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Abstract: Long-term outdoor localization remains challenging due to the high energy
profiles of GPS modules. Duty cycling the GPS module combined with inertial sensors can
improve energy consumption. However, inertial sensors that are kept active all the time can
also drain mobile node batteries. This paper proposes duty cycling strategies for inertial
sensors to maintain a target position accuracy and node lifetime. We present a method
for duty cycling motion sensors according to features of movement events, and evaluate
its energy and accuracy profile for an empirical data trace of cattle movement. We further
introduce the concept of group-based duty cycling, where nodes that cluster together can
share the burden of motion detection to reduce their duty cycles. Our evaluation shows
that both variants of motion sensor duty cycling yield up to 78% improvement in overall
node power consumption, and that the group-based method yields an additional 20% power
reduction during periods of low mobility.
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1. Introduction

Recent advances in radio and processing technology have fuelled increased interest and adoption
of localisation systems for both indoor and outdoor applications. Outdoor localisation applications,
such as animal or people tracking, typically rely on GPS technology thanks to its high availability and
accuracy. However, GPS modules are energy-hungry, which causes quick depletion of battery energy at
resource-limited tracking devices.



J. Sens. Actuator Netw. 2012, 1 184

Several recent proposals have attempted to address the energy consumption issue by duty cycling the
GPS module and supplementing it with cellular tower signals [1], local radio message exchanges [2], and
accelerometers [3]. While all of these methods yield reductions in energy consumption, they still require
the addition of extra modules into the devices for processing the supplementary signals. This limits the
lifetime benefits of embedded devices that are desired in many long-term monitoring applications. For
instance, applications that require inertial modules with tilt compensation and heading [4] have an active
power consumption that is comparable to a duty cycled GPS node. There have been limited attempts to
duty cycle the supplementary modules, other than duty cycling of radio modules [5].

This paper proposes duty cycling strategies for motion modules, in order to reduce their power
consumption while maintaining their utility in supplementing GPS position information. Our strategies
target applications that can tolerate a degree of positioning uncertainty. We adopt a motion-module
duty cycling approach inspired from radio low power listening (LPL) [6], where the motion module
needs to wake up and obtain samples frequently enough to detect motion events (conceptually similar
to transmit preambles). The main departure from LPL approaches is that we lack control of the motion
event duration, thus we propose the selection of motion module duty cycles to capture the majority of
motion events for a given application.

As an extension of this duty cycling approach, we introduce group-based duty cycling. Intuitively,
nodes that cluster together can cooperatively share the burden of regularly checking for motion events,
thereby reducing the energy cost for individual nodes. Nodes use periodic short range radio exchanges
to track proximity contacts in the recent history. This history enables nodes to identify the subset of their
neighbours whose movement has closely aligned with the nodes’ own movement patterns. Each node can
then reduce the duty cycle of its motion sensor by up to the cardinality of that subset, as the movement
of one of the nodes in the subset is indicative of movement of the whole group. Nodes broadcast radio
beacons to all their neighbours when they detect motion, thus triggering sampling of motion sensors at
these neighbours.

Our group-based duty cycling approach has broad applicability for tracking movement of people [7]
or animals [5]. For instance, a group of people that are known to have close social links tend to cluster
together, and their movements tend to be highly correlated. An example is a group of people in a
theme park [7], where the people tend to move together to attend meetings to visit certain attractions.
Group-based duty cycling also applies for tracking the movement of many animal species that cluster
together in large groups, including terrestrial species such as cattle, aerial species such as flying foxes,
and aquatic species such as sardines.

This paper uses an empirical cattle tracking GPS data trace to evaluate our duty cycling strategies
in simulations. The results enable the comparison of the individual and group strategies with previous
methods in terms of power consumption and localisation accuracy. We find that both of our proposed
strategies yield significant energy improvements over previous proposals at a slight reduction in location
accuracy. We further determine that individual duty cycling is more suited towards higher mobility
situations due to its deterministic sampling times, while the more space and time diverse sampling
schedule of group duty cycling performs better for applications where motion events occur more rarely.
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In summary, the contributions of this paper are three-fold:

• Proposal of a motion sensor duty cycling strategy, based on learned motion features, for
complementing GPS and radio duty cycling;
• Extension of the strategy for a collaborative group-based approach;
• Performance evaluation of the two strategies against previous work and in high and low

mobility scenarios.

The remainder of the paper is organised as follows. Section 2 reviews related work. Section 3 provides
the basis of our duty cycling approach. Sections 4 and 5 present the individual and group duty cycling
strategies respectively. Section 6 compares the performance of these strategies in situations of high and
low mobility. Section 7 discusses the results, while Section 8 concludes the paper.

2. Related Work

Li and Wu [8] propose the use of a closeness metric between two nodes, defined as a measure of the
frequency of encounters between two mobile nodes. To dynamically define communities, they rely on a
threshold for the closeness metric, such that any group of nodes that are connected through edges with
closeness metrics higher than the threshold are considered as a community. While we share the concept
of a closeness threshold, we explore the effect of time and location of the closeness within existing
communities, in order to predict emerging communities into the future.

An early instance of animal tracking by networked embedded systems is the ZebraNet project [9],
which tracks individual position records for animals every of a few minutes. However, ZebraNet collars
include a solar panel, making the energy management problem quite a tractable one. Positioning is done
by GPS only, and the nodes propagate their information by flooding in order to facilitate data acquisition
by the mobile sink. The Networked Cow project [10] used PDAs with GPS and ad hoc WiFi to route
position information to a base station.The Electronic Shepherd project [1] also uses GPS localization
for tracking herds of sheep in the mountains. “Real-time” is obtained thanks to a GPRS modems in
the collar, even though position is recorded and sent back to base only a few times per day in order to
prolong battery life. Unlike our work, nodes are asymmetric: only a few animals in the herd wear collars
including GPS and GPRS modules. All the others wear a small ear-tag including only a microcontroller
and a radio-chip.

The work in [11] considers energy efficient localization for base nodes on the path of the mobile nodes
and the energy implications of each approach. While the speed models in [11] are similar to this paper,
their work is purely simulation-based and does not consider the benefits of contact logging or online
adaptation according to energy and position changes. The work in [12] addresses the trade-off between
localization accuracy and energy efficiency. It considers static, dynamic, and dead reckoning mobility
models and studies their effect on accuracy and energy through ns2 simulations. Our work addresses
the same tradeoff but uses empirical GPS data to conduct analysis on three different speed models and a
realistic energy model of the GPS-enabled nodes that includes the previously unreported stochastic lock
time model. We also consider the effect of dynamically changing the required localization performance
based on the mobile node’s distance from an exclusion zone. Further we explore contact logging as a
complement to GPS for achieving a better balance between accuracy and efficiency. In a similar fashion,
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Pattern et al. [13] provide a tuning knob to obtain various energy-accuracy trade-offs by the careful
choice of duty cycle and activation radius.

The works in [14,15] address this trade-off as well by considering improvements to the RIP
method [16] as the baseline localization method. A key difference between You’s work and ours is
that we support a variable uncertainty bound. Another distinction is their use of mote-based RSSI
localization schemes in indoor environments, which require a deployed network infrastructure, consume
less power, and require a calibration phase. Finally, they do not consider contact logging for reducing
localization uncertainty.

Recent work [2,5,17] has also explored collaborative localization that enables nodes to detect
neighboring signals for position refinement. Chan et al. [17] use a cluster-based approach, where nearby
nodes can establish clusters through IEEE 802.15.4 radios as a neighbour detection sensor that enhances
WiFi localization. Our approach is similar in its reliance on contact signals, but it differs in that the
contact signal is sent and received by the same radio, as in [5], eliminating the need for multi-radio nodes.

More recently, research has explored energy-aware localization for mobile phones equipped with
GPS. For example Constandache et al. [18] propose an average error metric for GPS duty cycling. Using
proximity mechanisms like WiFi or GSM yields a lower average error for the same energy budget as
plain GPS duty cycling. One of their mobility models deduces the current location of the node from
recent history when the user is driving on a straight road. Similarly, the work in [19] stores historical
information of locations where GPS does not work, and of average speed as a function of time and place.
The work in [7] propose collaborative GPS localisation for people with smart phones in a theme park
environment, confirming the dependence of the energy efficiency and accuracy of this approach on the
radio range and uncertainty bound [5].

The use of accelerometers has also been proposed as a low power indicator of movement to
supplement GPS duty cycling [19,20]. Guo et al. [21] have used accelerometers, high sample rate
GPS, and magnetometers to develop a cattle movement and behaviour model on which this paper builds.
Kjaergaard et al. [22] use both accelerometers and magnetometers for energy efficient tracking, and
consider individual duty cycling strategies for these components. Our approach differs from these
works in that it considers group based duty cycling strategies for accelerometers or other motion
detection sensors.

Other work has aimed at human tracking with the aid of accelerometers. For instance, Accelerometer
Augmented Mobile Phone Localization (AAMPL) [3] uses accelerometer to infer human activity, such
as sitting or standing, through a centralised method. Similarly, Wang et al. [23] propose a classification
method based on accelerometers for separating walking, running, stable and vehicle motion for humans.
Rate-Adaptive GPS-based positioning for smartphones (RAPS) [19] triggers GPS samples through
accelerometers, as in our work. However, they are not using accelerometer as a boolean motion trigger,
rather to measure an activity ratio computed over a time window. Unlike our strategy, their approach
does not duty cycle the accelerometer.



J. Sens. Actuator Netw. 2012, 1 187

3. Overview

In this paper, we develop algorithms for continuous tracking of mobile nodes based on their
mobility features. Each node is equipped with a radio module for communication and contact logging,
a motion detection module (such as a vibration sensor or accelerometer), and a GPS module for
location estimation. Our goal is to determine duty cycles for the individual modules, so that the
energy consumption of the overall system is minimised, while keeping the localisation error under a
given threshold.

Previous work has shown that GPS duty cycling according to the average speed of nodes can reduce
power consumption, and that the use of radio contact logging provides for further savings [5]. Once a
node acquires its position estimate through GPS, all neighbouring nodes within its radio broadcast range
can estimate their locations accordingly. Here, we extend this work by using a motion detection module
to detect when the nodes are stationary and subsequently turning off the GPS module, as in [19]. This
configuration can yield considerable savings, particularly for applications in which nodes are stationary
for long periods, such as cattle grazing in a field.

Motion detection modules, however, still consume appreciable amounts of energy if running
continuously. For instance, we use a Honeywell HMC6433 inertial module with accelerometer,
magnetometer, heading and tilt compensation [4] that can continuously draw about 6 mA of current.
Keeping the inertial module active would have an equivalent energy cost to duty cycling the GPS module
with contact logging [5]. Therefore, efficient duty cycling of the motion detection modules is important
for prolonging the system lifetime. We show that modelling the mobility of nodes enables efficient
duty-cycling of accelerometers without sacrificing accuracy of motion detection. Specifically, energy
savings on the order of the size of the group of nodes that travel together can be achieved compared with
algorithms that consider individual nodes only. In the remainder of this section, we first motivate group
based duty cycling through two applications, before presenting an overview of our duty cycling models.

3.1. Motivating Applications

A key motivating application for group-based duty cycling is to understand the behaviour of migratory
birds [24]. In particular, flying foxes are major cause for disease spread in both Australia and in Southeast
Asia. These animals are highly mobile, traveling tens of kilometres in a single night and covering
distances in excess of 1,000 km with the migratory season. In Australia, flying foxes are responsible
for the spread of the Hendra virus, which is lethal to horses and harmful to humans. The processes
and dynamics that underpin disease propagation within a group of flying foxes are not well understood,
which is the main driver to monitor their movements and understand their behavior. Fortunately, these
animals congregate at roosting camps and groups of tens of thousands of individuals and may remain
there for days or weeks before moving to a new location. Using group based duty cycling therefore has
huge potential for developing long-term tracking solutions for these animals. A related application is
monitoring of livestock that also tends to form into long-term stable herds. The benefits of collaborative
localisation for cattle have been demonstrated in [5] through reliance on radio proximity data to reduce
GPS duty cycles. In that earlier work, nodes did not have any inertial sensors. The animal scientists that
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wish to study the cattle behaviour are interested in high-quality inertial data from the animals while they
are moving.

Both of the above applications require the use of inertial modules with tilt compensation and heading
computation, which have a much higher energy consumption than basic inertial modules. The need to
use higher energy inertial modules motivates duty cycling of these modules. In order to avoid missing
motion events, multiple nodes that are clustered together in a group can cooperate on detecting motion
in the group and simultaneously save energy.

3.2. Basic Assumptions and Definitions

We consider a set of nodes N = {Ni}, where Ni denotes an individual node. Our goal is to track
location Li of each node over a set of discrete timestamps with a maximum user-set uncertainty. In order
to ground the discussion, we consider accelerometers as our motion trigger modules, bearing in mind
that the model applies equally to other motion sensors, such as gyroscopes and magnetometers.

Each node is equipped with a radio that has a perfectly circular range of R meters. The nodes are
further equipped with an accelerometer for motion detection, and a GPS module that estimates the node’s
location Li with an average uncertainty Ugps meters. An accelerometer takes tA time to estimate the
node’s current speed, and the GPS module requires tL seconds to achieve lock and return a location
estimate. Because accelerometer readings are noisy and cannot reliably estimate fine-grained speed
values, we use the accelerometer in our model to distinguish between two states: a stationary state
and a moving state. The accelerometer can determine whether movement occurs through an internal
mechanism that compares the measured speed with a user set speed threshold sthA .

3.2.1. Energy Model

We model node energy consumption by recording the duty cycles of the major node components:
GPS module, radio, MCU, and inertial.

We compute the GPS and inertial module energy consumption at any time t during the deployment as
PON
x ×DCx×t, whereDCx is module x’s duty cycle, and PON

s is the power consumption of that module
in active mode. Both modules are completely powered off when not in use, so they draw no current. We
track the radio energy consumption as the sum of the transmission, reception, and listening energy values
respectively [25] for a given radio duty cycle, which is set to 10% in the rest of the paper (note that we
do not consider radio state transition times in this paper for simplicity).

The MCU power consumption is heavily dependent on the duty cycling strategies of all the other
components, as the MCU must power on when any of the other modules are active. In general, the MCU
duty cycle and energy consumed are expressed as:

DCMCU = DCgps +DCradio +DCA − overlap (1)

EMCU = DCMCU × PMCU × t

where DCgps, DCradio, and DCA are the duty cycles of the GPS, radio, and accelerometer respectively.
The overlap parameter denotes any overlap between the on-times between these 3 components.
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3.2.2. Metrics

We evaluate performance of the tracking algorithms developed in this paper using three main metrics.
Power measured in milliwatts is calculated as the mean power consumed by a node over the course of
the experiments. We further break down the total consumed power according to the individual hardware
components. Error rate σ is a measure of the localisation accuracy of our algorithms. It is calculated
as the percentage of times when the localisation error was larger than the reported uncertainty. Finally,
AAU (absolute acceptable uncertainty) is a user-set bound on the maximum localisation uncertainty of
the tracking algorithm.

3.3. GPS Duty Cycling with Radio Ranging

We consider an outdoor cattle tracking application using smart collars that contain wireless sensor
nodes, GPS, and inertial modules with accelerometer, magnetometer, and hardware tilt compensation
and heading calculation. The wireless sensor node is a Fleck [26] comprising Atmel-1281 MCU and
Atmel RF212 radio. Four D-Cell batteries in series provide power to all the collar components via
several switch-mode regulators. The weight of these batteries yields a collar weight that approaches the
upper limit set by an animal ethics committee, so larger batteries are not an option.

The target node lifetime in this application is 3 months, which is the interval at which the animals are
brought in for health checks, treatment and sorting. Previous work had shown a significant increase
in node lifetime with GPS duty cycling coupled with radio ranging [5]. As our current work on
collaborative localisation with accelerometer duty cycling builds on that earlier work, we briefly revisit
it for presentation clarity.

Figure 1 shows how GPS duty cycling works. At time k we obtain a GPS measurement xk and then
turn off the GPS. At the next measurement xk+1, the mobile node may be either within or outside the
AAU, indicated by the larger circle. Whenever xk+1 falls outside the larger circle, we denote this as an
error, since the system would have failed to deliver a position estimate within the AAU.

This approach requires a means to estimate the uncertainty bound (shown as a dashed circle) at any
given time. Since we do not know how fast or in what direction are the nodes moving, the simplest model
is to assume a certain maximum speed and grow the estimated uncertainty linearly with time. When it
approaches the AAU, taking into account the GPS’s lock time, we turn on the GPS. If the node’s speed
exceeds our assumption, it could end up at the point marked in red when the GPS obtains a fix. This
paper uses the dynamic speed model, which updates the assumed speed of a node every time it obtains a
GPS lock [5].

GPS lock can take several seconds, during which the module obtains an initial lock with a relatively
high Ugps, and then exponentially decreases its uncertainty as it receives more signals from visible
satellites [5]. Keeping the module on for longer yields higher position accuracy, but it incurs heavy
energy cost. With the GPS duty cycling algorithm, a target GPS uncertainty can be set so that the
total off time of the module (considering both the time spent obtaining lock and the time waiting for
the algorithm uncertainty to grow) is minimised. Through offline calculations on the model in [5], we
determine this target GPS uncertainty to be 13 m for an AAU of 50 m. We use these settings for the rest
of this paper for more aggressive GPS duty cycling.
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Figure 1. The growing uncertainty (dashed circle) and the maximum uncertainty bound
(solid circle).
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Alongside GPS duty cycling, nodes use radio beacons to provide local position references. The
beacons also include the sending node’s uncertainty. Whenever a node receives a beacon from a
neighbour with a lower uncertainty, it adopts the position estimate of that neighbour and reduces its
uncertainty according to its estimated distance from the neighbour. In order to receive radio messages,
nodes use a low-power listening mechanism [6]. Low power listening keep nodes’ radios in low-power
sleep states for most of the time. The radio periodically wakes up for a short channel check assessment
(CCA) time to check if there are any upcoming packet transmissions for this node. If so, the radio
remains on to receive those packets. Otherwise, it goes back into sleep state. We use the same low-power
listening approach for all radio beacons in this paper.

4. Individual Duty Cycling

In this section, we propose an algorithm for duty cycling of GPS and motion modules using data
available locally on a sensor node. We first show that significant energy savings can be achieved if
the motion sensing units are heavily duty cycled. We then model the behaviour of a tracked object
stochastically as a Markov process. We assume that the object can be characterised by a set of discrete
states and changes its state according to a set of fixed transition probabilities. The values of the
probabilities heavily depend on contextual information. We assume they can be determined a priori
or learned over the lifetime of the tracking system.

We use empirical data traces from 30 cow collar nodes collected continuously at 1 Hz over 2 days from
a herd at the Belmont Research Station in central Queensland, in order to understand the performance of
our algorithms on the basis of the behaviour of the tracked animals. We define a stationary and a motion
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state and study probabilities of transitioning between them. Given these probabilities, we find optimal
values to sample motion sensors and update uncertainty of the location estimates.

4.1. Accelerometer Energy Consumption

While the earlier work focused on bounding the location uncertainty by growing it linearly over
time according to an assumed speed [5], accelerometers enable nodes to keep their uncertainty constant
over long periods and thus reduce the duty cycle of the node’s MCU and GPS units. However, simply
including an always-on accelerometer within the node is not energy-efficient, particularly for modules
with heading and tilt compensation.

Table 1 shows the power consumption of the various node components in both active and sleep modes.
Our earlier work had shown that GPS Duty cycling with radio proximity can achieve a combined power
consumption for the GPS, radio, and MCU around 22 mW. In comparison, the inertial module would
consume 18 mW if it remains in active mode all of the time, representing an 82% increase in overall
power consumption for the node. While we expect the inclusion of the inertial module to reduce the
duty cycles and energy consumption of the other node modules, any energy savings are likely to be
outweighed by the increased energy consumption for powering the inertial module. Therein lies the
need for aggressive duty cycling of the inertial module. The following sections explore the extent to
which individual accelerometer duty cycling can improve the previous GPS/radio ranging strategy.

Table 1. Active and sleep mode power consumption for node components.

Component Active Mode Power (mW) Sleep Mode Power (mW)

MCU 18 1.2
Radio (TX) 79.2 0.00825
Radio (RX) 29.7 0.00825
GPS 165 0.215
Accelerometer 18 0

4.2. Duty Cycling Algorithm

This strategy enables nodes to set their accelerometer duty cycle independently of any neighbours.
The individual duty cycling approach follows a state-based approach with two states: motion state StM
and stationary state StS . The node uses the accelerometer to detect motion and defines StM state for
speeds above threshold sthA and StS for speeds lower than the threshold. The individual duty cycling
algorithm is shown in Figure 2, while Figure 3 shows a typical duty cycling scenario.
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Figure 2. Accelerometer Individual Duty Cycling Strategy.

loop {event handler(Event event)}
if event==GPS LOCKED then

U=Ugps

turn GPS OFF
turn Accelerometer ON

else if event==ACCEL SAMPLE then
if Accelerometer speed≥ sthA then

if STATE== StM then
U+=TM

A sM
else

if motion duration < DM
A then

U+=sM
DCA = 1

else
STATE= StM
U+=τsM
Set Acc DC(TS

A , sM )
end if

end if
else if Accelerometer speed< sthA then

if STATE== StM then
U+=sS
DCA = 1

if non-motion duration≥ DS
A then

STATE=StS
Set Acc DC(TM

A , sS )
end if

else
U+=TS

AsS
end if

end if
Check GPS(sM )
read Accelerometer according to DCA

else if event = RADIO BEACON TIMER FIRED then
Send Radio Beacon

else if event = RADIO BEACON RCVD(Ni) then
if U(Ni)+R<U then

U=U(Ni)+R
end if

end if
end loop

Figure 3. Accelerometer Duty Cycling: showing a timeline of actual motion events,
algorithm state, and the active/sleep periods of the accelerometer.
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Figure 5. Accelerometer Individual Duty Cycling Strategy

loop {event handler(Event event)}
if event==GPS LOCKED then

U=Ugps

turn GPS OFF
turn Accelerometer ON
send Radio beacon (GPS LOCKED)

else if event==ACCEL SAMPLE then
if Accelerometer speed� sth

A then
if STATE== StM then

U+=TM
A sM

else
if motion duration < DM

A then
U+=sM

DCA = 1

else
STATE= StM

U+=⌧sM

Set Acc DC(TM
A , sM )

end if
end if

else if Accelerometer speed< sth
A then

if STATE== StM then
U+=sS

DCA = 1

if non-motion duration� DS
A then

STATE=StS

Set Acc DC(T S
A , sS)

end if
else

U+=T S
AsS

end if
end if
Check GPS(sM )
read Accelerometer according to DCA

end if
end loop
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4.2.1. Travel and Resting Times

We duty cycle the accelerometer in both the motion and the stationary states. A key consideration in
accelerometer duty cycling is the length of the off periods between subsequent accelerometer sampling
periods. The lengths of the off periods for the accelerometer are based on two parameters: the minimum
time TM that a node is moving and the minimum time TS that a node is stationary. Since a node is
moving for at least TM seconds, a duty cycled accelerometer will detect motion if it turns on once every
TMA = TM − ε seconds in StS , where ε is a positive small number. Similarly, the accelerometer will
detect a node being stationary if it turns on once every T SA = TS − ε seconds in the motion state StM .

4.2.2. Uncertainty Estimation

Transitions between motion and stationary states are triggered by the node speed falling below or
above the threshold sthA . To avoid spurious state transitions, we require the accelerometer to detect motion
or non-motion for the duration of at least DM

A and DS
A seconds, respectively. The accelerometer detects

motion or non-motion by checking the amplitude of its measured signal with a predefined threshold.
Nodes increase their uncertainty in both states. In the stationary state, we increase uncertainty assuming
that a node is moving at a slow sS speed. This allows us to account for slow movement events such as
cattle feeding, where a node moves slower than the threshold sthA for extended periods of time. On the
other hand, in the motion state StM , nodes update their uncertainty using their current speed estimate
sM . Finally, a node also updates its uncertainty when transitioning to the StM state:

U(t) = U(t− 1) + sM × τ t > 0

where sM ≥ sthA is the current speed estimate and τ = λTMA is proportional to the minimum travel time
TMA . λ is a constant between 0 and 1. For a conservative uncertainty estimate, the node sets τ = TMA ,
assuming the worst case scenario that the node missed the first TMA seconds of the motion event. A less
conservative approach is to increase its uncertainty by τ = TMA /2, as the length of time that has already
passed for the motion event is a uniformly distributed value between 0 and TMA .

4.2.3. Duty Cycle Setting

When the uncertainty grows close to AAU, a node powers on its GPS module. When the GPS locks
in, the node powers off the GPS module and turns on the accelerometer for the motion detection. As
Figure 2 shows, the uncertainty U is also updated to the GPS module uncertainty when the GPS module
gets a lock.

When the node is in the StM state with its GPS off, it duty cycles its accelerometer with duty cycle
DCM

A = 1/TMA as long as motion continues and increases uncertainty accordingly. Every time instant
that it increases its uncertainty, the node checks whether the uncertainty has reached a critical threshold
by calling the Check GPS() function (see Figure 4). If so, the node activates its GPS module to start the
GPS lock process and powers off its accelerometer.
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Figure 4. The Check GPS() function.

function Check GPS(s)
if U ≥ AAU − tLs then

turn Accelerometer OFF
turn GPS ON

end if

If the node’s accelerometer detects that it has stopped moving, the node moves back to the StS
state, where it increases its uncertainty at a slower rate and reduces the accelerometer duty cycle to
DCS

A = 1/T SA . The function Set Acc DC() (see Figure 5) determines the suitable off time for the
accelerometer for both motion and stationary states. This will depend on the current value of the node’s
uncertainty. Note that a node must power on its GPS module at least tL seconds prior to its uncertainty
reaching AAU, in order to account for the uncertainty growth during the GPS lock process. If a node’s
uncertainty is much lower than this bound, then it can set its sleep time to TA. However, if a node that is
duty cycling its accelerometer detects motion when its uncertainty is slightly below or exactly AAU-tLs,
then it must increase its uncertainty by τs, resulting in an uncertainty of U(t) = AAU + s[τ − tL]. Even
if the node powers on its GPS module at this instant, it is likely to have an uncertainty that exceeds AAU
by the time it gets GPS lock. To avoid this situation, a node checks whether its uncertainty is greater
than AAU − (tL + τ)sM . If so, the node anticipates that it may have to incorporate a step increase in its
uncertainty when it detects motion, so it sets an instantaneous value of TA to ensure that it will power on
its GPS module at the right time:

TA(t) =
AAU − U

sM
− tL

The value of τ is then simply computed as λTA.

Figure 5. The Set Acc DC() function.

function Set Acc DC(TA, s)
if U ≤ AAU − (tL + τ)s then

T ′
A = TA

else if AAU − (tL + τ)s < U ≤ AAU − tLs then
T ′
A = (AAU − U)/s− tL

end if
τ = λT ′

A

DCA = 1/T ′
A

The individual duty cycling algorithm uses periodic radio beaconing, in order to quickly correct large
uncertainty increases that result from short-term motion events (see Figure 6 for an example). Periodic
beaconing incurs a radio energy overhead over event-based beaconing [5], but our results in this paper
show that the energy savings with this algorithm outweigh the periodic beaconing overhead.
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Figure 6. The growth of uncertainty with accelerometer duty cycling. The narrow peaks
correspond to accelerometer motion detection.

4.3. Example

We augment the python simulator in [5] with the accelerometer duty cycling algorithm and energy
model to evaluate their performance with our empirical cattle GPS data trace. Figure 6 shows a trace
of the uncertainty growth for 3 nodes from our empirical cattle dataset. The trace uses solid lines to
indicate the algorithm uncertainty and dashed lines to indicate the true error for each node. At the start
of the trace, all three nodes are growing their uncertainty linearly according to sS , after having logged
contact with a common neighbour 104, whose trace is not shown here. All of the narrow peaks in the
trace indicate a node detecting motion after sampling its accelerometer, and adding a step increase to its
uncertainty. The reason that the uncertainty drops back again is that the node mobility is transient and the
nodes receive periodic contact beacons from neighbours that have a lower uncertainty shortly thereafter,
which enables the nodes to lower their own uncertainty. It is specifically for this reason that the individual
duty cycling algorithm has to use periodic radio beaconing (rather than event-based beaconing), in order
to avoid premature GPS locks due to short-lived motion events.

Interesting situations arise at times 400 and 1,500. At 400 s, nodes 299 and 337 both detect motion
independently, but in this case, they cannot lower their uncertainty after they leave the motion state
because they do not receive any contact beacons with sufficiently low uncertainty. This situation persists
until a neighbour acquires GPS lock, which enables all three nodes in the trace to lower their uncertainty
by logging contact with that neighbour. At time 1,500, node 337 first detects brief motion, which causes
a spike in its uncertainty. Once its accelerometer detects that it has stopped moving, it returns to a slow
linear increase in uncertainty thanks to contact logs with node 299. A similar pattern occurs at node 103
about 100 s later. After that, node 299 detects that it is moving, and adds a step increase to its uncertainty.
Note that the actual position error remains within the uncertainty at all times.
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4.4. Parameter Settings and Tradeoffs

We focus on two performance parameters: energy consumption and localization error of the
duty-cycled algorithm. Specifically, we would like to minimise the energy consumption of each node
while keeping the localization error within a maximum uncertainty AAU and the error rate σ within an
error tolerance σ∗ of 5%, because the animal scientists who are interested in the tracking data can accept
a 95% success rate for the algorithm. If the duty cycle is low, we save more energy but increase the
latency of motion detection, which can compromise the AAU uncertainty bound. All references to AAU
error refer to the percentage of instances that the tracking algorithm exceeds the user-set maximum error.

4.4.1. Stationary State

We are interested in two main parameters in the stationary state. The minimum travel time allows us
to set accelerometer duty cycle while making sure that we detect the majority of the motion events.

We use our cattle dataset, which contains GPS traces at 1 Hz for 35 nodes over two days, to determine
its minimum travel duration. We define a speed threshold sthA of 0.4 m/s, above which nodes are
considered to be in a motion state [21]. Figure 7 shows the cumulative distribution function of all
movement states in the cattle trace, revealing that almost all movements persist for at least 5 s.

Figure 7. The cumulative distribution function of movement durations for a speed threshold
of 0.4 m/s. The minimum movement duration is around 5 s.

We run simulations of our duty cycling strategy on the cattle data trace with varying TM . Figure 8
shows the energy consumption and error rates for the different TM values. The minimum travel time
setting can clearly deliver a range of positioning accuracies (between 92% and 99%) while trading off
energy consumption. Because our target application has an error tolerance of 5%, we set a minimum
travel time TM of 30 s as the most energy-efficient choice, with a power consumption around 8 mW.
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Figure 8. The impact of varying TM on node energy consumption and error rates. The AAU
error rate refers to the errors observed in the online algorithm, while the error rate refers to
all the errors based on ground truth positions.

Figure 9 sheds more light on the sharp increase in error rates beyond 30 s. Short-term movements
below 30 s in duration typically occur at relatively low speeds between 0.4 and 1 m/s. In contrast, the
nodes move at speed regularly exceeding 1 m/s for longer term movements. Keeping the accelerometer
off for a duration within 30 s thus strikes a suitable balance between energy efficiency and a tolerable
increase in position uncertainty. We select TMA as 30 s for the remainder of the paper.

Figure 9. Mean speed as a function of travel time. Movement of duration shorter than 30 s
occurs with lower speeds, which limits the increase of position errors when TM is within
30 s.
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While the algorithm is in stationary mode, we enforce a slow increase in uncertainty to account for
slow movements of the nodes that are below the speed threshold. The rate of uncertainty increase is
highly specific to the mobility features of the tracked entities. Figure 10 illustrates the distribution of the
movement distance of all nodes in the cattle dataset over a 10 s time window. The results show that the
majority of slow movements occur at a rate of less than 1 m per 10 s, or less than 0.1 m/s.

Figure 10. Distribution of travelled distance in a 10 s time window by all nodes in stationary
mode.

The impact of sS is shown in Figure 11. The X-axis shows the uncertainty increase in meters for
every 10 s interval, so a value of 0.1 m corresponds to an assumed stationary speed sS of 0.01 m/s. The
results show that a value of sS of 0.04 m/s provides the most energy-efficient configuration within the
5% error tolerance of our application.

Figure 11. The effect of varying sS . Lower values reduce the GPS duty cycle, as the
uncertainty reaches AAU less often, yet increase the error rate. Higher sS deliver a 66%
decrease in positioning errors at a slightly higher power consumption for added GPS locks.
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4.4.2. Motion State

The two main parameters of interest in the motion state are the length of the minimum rest time T SA
and the accuracy of the accelerometer in detecting the stationary state.

While in the motion state, the node duty cycles its accelerometer by checking for motion every T SA
to check if the node has transitioned into the stationary state. Figure 12 shows the performance of our
duty cycling strategy for different values of T SA . The results show that a minimum stationary time of
10 s yields the best trade-off within the 5% error tolerance. An unexpected result is that duty cycling the
accelerometer in the motion state almost always provides fewer positioning errors relative to keeping the
accelerometer always on while in this state. This stems from the noisy outputs of the accelerometer. If it
remains on in motion state, it is more susceptible to jittery effects that point to false motion, which results
in the accelerometer remaining in the motion state for longer. By switching off for a few seconds, the
accelerometer achieves a form of temporal sampling diversity, so that the next sample is less correlated
with the current sample, which helps to more accurately capture the true state of the device.

Figure 12. The effect of varying the minimum stationary time T SA . A 10 s off-time for the
accelerometer yields the lowest error rates and power consumption.

Another consideration is the length of time that a node in motion state checks its accelerometer for
detecting a switch to stationary state DS

A. Figure 13 shows that longer check times are more robust to
transient noisy readings due to their time averaging feature. However, a 1 s check for non-motion is
sufficient to deliver our application error tolerance and provides the best energy consumption.

4.5. Summary

In this section, we have introduced and evaluated an algorithm for duty cycling the accelerometer
module on a mobile node based on local information only. We have also explored the design space for
this algorithm and established the suitable parameter settings for our target scenario of energy efficient
localisation within an error tolerance of 5%. The next section will use this configuration to propose
group based duty cycling of accelerometers.
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Figure 13. The effect of varying the accelerometer check time DS
A. A longer check time

yields more accurate results as it reduces the effects of noise.

5. Collaborative Localisation

The key idea of our collaborative localisation method is that groups of nodes that are known to cluster
together can share the burden of motion detection. When operating individually, nodes use their motion
detection modules to detect motion events and trigger the GPS module to activate. While nodes can
cooperate through periodic contact logging, they set their accelerometer duty cycles individually.

In collaborative localisation, nodes can significantly reduce their motion module duty cycle
proportionally to the size of the group. To achieve this, each node keeps track of its neighbourhood
through periodic contact beacons of period (P), maintaining a neighbour table that maps each neighbour’s
ID to its probability of contact with the local node over a recent time window of length (T) seconds. Each
node considers all neighbours that have been regularly in close contact with it (nodes whose probability
of contact is higher than a given proximity threshold) to be part of the same group or community. Once
nodes know their group membership and size, it is highly likely that the decision by one node to move
will be highly correlated with the movement decisions of other nodes in the same group. For a group of
G nodes, each node can set its duty cycle to TM−ε

|G| . In other words, nodes in group G can reduce their
duty cycle by a factor of the group size |G|.

5.1. Characterising Clusters

The utility of collaborative localisation depends highly on the clustering dynamics of the monitored
individuals. Individuals whose movement is tightly coupled will benefit more from collaborative
localisation than individuals that move independently of others. This paper defines clusters according to
spatial proximity: nodes that are within a certain distance R of each other for at least T seconds are part
of the same cluster. Naturally, clusters vary over time depending on the movement of the constituent
individuals.
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We define a boolean instantaneous proximity function:

γ(Ni, Nj, R, T1) = 1 if d(Ni, Nj) ≤ R at time T1, 0 otherwise (2)

Instantaneous proximity estimates can be highly noisy due to signal variations and for nodes at the
boundary of the proximity radius. Localisation estimates, particularly those based on GPS, can be noisy
and unreliable for single samples, and they tend to be more reliable when taken over several samples.
These variations emphasise the need for capturing proximity over a time window rather than a single
sample. Extending γ for a time window of n discrete time samples T = T1 . . . Tn yields:

γT (Ni, Nj, R, T ) =

∑n
m=1 γ(Ni, Nj, R, Tm)

n
(3)

This function returns a value between 0 and 1 that represents the proportion of samples in window T

during which nodes Ni and Nj are within the proximity radius R. A proximity of 1 over a time window
means that the two nodes have been within a radius R for the whole duration of the time window.
Similarly, a γT of 0 means that the nodes are beyond the proximity radius for the whole duration of the
time window.

The selections of R, T and the minimum threshold γT that governs cluster membership clearly have
a direct impact on proximity. Larger proximity radii deliver large cluster memberships, while larger
time windows and threshold γT provide more stable clusters. Both of these effects are desirable for
collaborative localisation. However, both of these values involve inherent trade-offs. Using excessively
high proximity radii for collaborative localisation means that nodes have to rely on cluster members that
are farther away, which reduces the localisation accuracy. Similarly, time windows that are too long or
γT thresholds that are too high can lead to smaller clusters because of their proximity requirement for a
longer duration, which reduces the benefits of collaborative localisation.

We now explore these effects on our cattle dataset. In order to clearly separate transient and strong
proximity, we are seeking proximity distributions that are well segmented. To that end, we run 16
analysis scenarios evaluating a range of values for the proximity radius R = 5, 10, 20, 30 m and for the
time window length T = 5, 10, 30, 60 min. Each scenario runs through the entire datasets and determines
the pairwise node proximity values for the given R and T settings.

Figure 14 shows the results of each of the radius threshold and time window value. Each row
corresponds to one setting of the proximity radius R and each column corresponds to one setting of
the time window. Each plot in the figure shows the histogram of γT values for the corresponding values
of R and T .

As expected, a large proximity radius (20–30 m) and a short time window (5–10 min) provide the
best segmentation. These settings also provide a high proportion of instances with very high proximity.
At first glance, this is highly desirable. The following sections explore the effect of large proximity radii
on collaborative localisation.
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Figure 14. The joint impact of the proximity radius R and the time window T .

5.2. Collaborative Duty Cycling

The main concept of collaborative duty cycling is to share the burden of motion detection among a
group of nodes whose movement appears closely interdependent. To detect a motion event while the
group is in a stationary state, at least one of the nodes in the group must sample its accelerometer during
the event. Because motion events persist for at least TM , at least one node in the group must sample its
accelerometer every TMA seconds. With G nodes in the group, each node can power off its accelerometer
for GTMA seconds. Note that we only rely on collaborative duty cycling in the stationary state. When
nodes are in the motion state, they revert to individual duty cycling. Figure 15 shows a typical motion
detection time line with our group based duty cycling algorithm.

Figure 16 illustrates how collaborative duty cycling of accelerometers works alongside GPS duty
cycling. All nodes send periodic radio beacons that contain their uncertainty and current number of
neighbours, with period TR, to maintain neighbourhood state. Each node maintains a neighbourhood
table where it stores the proportion of neighbour beacons received in the recent time window T . Periodic
beacons also serve the purpose of limiting neighbour uncertainty, as in [5]. Nodes that receive a beacon
from a neighbour with a lower uncertainty can reduce their own uncertainty by using that neighbour as
a reference.

Whenever a node obtains position lock from GPS, it samples its accelerometer for DM
A seconds. If

it detects no motion during that period, the node transitions into stationary state. At this point, the node
determines its true neighbours, which are the nodes in its neighbourhood table for which the node has
received at least δ beacons in the past T seconds. The δ parameter is a tunable proximity threshold
that defines the degree of level of proximity that provides a suitable degree of confidence in neighbour
movement correlation.
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Figure 15. Group-based Accelerometer Duty Cycling showing a timeline of actual motion
events, algorithm state, and the active/sleep periods of the accelerometer for two nodes A
and B. Initially, both nodes are in stationary state and their accelerometers are duty cycled
with a period of 2 ∗ TMA . Once node B detects motion, it sends a warning beacon to node A
and switches to the motion state. When node A receives the warning beacon, it samples its
accelerometer and detects that it is moving, so it also switches to its motion state.
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TM
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A ,211
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The node also considers the number of neighbours of all of its true neighbours (recall that each
node embeds its number of true neighbours in periodic beacons) and selects G = min(G(N)), where
G(N) is the number of true neighbours of neighbour N . This step is required to ensure consistency
in accelerometer duty cycling among nodes in the same group, when some of the nodes belong to
overlapping groups of nodes. The node can then set its own duty cycle locally as 1

GTM
A

. The reasoning is
that each of the node’s true neighbours will run the same local computation and set at least the same duty
cycle (depending on their neighbours’ number of neighbours). Determining true neighbours and setting
the collaborative accelerometer duty cycle repeats at every time step while the node is in stationary state
to ensure adaptation to neighbourhood changes.

Whenever any node samples its accelerometer and detects movement at a speed above sthA , the node
leaves the stationary state and broadcasts a warning beacon to all of its neighbours. All neighbours that
receive the warning beacon sample their accelerometer immediately to determine if they too have started
moving. If so, the neighbours also enter the motion state, and otherwise, they stay in the stationary state.

Nodes that enter the motion state increase their uncertainty by TMA sM , as in the individual duty cycling
case. As long as their uncertainty has not reached the critical limit of AAU − tL, they duty cycle their
accelerometer less aggressively with an off time of T SA and update their uncertainty every time instance
by sM . If the uncertainty reaches the critical limit, the node powers on its GPS for a new position
estimate. If the node powers on its accelerometer before the uncertainty reaches the critical limit and
detects no motion for at least DS

A seconds, it transitions back into stationary state.
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Figure 16. A flowchart of the group-based duty cycling strategy. The white and dark shaded
blocks refer to the stationary and motion states respectively.
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5.3. Example

Figure 17 shows a trace of the uncertainty growth for 3 nodes from our empirical cattle dataset. The
trace uses solid lines to indicate the algorithm uncertainty and dashed lines to indicate the true error
for each node. At the start of the trace, all three nodes are growing their uncertainty linearly according
to sS , after having logged contact with a common neighbour 104, whose trace is not shown here. At
around t = 200, node 103 detects motion through its accelerometer, which results in a step increase in
its uncertainty. However, in the following time instance, node 103 logs contact again with node 104 and
reduces its uncertainty again. This happens again in the next cycle with a smaller peak, as node 103
has now switched to a shorter accelerometer duty cycle in motion state. After that, node 103 detects
that it has stopped moving, and reverts to slow uncertainty increase. Nodes 337 and node 103 are in the
same situation at t = 1,200, 1,250 respectively. At around t = 1,225, node 299 has a sharp increase in
uncertainty before node 337 obtains GPS lock and lowers its uncertainty. This is a consequence of using
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the dynamic speed model with step increases in uncertainty upon motion detection. The last time node
299 got GPS lock, it had a speed of 0.8 m/s. It keeps this speed estimate until its next GPS lock. When
it detects motion, it adds 0.8TMA to its uncertainty, which causes this sharp rise. When node 337 obtains
lock a few seconds later, this situation is rectified. Another node 394 (not shown here) is also nearby and
obtains lock at nearly the same time. At around 1,450 s into the simulation, node 337 detects motion on
its accelerometer and sends a warning beacon to its neighbours. Node 103 detects that it is also moving
after sampling its accelerometer, while node 299 detects that it is not. Both nodes 103 and 337 add a step
increase to their uncertainty after detecting motion. They shortly log contact with node 394 to reduce
their uncertainty again. Note that the actual position error remains within the uncertainty at all times.

Figure 17. The growth of uncertainty with collaborative duty cycling. There are fewer
motion detection events with group duty cycling.

5.4. Parameter Settings and Trade-offs

The accuracy of partitioning nodes into groups that travel together critically influences both the power
consumption and error rate metrics of the localisation algorithm. Nodes use their energy unnecessarily
if triggered by a motion beacon when they are not moving. On the other hand, the localisation error rate
grows when the nodes fail to update uncertainty bounds as a result of not receiving a motion beacon in
the motion state.

5.4.1. Group Radius

We first explore the selection of the group radius and its effect on performance. We note here that
real world deployments yield ranges that are directional as radio transmissions are severely attenuated
by obstacles, such as animals’ bodies, or false positives when detecting animal movement. While this
paper considers an idealised transmission radius for simplicity of analysis, the techniques presented here
do not introduce additional error if our idealised assumptions are not true, but they rather decrease the
performance benefits. Thus the worst case scenario is that the collaborative algorithms will have the
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same performance as for an individual animal not gaining any benefits from group localisation or motion
detection. For example, if a node receives a warning beacon from a neighbour within TMA time from the
last time it checked its accelerometer, it simply ignores the beacon as it is already in motion state.

The discussion above suggests that larger group radii are more favourable. However, larger radii
implicitly limit the opportunity for GPS duty cycling. Whenever a node logs contact with a neighbour, it
resets its uncertainty as the sum of the neighbour’s uncertainty and the proximity radius. A larger radius
means that nodes will have higher uncertainty from neighbour encounters and will activate their GPS
modules more often.

Figure 18 shows the effects of varying the group radius on power consumption and localisation
accuracy. A group radius of 20 m or more results in high error rates since warning beacons from any
neighbours will immediately increase the local node’s uncertainty by at least 20 m, with a high likelihood
of exceeding the AAU of 50 m. A shorter radius of 10 m has a higher power consumption, as fewer nodes
are deemed as neighbours, but it bounds the error rate within 5%.

Figure 18. Performance with different group radius. Benefits from group-based duty cycling
decrease for smaller groups.

5.4.2. Neighbour History

We now turn our attention towards selecting the length of the time window for maintaining neighbour
history. Shorter time windows can respond quickly to neighbourhood changes, while longer time
windows favour stable group memberships. Figure 19 shows the impact of the time window length
on power and localisation errors. Longer time windows clearly provide more accurate positioning for
group-based duty cycling at a minor increase in power consumption. These results may stem for the
nature of our cattle dataset, where group changes occur on longer time scales. The slight increase in
power consumption with longer time windows is a result of an increase in the accelerometer power
consumption. Because longer time windows favour stable groups, they cause neighbours that are
transiently close to a node to be excluded from the node’s group. This leads to smaller average group
sizes for nodes, which results in a higher accelerometer duty cycle.
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Figure 19. Performance with different sizes of neighbour history buffer. A longer buffer
size of 30 minutes helps establish stable groups.

5.4.3. Proximity Threshold

Having selected a group radius of 10 m and a neighbour history time window of 30 min, we refer
back to Figure 14. In particular, our simulations point to the plot in the second row and the third column
(R = 10 m and T = 30 min) of that figure. We seek to select the value of the proximity threshold δ that
captures to classify true neighbours from transient ones. We are effectively aiming to draw a vertical line
on the plot that separates these two classes of neighbours.

Figure 20. Performance with different proximity threshold settings.

We evaluate four values for the proximity threshold between 80% and 95% in separate simulations.
The resulting power consumption and error rates are shown in Figure 20. Higher thresholds improve
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error rates as they are more conservative in labelling useful neighbours. They also lead to smaller groups,
which reduces the savings of group-based duty cycling. We select a threshold of 85% as the most energy
efficient value that meets our application’s error tolerance of 5%.

6. Performance Evaluation

We use simulations based on the data that we empirically collected in cattle networks and evaluate
performance of the individual and collaborative localisation techniques with respect to the previous GPS
duty cycling algorithm and an always-on accelerometer triggering a duty cycled GPS. For the always-on
accelerometer approach, we conservatively assume that the activation of the accelerometer does not
contribute to an increase in the MCU duty cycle.

Due to the extensive mobility of animals in our datasets, the performance of the group-based strategy
provides relatively small benefits over the individual strategy. To further quantify the effect that the
group-based duty cycling might have in other potential areas of application, we also evaluate the different
strategies in low mobility scenarios observed during the night, when animals are resting.

6.1. Individual vs. Collaborative Localisation

We compare the performance of individual duty cycling, group-based duty cycling with 2 baseline
scenarios: (1) an always-on accelerometer that triggers a duty cycled GPS to turn on when there is
motion, where radio contact logging is used for local position sharing; and (2) the previous work on
GPS duty cycling and radio proximity, with no accelerometer. We run two separate sets of simulations
for these approaches with different travel times, in order to illustrate how performance can be tuned to
favour energy or error rate. The algorithm with no motion accelerometer uses event-based beaconing,
which had been established as the most effective approach in [5], while all other algorithms use periodic
beaconing, for reasons discussed in Sections 4 and 5.

Figure 21 compares the results. Both flavours of our accelerometer duty cycling strategies reduce
the power consumption by around 50% over the GPS duty cycling with radio ranging approach and 72%
over the always-on accelerometer approach. This comes at the cost of an increased error rate that remains
within our application’s 5% error tolerance. The higher error rate with accelerometer duty cycling is
intuitive, as nodes slow down their uncertainty growth in stationary state until they detect movement.
The bars for a travel time of 15 s show the performance of accelerometer duty cycling for applications
with tighter accuracy constraints. This shorter TMA only causes minor increases in power consumption
(about 1 mW for individual duty cycling and less than 0.5 mW for collaborative), while reducing their
error rates to 2% and 3.5% respectively. Group duty cycling saves about 10% in power consumption
over individual duty cycling, as nodes can set longer accelerometer off time. This comes at an increase
of 1.25% to the error rate, since the longer accelerometer off times increases the likelihood of missed
motion events.
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Figure 21. Performance comparison of the three strategies over the entire dataset.
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Notably, the algorithm with no accelerometer consumes significantly higher energy for powering
the GPS module and the MCU, while consuming less than half the energy for radio communication.
The higher GPS power consumption is clearly because of the more frequent GPS fixes in the absence
of accelerometer triggering. The MCU power consumption is also higher because the MCU has to
remain active while the GPS is powered on (see overlap parameter in energy model). The radio power
consumption is lower for this algorithm as it uses event-based beaconing, while both individual and
group-based duty cycling use periodic beaconing. The results clearly show that the added cost of
periodic beaconing is well worth the savings in GPS and MCU power consumption, which result from a
significant decrease in the frequency of GPS fixes.
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While keeping the accelerometer always on to trigger GPS position locks does reduce GPS power
consumption thanks to a reduced frequency of locks, it is the most energy-expensive option, as the
accelerometer module consumes 18 mW to power up its tilt compensation and heading calculations
in hardware. This algorithm also results in the best location accuracy, slightly outperforming the
no-accelerometer algorithm due to more adaptive GPS locks.

6.2. Mobility Dependencies

This section examines the performance dependence of our duty cycling strategies on the degree
of mobility.

Figure 22. Power consumption and accuracy for the 3-hour interval in the data trace with
the highest number of motion events.
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We first evaluate the effectiveness of our duty cycling strategies for highly mobile scenarios. We
select the 3-hour time window from the data trace with the highest number of motion events, and we run
each of the duty cycling strategies for all the nodes during that time window only. The results are shown
in Figure 22. Both individual and group-based accelerometer duty cycling strategies reduce the power
consumption relative to GPS duty cycling with radio proximity (between 21% and 35% respectively) and
relative to the always-on accelerometer (between 60% and 62% respectively), at the cost of increased
error rates as they use accelerometer estimates to reduce reliance on GPS. Both approaches deliver
comparable error rates with GPS duty cycling while delivering this energy benefit. For the group-based
strategy, a 30 s TMA caused the error rates to go above the error tolerance, so we show here the results for
TMA of 15 s and 25 s for that strategy. The individual accelerometer duty cycling approach outperforms
the always-on approach, indicating that duty cycling the accelerometer can lead to fewer false positives
in detecting transient motion.

Figure 23. Power consumption and accuracy for the 3-hour interval in the data trace with
the fewest number of motion events.
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Next, we explore the case of rare movement events. We select the 3-hour time window from the
data trace with the least number of motion events, and we run each of the duty cycling strategies for the
all the nodes during that time window only. The results are shown in Figure 23. Both individual and
group-based accelerometer duty cycling strategies significantly outperform GPS duty cycling with radio
proximity (50%–65%) and the always-on accelerometer (65%–78%) in terms of power consumption,
with a modest increase in error rates that remains well within the application-specific limit of 5%. The
group-based approach delivers a further 20% improvement in power consumption over individual duty
cycling, as the nodes that share the accelerometer sampling burden get to spend a longer time in off
mode. Interestingly, a TMA of 30 s yields the best results for low mobility, as it is less likely to miss
motion events during the longer accelerometer sleep time. GPS duty cycling with radio ranging delivers
the highest accuracy, outperforming the always-on accelerometer. All versions of accelerometer duty
cycling exhibit slight reductions in accuracy, while staying well within the 5% error tolerance.

6.3. Summary

The results in this section have shown that while both flavours of accelerometer duty cycling improve
the power consumption over previous work, sharing the burden of duty cycling among members of a
group is beneficial primarily in situations where the expected likelihood of motion is relatively low.
When that is not the case, performance of the two approaches is comparable with a slight improvement
in error rate for the individual approach.

7. Discussion

7.1. Mobility Pattern Adaptation

The results have shown that individual accelerometer duty cycling performs better during high activity
time windows, and that collaborative localisation performs better during low activity time windows. This
effect stems from the highly deterministic and synchronous nature of individual duty cycling. For the
same reason that synchronous MAC protocols perform better with high traffic scenarios, individual duty
cycling is well-suited for situations where the likelihood of a motion event is high. The reason that it
outperforms collaborative duty cycling in this situation is that the latter distributes the burden of activity
check across multiple neighbours, some of which may leave the group during critical times.

Through similar reasoning, collaborative duty cycling performs well under low activity scenarios
as the dynamic nature of moving nodes adds a randomisation effect to the sample schedules.
This randomisation is beneficial for detection of motion events in the group, whose distribution in
non-deterministic.

An interesting extension of our work is to enable nodes to adapt their accelerometer duty cycling
strategy based on their observed motion levels. When the frequency of motion events exceeds a certain
threshold, nodes switch to individual duty cycling. When activity slows down, they can revert to
collaborative duty cycling. The results in Figures 22 and 23 suggest that additional savings can be
achieved by actively enforcing this strategy.
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7.2. Group Overlaps

The group structure across a dynamic topology of mobile nodes will almost certainly lead to
asymmetric views of groups among nodes. For instance, a node A may have ten neighbours, nine of
which are tightly connected and have a consistent view of their group. These neighbours can simply set
an accelerometer duty cycle at one-tenth of their individual duty cycle. Node A’s tenth neighbour, node
B, only sees node A as its neighbour, because it is further away from the other nodes in the group. As
a result, node B sets its duty cycle at 50% of its individual duty cycle. Node A will also set its duty
cycle to 50% of the individual duty cycle, thanks to the min(G(N)) operation through which it can
accommodate its least connected neighbour. This approach also holds true in the case of multiple group
overlaps.

7.3. Desynchronisation

Another issue is whether group members are implicitly synchronised through warning beacons, and
whether this has an impact on the performance of our collaborative duty cycling strategy. A few features
in our algorithms help avoid implicit synchronisation. Firstly, nodes notify neighbours when getting GPS
lock, which avoids race conditions for this operation. Second, nodes in overlapping groups will check
their accelerometers at different intervals, which contributes to desynchronisation. Additionally, the use
of the dynamic speed model leads nodes to grow their uncertainties at different rates in motion states,
helping to avoid implicit synchronisation. Finally, the specific individual movement or non-movement
patterns also help desynchronisation of uncertainty growth. A node in a group that detects movement at
one instance will trigger a warning beacon to neighbours. A subset of neighbours will switch to motion
state if they are moving as well. This will cause desynchronisation among nodes in the moving subset
and the rest of the group. At another point during the process, another subset of the group may similarly
detect motion and shift their uncertainty growth away from the rest of the group.

7.4. Advanced Mobility Models

This paper has considered a simple mobility model for the animals consisting of a stationary and
moving state. While this model can easily be generalised to other moving objects, more fine-grained
modelling of the motion states can potentially yield improved accuracy and energy efficiency. In the
case of cows, previous studies suggest that motion can be modelled using three [27] or four states [28].
The potential benefits of more fine-grained motion modelling should be weighed against the ability of
motion detection modules to accurately distinguish between the states. This remains an open issue for
future work.

7.5. Empirical Validation

The group based motion detection algorithms in this paper have used empirical data traces to explore
the design space and establish the utility of this approach, particularly when the mobile entities move
rarely. An interesting direction for future work would be to empirically test this approach in order to



J. Sens. Actuator Netw. 2012, 1 214

better quantify its benefits for real-time tracking. Empirical validation would require the use of cameras
with targeted image processing algorithms for cattle tracking or through human observers for the duration
of the experiment, which would limit the duration or spatial scale of the experiment.

8. Conclusions

This paper has presented accelerometer duty cycling strategies to save energy for localising mobile
nodes with GPS and radio beaconing. We proposed both individual and collaborative duty cycling of
accelerometer based on the mobility features of the nodes. We have shown through simulations on
empirical cattle position data traces that the individual approach is well suited towards highly mobile
nodes while the collaborative approach is better suited towards low mobility nodes. We expect that
collaborative approaches that include and go beyond localisation will become increasingly relevant as
mobile devices improve in density and capability.
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