The heat maps and GO analysis of the differentially expressed genes. Figure S4: The
flower of the wild-type (WT) plants at 43 DAE (days after emergence). The detail in the upper right corner is an
enlargement of the red square in the image. Table S1: Differentially expressed genes (DIGs) and their fold-changes
(Line-32_vs_WT). Table S2: Differentially expressed genes (DIGs) and their fold-changes (Line-25_vs_WT). Table
S3: Differentially expressed genes (DIGs) and their fold-changes (Line 25_vs_Line 32_vs_WT). Table S4: Most
enriched ten pathways (Line 25_vs_Line 32_vs_WT_DOWN-identify). Table S5: Most enriched ten pathways
(Line 25_vs_Line 32_vs_WT_UP-identify). Table S6: Sequences of primers used in this study.
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