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Abstract: Wireless Sensor Networks (WSNs) are used in many industrialand consumer

applications that are increasingly gaining impact in our day to day lives. Still great efforts

are needed towards the definition of methodologies for theireffective management. One big

issue is the monitoring of the network status, which requires the definition of the performance

indicators and methodologies and should be accurate and notintrusive at the same time.

In this paper, we present a new process for the monitoring of the physical layer in WSNs

making use of a completely passive methodology. From data sniffed by external nodes, we

first estimate the position of the nodes by applying the Weighted Least Squares (WLS) to

the method of indirect observations. The resulting node positions are then used to estimate

the status of the communication links using the most appropriate propagation model. We

performed a significant number of measurements on the field inboth indoor and outdoor

environments. From the experiments, we were able to achievean accurate estimation of the

channel links status with an average error lower than 1 dB, which is around 5 dB lower than

the error introduced without the application of the proposed method.

Keywords: Wireless Sensor Networks; passive monitoring; channel link performance;

weighted least squares; ZigBee

1. Introduction

Recent advances in micro-electro-mechanical systems technology, wireless communications and

digital electronics have enabled the development of low-cost, low-power, multifunctional sensor nodes

that are small in size and communicate untethered in short distances. These tiny sensor nodes, which
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consist of sensing, data processing and communicating components, leverage the idea of sensor networks

based on collaborative effort of a large number of nodes [1]. Hence, the wireless sensors networks

(WSNs) are used in many scenarios [2] and for a lot of applications, such as home automation [3],

health care [4], remote control [5], industrial control [6], environmental monitoring [7], intelligent

transportation systems [8], etc.

WSNs also represent a key component of the Internet of Things(IoT), which is a novel paradigm that

is rapidly gaining ground in the scenario of modern wirelesstelecommunications. The basic idea of this

concept is the pervasive presence around us of a variety of things or objects, tags, sensors, actuators,

mobile phones,etc., which are able to interact with each other and cooperate with their neighbors to

reach common goals [9]. Indeed, sensor networks will also play a crucial role in the IoT because they

can cooperate with RFID systems to better track the status ofthings, i.e., their location, temperature,

movements,etc. As such, they can augment the awareness of a certain environment and thus act as a

further bridge between the physical and the digital worlds.Today, most of commercial wireless sensor

network solutions are based on the IEEE 802.15.4 standard, which defines the physical and MAC layers

for low-power, low bit rate communications in wireless personal area networks (WPANs) [10].

If WSNs are sufficiently mature to be used in several applications, as previously discussed, still

great efforts are needed towards the definition of methodologies and the design of tools to support

their deployment and management. Indeed, deployment of wireless networks in realistic scenarios,

often represented by a combination of outdoor and indoor areas, requires the analysis and the modeling

of the wireless channels to optimally place the nodes so as tomaximize the network lifetime while

achieving the WSN application goals (e.g., sensing the status of the environment); it also requires

the identification of the best roles of each node (e.g., how many routing nodes to run and which

configuration to be set up). After deployment, network management requires methodologies and

tools to support the monitoring and troubleshooting duringthe whole network life. Key to all these

activities is the definition of the performance indicators,which should be able to provide a general

view of the network status and to easily highlight the major issues, and the techniques to perform

the relevant measures, which should be accurate and not intrusive at the same time. On the basis of

the availability of the information related to the network channel links, it is possible to improve the

network throughput [11], lifetime [12], packet reception rate [13], fault tolerance [14]. Many are the

works focused on performance monitoring for WSNs [15–26]. In [15], the Rostet al. focus on the

in-band monitoring approach so that diagnosis packets are transmitted on the same band used for the

WSN communications, whereas, in [20], Chenget al. propose an out-band monitoring framework so

that the diagnosis packets are sent in a separate band with respect to one used by the WSN. In [25],

Chenet al. focus on a passive analysis and propose a set of tools to analyse the packets captured by

a sniffer.

As it will be clear from the analysis of the state of the art in next section, one of the major problems

in the proposed methodologies is their intrusiveness. It isdue to the need for the nodes to measure

the received signal power and to generate and transmit packets conveying the measurement results to

the network. In general, the intrusiveness brings to an increase in both network traffic and signal/data

processing. This drawback is extremely undesirable since the nodes are mostly battery-powered and

any additional energy consumption could compromise the network lifetime. On the basis of these
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considerations, in this paper we aim at evaluating the suitability of a passive method for the estimation of

the physical layer performance in a wireless sensor network. Herein, by passive we mean that the nodes

of the WSN are not involved in the monitoring process, and themeasurements are performed by eternal

nodes that carry out a series of observations on the wirelesschannels concerning the transmissions of

the network nodes. These observations are then used to estimate the status of the wireless links in the

network. The major contributions of this paper are the followings:

• we designed a new process for the monitoring of the physical layer in WSNs making use of

a completely passive methodology. From data sniffed by external nodes, we first estimate the

position of the nodes in the WSN by applying the Weighted Least Squares (WLS) to the method

of indirect observations. The resulting information on thenodes position is then used to estimate

the status of the communication links among the network nodes;

• we performed a significant number of measurements on the fieldto evaluate the accuracy of the

proposed approach in both indoor and outdoor environments.In the experiments, the proposed

method achieved an accurate estimation of the channel linksstatus so that we could acquire the

status of the channel links with an average error lower than 1dB, which is around 5 dB lower than

the error introduced without the application of the proposed method.

The structure of the paper is the following. In Section2 we review past works related to performance

monitoring in WSNs. In Section3.1 we define the multilateration problem in estimating the position

of the nodes in the network and describe the weighted least squares algorithm applied to the method

of indirect observations. In Section4 we present the proposed approach for the passive monitoringof

the WSN physical layer and in Section5 we provide the analysis of the effectiveness of the proposed

approach through experiments in realistic scenarios. Final conclusions are drawn in Section6.

2. State of the Art

In the recent years, many researchers have considered the problem of performance monitoring in

WSNs under different requirements and objectives. The mainproposed approaches can be classified

into the categories of active and passive categories, with some others that are in the middle.

To the first category belongs Memento [15]. It makes use of an in-band monitoring approach since

it allows nodes to transmit additional diagnosis packets inthe same channel of the data packets. Three

broad classes of information are introduced: failure detection to inform the user about failed nodes,

symptom alerts to proactively inform the user about symptoms of impending failure or reporting on

performance, and ex-post facto inspection to inform the user of the timeline of the events to help infer

why a failure or symptom occurred. According to this approach, it is required that each node uses

its portion of memory and computing capacity to create the new monitoring messages. Apart from

consuming the bandwidth of the network with the new message,the main problem of this approach is

the use of the nodes computing and memory capacities. Similarly, Sympathy [16] is an active in-band

monitoring tool that has defined some metrics to enable failure detection and an algorithm to find the

potential causes. However, due to limited processing powerat the nodes and the limited bandwidth

of the network, it is very likely that the introduced diagnosis overhead interferes with the operation of

the network itself. SNMS [17] is another active in-band monitoring approach. Its innovation is that
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SNMS generates network traffic only in response to direct human actions and not during the steady

state. With respect to the previous ones, it then limits the usage of the network capacity and node

computational capacities; however, it still needs a considerable amount of nodes memory. Compared

with the predecessors in-band monitoring algorithms, DiMo[18] performs some processing locally at

the nodes involved in the measurements so that they only report to the sink if a node is potentially failed.

This greatly reduces the transmission overhead and energy consumption.

In the middle between the active and passive categories, there are some hybrid methods that make use

of the two types of approaches. In the active approach, a tag is introduced on all packets and a sniffer

is used to capture the traffic and analyze the tags. In the passive approach, an out-of-band infrastructure

is used for the monitoring, where no additional packets are generated but the computing capacity of the

nodes is used for the analysis of the packets. DiF [26] is a Diagnosis Framework for WSN that introduces

packet tags. The purpose of the framework is to minimize the effort spent on developing diagnosis tools

for variety of WSN, to speed up development of WSN, and to simplify diagnosis and verification of

network deployment. It is a very effective method, but it is very complex to be implemented for large

networks. In [19] the researchers propose DSN: a non-permanent, wireless cable replacement. It makes

use of an out-band monitoring approach and does not disturb the target WSN more than the traditional

cable-based approach. The DSN nodes are attached to WSN target devices via a programming and

debugging cable and form an autonomous network. DSN nodes provide two radios. The first radio (DSN

radio) is used to form a wireless network among the deployment support nodes, while the second radio

(WSN radio) is used to overhear the traffic of the sensor network. SNIF [24] is a general framework for

passive inspection of multi-hop sensor networks to detect problems related to individual nodes, wireless

links, paths and global problems. To overhear the traffic of multi-hop networks, multiple radios are

needed, forming a distributed network sniffer. SNIF uses a wireless network of DSN. This approach

works indeed very well in small size networks. However, as soon as the network size increases, this

approach has the problem of scalability.

Differently from the previously described algorithms, passive diagnosis plants sniffers around the

network to overhear the packets exchanged between nodes. The exchanged packets are then merged

together to form an overview of the network operations. Thisapproach removes the above limitations of

active/hybrid inspection: no instrumentation of sensor nodes is required and sensor network resources

are not used. The family of passive monitoring can be split into two subcategories: on-line and off-line.

The first performs a real time communication among passive nodes (sniffers) and diagnosis servers using

an out-of-band approach with either wired or wireless connections. An event log is generated, which may

be retrieved in off-line mode for further diagnosis. The methods of the second subcategory are cheaper

and have higher scalability and flexibility, because they donot need any infrastructure for real-time

communication among the passive nodes. JIGSAW [20] is an on-line monitoring framework based on

a monitoring infrastructure that overlays a wireless network. The monitors in turn feed a centralized

system that uses this data to produce a precisely synchronized global picture of all physical, link-layer,

network-layer and transport-layer activity. This method can be used for large networks, but it needs

wired links among the monitors, making it neither scalable nor flexible. SNDS [23] is another on-line

distributed monitoring and protocol analysis system for complex WSNs. It is based on passive sniffers

co-deployed with the target WSN, which are inter-connectedvia Ethernet cables. Sniffers are mainly
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used to monitor a particular channel and to transmit the datato the service program. SNDS solves

the problem of intrusiveness using the sniffers, but the sniffer infrastructure is cabled (Ethernet) so for

large WSN this is a main problem. To the off-line subcategorybelong EMSTAR [21] and LiveNet [25].

EMSTAR generates an event log that can be evaluated off-linetowards fault isolation, fault tolerance,

system visibility, in-field debugging, and resource sharing across multiple applications. LiveNet [25] is a

set of tools and analysis methods for reconstructing the complex behavior of a deployed sensor network

in passive mode. It is based on the use of multiple passive packet sniffers co-located with the network,

which collect packet traces that are merged to form a global picture of the network operations.

Although a passive monitoring infrastructure can be expensive due to the need for additional

components, we believe that in many cases it is the only way toeffectively monitor the network. Our

approach is similar to that of LiveNet, since we also proposea completely passive monitoring system

that relies on sniffers to capture the network packets and ona post-processing module to analyze off-line

the performance. Within this general approach, we propose anovel mechanism that allows for estimating

the physical link status other than the network layer statuswithout any collaboration of the WSN nodes.

This is an additional feature in this category of methods that improves their potentialities.

3. Estimation of Node Position Using Indirect Observations

In this section, we review the basic theory that is exploitedin the proposed algorithm described

in Section4. In the first subsection, we summarize the multilateration problem, and in the second

subsection, we describe the Weighted Least Squares (WLS) applied to the method of indirect

observations.

3.1. Multilateration Problem

The lateration problem consists in determining the position of a node (i.e., the target node) in the

space based on its distance from other nodes with known positions (i.e., theanchors) [27]. To address

the lateration problem in a plane, three anchors are needed usually. Using the anchor positions and the

distances, the target node position has to be at the intersection of three circles centered at the anchors.

A common issue is that distance measurements are often imperfect and the intersection of these circles

does not, in general, result in a single point. To overcome these imperfections, distance measurements

from more than three anchors can be used (the higher the number of measurements the better), resulting

in a multilateration problem [28–31]. Figure1 shows a representative scenario with four anchors, where

the distance measurements brought to the grey area represent the intersection of the circles as well as the

area within which the target node is expected to be located.
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Figure 1. Example of a multilateration problem. The grey area is obtained as the intersection

of the three circles centered at the anchors and is where the target node is expected to

be located.

The multilateration problem can then be written as follow






























(x1 − x)2 + (y1 − y)2 = r21

(x2 − x)2 + (y2 − y)2 = r22
...

(xn − x)2 + (yn − y)2 = r2n

(1)

wheren is the number of anchors, vectorp = (x, y) is the position of the target node, vectorsai = (xi, yi)

are the position of anchori, andri is the distance measured from anchori to the target node. This system

can be written with the following matrix equation

Ap = r (2)

The resulting system is not linear, but it is possible to linearize it by subtracting thei-th equation from

all the othern− 1. The new system is the following































x2
1 − x2

n − 2 (x1 − xn) x+ y21 − y2n − 2 (y1 − yn) y = r21 − r2n

x2
2 − x2

n − 2 (x2 − xn) x+ y22 − y2n − 2 (y2 − yn) y = r22 − r2n
...

x2
n−1 − x2

n − 2 (xn−1 − xn)x+ y2n−1 − y2n − 2 (yn−1 − yn) y = r2n−1 − r2n

(3)

Then it is possible to finally write the following matrix equation

Alinp = b (4)



J. Sens. Actuator Netw.2012, 1 278

This problem is over-determined so that to find the solution the Ordinary Least Squares (OLS) can be

used [32]. In the ideal case where all measures are perfect, all circles intersect at a single point, but in the

real case the measures are affected by error and the circles intersect at more than one point. These points

identify an area of solution (grey area in Figure1). By the OLS, we obtain the solution that minimizes

the sum of the squared distance. The precision of this solution is given by the residual

res =

∑n
i=1

√

(xi − xm)2 + (yi − ym)2 − ri

n
(5)

wherepm = (xm, ym) is the resulting estimated target node position.

3.2. WLS Applied to the Method of Indirect Observations

The WLS applied to the method of indirect observations is usually adopted in topography science

to correct the estimation of positions of nodes in the space [33,34]. The scope is not to find a direct

solution in terms of coordinates(x, y), but to estimate correctionsδx, δy to compensate an initial estimate

(xm, ym) of the target node position. The adopted approach is that of minimizing the probability to

obtain the resulting residual by moving the estimated position of δx, δy. The method can be iterated

until (δx, δy) are negligible, so that the method converges to a solution. Such a minimization results in

the application of the WLS to indirect observations, represented by the measured distances between the

anchors and the target node. These are assumed to be indirect, since at every iteration, new distances

that represent the indirect observations at each application of the WLS are computed [35,36]. In the

WLS algorithm, the weighting matrix is used so that more importance is given to the more reliable

observations. Additionally, these weights are updated through an iterative procedure to increase the

overall accuracy.

Typically the problem is oversized, because there are a lot of observations available, and the matrix

A in Equation (2) is (n× s) with the number of equations (called observations) greaterthan the number

of unknown values (n > s; in the planar case that we are considering,s = 2). There is the need to start

with an initial location estimation (xm, ym), which is obtained by making use of the OLS as explained in

the previous subsection. The major difference between the WLS and the OLS methods is that the first

uses a weighting matrix to give much importance to the more reliable observations for the benefit of the

overall accuracy. On the contrary, the OLS method does not use any weight and all the observations are

given with the same importance. Letx̃ represent the obtained solution andṽ be the residual vector (the

set of measures are affected by errors). We can write the following matrix equation

Ap̃ = r + ṽ (6)

Then the model hasn observations andn+s unknown values:s for vectorp̃ andn for residual vector

ṽ. Hence, the system is oversized and the possible solutions are∞n.

We now assume that the errors are uncorrelated with each other and with the independent variables

and have equal variance. It means that we assume the independence of observations, which is justified

by the use of the same device (or devices with the same characteristics to measure the distances from

anchors to the target node). We also assume that the residualis governed by the following probability

density function
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f(v1, . . . , vn) =

(

1

σi

√
2π

)n n
∏

i=1

1

σi

exp
−

1

2

∑n

i=1
(
vi
σi

)2 (7)

We then change the approach in finding the solution to Equation (2) so that we aim at minimizing the

probability in Equation (7), which results in minimizing the following

n
∑

i=1

(

vi

σi

)2

= min (8)

It is possible to insert a constantσ0

n
∑

i=1

(

viσ0

σi

)2

= min (9)

which brings to the application of the WLS where the weights are

Pi =
(

σ0

σi

)2

(10)

and where the final matrix system is

ṽTP ṽ = min (11)

At this point, it is frequent to encounter the problem of equations that are not linear, which is an issue

for the application of the WLS. This problem is also present in the case studied by this article. To address

this problem, we linearize the functions in matrixAp aroundp̃ where it is derivable, and we substitute

the function by its linearization at this point. We now skip all the next mathematical passages and we

give the final solution. LetA∂ represent the partial derivates ofAp in dx anddy computed at̃p = (x̃, ỹ).

After the linearization we obtain the bound problem

A∂p+ r = v (12)

So, by Equations (11) and (12), we can build the system that, once resolved, represents the final

solution







A∂p+ r = v

ṽTP ṽ = min
(13)

The final solution obtained after the resolution of system inEquation (13) is then the following

δp = −
(

AT
∂ PA∂

)

−1
AT

∂Pr (14)

Essentially, with this method, it is possible to spread the error of the measures, to minimize the

residual generated by the solution, so that the method provides a more accurate solution with respect

to the initial OLS estimation [37]. It is also possible to estimate the precision of the solution. Indeed,

for the law of variance propagation, the variance ofδp can be easily computed from the square matrix

H =
(

AT
∂PA∂

)

−1
: the values in the diagonalhii correspond to the variance ofδp multiplied by a factor

scaleσ2
0 .
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Note that at any iteration we need to estimate the new variances of residualsσi, which are obtained

from the vector of residuals of the previous iterations. Thevalueσ2
0 at each step is instead computed by

the maximum likelihood criterion

σ2
0 =

vtPv

n− s
(15)

The described method can be iterated until vectorδp is lower than a given threshold (which is set

according to the desired target application).

4. Proposed Method for Physical Layer Performance Estimation

As already mentioned in the introduction, in this paper we aim at evaluating the suitability of a passive

method for the estimation of the physical layer performancein a wireless sensor network. Herein, by

passive we mean that the nodes of a network that are already installed and active in a given environment

are not involved in the monitoring process. Instead, the measurements are performed by the sniffer

nodes that carry out a series of observation on the wireless channels concerning the network nodes

transmissions. Then, from these measurements, estimations on the wireless links status among the

operating nodes are performed.

The rationale behind the proposed method is that the WSN nodes are mostly battery-powered and

any additional activity, such as receiving signal power measurements needed in an active scenario,

could compromise the network performance and lifetime. These nodes would not only need to make

the measurements of the power but also perform some operations (to compute the average values for

instance) and send the relevant data to a sink with additional energy consumption. Furthermore, in

the current WSN market, the node prices are kept as low as possible by limiting the computational and

memory capabilities, which prevents implementing most of the monitoring tasks in the nodes themselves

using the available hardware.

4.1. Reference Scenario

We consider the scenario of an operating WSN of which we are interested in estimating the channel

status. We assume that we cannot perform any measurement at these nodes and that the positions of

these nodes are unknown; for this reason these are calledblind nodes. Such a set of nodes is defined

as the setB = {1, ..., Bk, ..., BNB
}. The nodes are operating and are connected in a mesh structure

according to the specific communication technologies adopted. We may or may not know the graph of

the connections among the nodes, but this is not an issue for our problem.

Our objective is to estimate the power of the transmission signal of nodeBk as seen by nodeBj,

which we callTB
jk. To this we make use of anchor nodes with known position. The set of anchor nodes is

defined as the setA = {1, ..., Ai, ..., ANA
}. These are the sniffers used in our measurements. Indeed, we

may have only one sniffer that changes its position over timeand makes several measurement sessions

or many sniffers that make measurements in parallel. Note that each snifferAi performs measurements

of the signal coming from every blind node. The signal transmission measurements performed by the

anchors are represented byTA
ik . For everyi, we expect to have a measure for any blind nodek, with
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k = 1, ..., NB; however, due to the distance and the presence of occluding objects, some of these

measures can be set to zero, meaning that the anchor has not been able to detect any signal from blind

nodek. The measurementTA
ik is usually obtained as the average power measured for a set ofpackets

received during the sniffing time, and its accuracy clearly depends on the length of the observation time

and the transmission frequency of blind nodek. Specifically, herein without loss of generality, we refer

to the RSSI (Received Signal Strength Indication) measures.

A key part in the proposed approach is the estimation of the distances between the blind nodes and

between the blind nodes and the anchor nodes. In line with thenotation used for the signal power, we

refer to these two entities asDB
ik andDA

ik, respectively.

Figure 2 shows an exemplary scenario where the number of anchor and blind nodes is 5 and 6,

respectively. In this figure, we represent the power and distance only for some couples of nodes for the

sake of clarity, and the same applies to all other figures.

Figure 2. Reference scenario with 5 anchors and 6 blind nodes.

4.2. Proposed Power Estimation Algorithm

The method we propose herein is straightforward and is basedon estimating the position of blind

nodes from the measurements performed by the anchors and using these estimates to infer the channel

power for the entire network links. We use the passive deviceto store the packets exchanged on the

network. We analyze the MAC layer to evaluate the RSSI field, which is shown in Figure3. The RSSI

represents information about the power of the signal received by the end-device. Hence, knowing the

environment and the model that describes the propagation ofthe signal, we can easily extract information

about the geometric relationships among the blind nodes andthe anchors. We use this information to

resolve an OLS problem and obtain an initial estimation of blind node positions. This step is necessary to

have the input to apply the algorithm proposed in Section3.2. Now we compute all the coefficients and

linearize the function, with the objective to write the bound problem, which is described in Equation (13).

Making use of the solution Equation (14), we obtain the estimation of the corrections to be applied to

the initial position of each blind node. We are now able to perform an iteration of the method using

the new position (the initial position obtained by algorithm OLS with the computed corrections) as the
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new input. The criterion is iterated until the correction issmaller than a threshold selected a priori in

accordance to the desired accuracy. When the algorithm terminates for every blind node, we obtain all

the position estimations for the devices. Hence, we easily evaluate the relative distance among the blind

nodes, and in accordance to the environment, we apply the appropriate propagation model to estimate

the transmission power among all the blind nodes. For more details, see Figure4.

Figure 3. IEEE 802.15.4 packet.

Figure 4. Flow diagram for the proposed algorithm.
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• Step 1: each anchori measures and stores the received signal for the packets transmitted during

a timeframeT and related toSik packets per blind nodek. From these measures the anchors

compute the received signal powerTA
ik .

• Step 2: on the basis of information about the ambient environment,each anchor makes use of a

channel model for each of the blind nodesk, namelyFA
ik , to estimate the distancesDA

ik.

• Step 3: for anyk, we set a vectorr = DA
ik, for k = 1, ..., NB. We then write the system Equation (3)

and apply the OLS method described in Section3.1to obtain the estimation of the position of each

blind node. These estimations are then referred to asP̃B
k .

• Step 4: for any k, we also compute the estimated residual by applying Equation (5). From this

step on, we enter an interactive WLS algorithm applied to theindirect observations described in

Section3.2.

• Step 5: we compute the coefficients of matrixA∂ , which represents the partial derivates ofAp in

dx anddy. This is performed by a linearization of each function in thesystemAp by a Taylor

expansion around the point estimate in Step 3. The general equation for the linearization of a

multivariable functionf(X) at a pointQ is: f(X) ≈ f(Q) +▽f |Q (X −Q)

• Step 6: we then apply Equation (14) to obtain the estimation of the correction to be applied to

the initial position of each blind nodek at each iterations: δP
B,s
k . We compute again the new

estimated position:̃PB,s
k .

• Step 7: for any blind nodek we go back for another iteration ifδPB,s
k < ǫ, whereǫ is a threshold

set as the stop criterion. Otherwise we go ahead with the nextstep.

• Step 8: from the estimated position of the blinds nodes and making use of the most appropriate

channel modelFB
jk (this is selected again on the basis of the ambient environment), the transmission

power of nodek seen by the blind nodej is computed.

5. Experiments

In this section, we firstly illustrate the setup and present the selection of the propagation models,

which are key to the proposed method performance. We then present and analyze the results.

5.1. Setup

The effectiveness of the proposed methodology has been tested in three indoor scenarios: a conference

room, an office room and a small flat, with some details provided in Table1. The tools used for the

experiments are as follows:

• Development kit case provided by Telit Wireless Solutions.This kit is made of five ZigBee radio

boards that are based on the Texas Instruments CC2530 Systemon Chip with the Embedded Telit

Z-One ZigBee-PRO Stack. The antennas are external dipoles characterized by an omnidirectional

pattern. Four modules are used to create the network under analysis whereas the fifth works as the

sniffer, for which a specific firmware has been developed to correctly capture all the packets on air.

• The software used to inspect the packet content is Wireshark. To analyze the performance of

the network from the Wireshark output and to conduct networkdiscovery and commissioning, a

specific tool has been developed by Telit Wireless Solution in collaboration with our lab and named
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SRManager Tool. In this experiment, this tool has been used to collect the RSSI values observed

from the different nodes in the network.

Table 1. Environment of the experiments scenarios.

Scenario Size Description Link type

Conference room 6.3 m× 5.4 m The room includes 12 desks with around 40

chairs. The room was empty when making the

measurements.

LOS

Office room 4.5 m× 9.5 m The room includes 5 desks, 5 personal comput-

ers, and 4 people were working when making

the measurements.

LOS

Small flat around 85m2 The flat has 5 rooms (kitchen, living room,

corridor and 2 bedrooms) with typical furniture

LOS/NLOS

During the experiments we used the standard ZigBee channel number 14 in the 2.4 GHz ISM

frequency band. For each scenario, the blind nodes (NB = 4) have been placed randomly and then

switched on; then, the sniffer has been moved again randomlyin ten positions (NA = 10) to perform

the required sniffing session. The network nodes are identified by their network 16-bit address: 00-00,

95-4C, 1E-57, 28-1F. For each position, the sniffer captures the first 1,000 packets generated by each

active node and exchanged in the PAN network. We firstly performed the campaign of RSSI measures by

the sniffer; secondly, we applied the model of indoor propagation to estimate the distances; and thirdly,

we used the approach discussed in Section4 to estimate the physical link performance. Figures5–7 show

the locations of both the blind nodes and the sniffer for the three scenarios. Note that in these figures,

the origin of the Euclidean space has been set to the first anchor position.

Through the serial port, the sniffer was connected to a laptop running Wireshark together with

the SRManager Tool. For each position, the sniffer capturedaround 1000 packets from which we

extracted the RSSI values from the IEEE 802.15.4 packets. This value is a measure of the power of

the received signal as measured by the receiving device. In our scenarios, the receiver is the sniffer

and the transmitters are the blind nodes building the PAN. For each packet with the same source node

address, we extracted the RSSI and computed the arithmetic average of all the resulting values. Indeed,

these measurements are affected by the peaks caused by a multipath fading, since in the indoor scenario a

small variation of the environment can significantly affectthe signal strength. This process is replicated

for each anchor position. Finally, we obtained ten sets of observations, each containing information

about the average RSSI value between the anchor node and the blind nodes. Table2 shows the average

RSSI values for the three scenarios.
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Figure 5. Position of the blind nodes and anchors for the conference room experiments.

Figure 6. Position of the blind nodes and anchors for the office.
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Figure 7. Position of the blind nodes and anchors for the flat.

Table 2. Average values of the RSSI measurements for the three scenarios.

ANCHOR 00-00 28-1F 95-4C 1E-57

Conference room

A1 30.03 26.92 28.00 36.00

A2 23.99 10.13 22.00 40.00

A3 27.03 28.00 8.95 33.99

A4 27.92 21.95 22.88 30.00

A5 31.97 7.52 26.75 24.02

A6 24.95 34.00 30.00 11.90

A7 20.97 31.01 24.00 28.84

A8 25.68 30.15 36.00 13.65

A9 35.00 20.28 16.77 24.00

A10 28.00 20.96 36.83 17.97
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Table 2. Cont.

ANCHOR 00-00 28-1F 95-4C 1E-57

Office room

A1 24.10 7.63 34.00 24.35

A2 25.62 42.00 12.50 33.36

A3 29.21 6.20 39.98 20.31

A4 29.27 14.54 38.00 25.21

A5 23.01 30.00 20.55 36.45

A6 13.60 30.00 10.85 43.07

A7 27.09 23.03 21.96 29.59

A8 41.96 15.30 19.63 21.87

A9 33.81 26.26 21.44 21.96

A10 9.60 34.49 23.53 28.02

Flat

A1 13.17 5.01 23.00 20.28

A2 21.98 −0.54 18.00 25.00

A3 16.00 16.92 36.00 16.00

A4 28.10 12.00 4.73 9.29

A5 −8.48 29.08 22.51 9.97

A6 4.91 6.86 22.00 35.02

A7 7.57 18.98 −0.90 27.50

A8 10.15 5.96 7.33 32.00

A9 −1.17 36.00 13.17 15.00

A10 39.74 −5.29 13.90 16.33

5.2. Propagation Models

A key aspect in the proposed method is the selection of the most appropriate propagation model.

It is used to estimate the distance from the measured power and to again estimate the power from

the estimated distance. Specifically, in our experiments the power is measured in terms of RSSI

(Received Signal Strength Indication). The indoor-radio channel differs from the outdoor channel

because the indoor channel has shorter distances to cover, higher path-loss variability, and greater

variance in the received signal power. Several models have been proposed in the literature to estimate

the path loss in the indoor environment. In our experiments,we have used the one-slope and multi-wall

models [38,39,46]. These are the most important and frequently employed pathloss models for the

estimation of the average received power levels in indoor propagation scenarios, since they provide a

good trade-off between simplicity and precision. For the one-slope model, the path loss in dB is given

by

LdB = L0,dB + 10n log10 (r) (16)
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whereL0,dB is the path loss at distance of 1 m,n is the attenuation coefficient andr is the distance.

L0,dB should be estimated in a free space and it is not affected by the environment. It only depends on

physical properties of link (distance and frequency) and can be estimateda priori by the following Friis

free-space equation (in dB)

Lfriis,dB = 20 log10 (fMHz) + 20 log10 (r)− 28 (17)

For the 2.4 GHz and for the distance of 1 m the Equation (17) has a value of40.2dB.

As for the coefficientn, it is environment dependent and in literature there are several studies that

provide an estimation of this value. In our experiments, we have selected the value ofn = 4.2

in accordance with the study in [40–42]. This model has been used for the conference and office

environment.

For the flat scenario, due to the presence of walls we have usedthe multi-wall model given by the

following expression

LdB = L0,dB + 10n log10 (r) +
N
∑

i=1

kiLwi (18)

where the integerN is the number of wall types,ki denotes the number of wall of typei, andLwi the

signal loss for wall typei. There are differentLwi values in relationship to the material and thickness

of the walls, but in our work all walls have same characteristic. So the difference among the wall is

only their position in the path. In our experiments, in accordance with the work in [43], we used the

calibration method proposed in [44] to estimate theLwi values for our flat environment. Whether the

wall is the first or the second in the path changes the value ofLwi. After the calibration, we obtained

these values:Lw1 = 8.21 andLw2 = 7.12.

The described models are then used to extract the distance from the collected RSSI measures, but

before this, a conversion is needed since these measures do not represent exactly the received power,

which is instead given by the following expression

PRX,dB = RSSI +Offset (19)

For the used CC2530 chipset,Offset= −73. Then, knowing the transmission powerPTX,dB (for the

Telit ZE51 module, the transmission power isPTX,dB = 4 dBm [45]), we can compute the distance from

the following expression

r = 10

PTX,dB−PRX,dB−L
0,dB−

N
∑

i=1

kiLwi

10n (20)

Obviously, if there are no walls in the path, in Equation (20), the value of
N
∑

i=1
kiLwi is zero.

5.3. Analysis of Results

After performing the sessions of measures and the post-processing of the RSSI values, we obtain

a set of distances between the anchors and the PAN active nodes (blind nodes). These are then used

to compute the distances among the PAN nodes and estimate theRSSI values of the network channel
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links. Table3 presents the actual values of these distances for each scenario. Since the relative distances

are now known, we can compute the link budget for these links using the relative equation with the

appropriate propagation model so that we obtain the path loss from Equations (16) and (18). The chip

producer provides an absolute non-calibrated accuracy range equal to±4 dB for the hardware CC2530

used in our experiments. On the basis of this accuracy, we cancompute the range of RSSI values for each

link starting from the actual values. These actual RSSI ranges are shown in Table4. The key results are

also presented through bar graphics in Figures8 and9. The first shows the percentage of distance error,

before and after the application of proposed method, for allscenarios. The second shows the percentage

of RSSI error, again before and after the application of proposed method, for all scenarios.

Table 3. Actual distances among the nodes for the three scenarios.

Node tx Node rx Conference room Office Flat

00-00 28-1F 3.52 m 3.14 m 7.11 m

00-00 95-4C 2.20 m 2.08 m 5.36 m

00-00 1E-57 3.21 m 2.85 m 3.87 m

95-4C 28-1F 2.52 m 1.78 m 3.38 m

28-1F 1E-57 3.59 m 1.11 m 3.36 m

95-4C 1E-57 4.46 m 2.31 m 3.78 m

Table 4. Error on the distance and RSSI estimations obtained using 10anchors.

Node Multilateration—Error Proposed method—Error

TX RX RSSI distance RSSI distance RSSI

[dB] a.v.[m] [%] a.v.[dB] [%] a.v.[m] [%] a.v.[dB] [%]

Conference room

00-00 28-1F 10÷ 18 0.25 7.6% 0 0% 0.33 10.3% 0 0%

00-00 95-4C 18÷ 26 0.96 77.4% 2 7.7% 0.73 49.6% 0 0%

00-00 1E-57 12÷ 20 0.98 43.9% 0 0% 0.96 42.7% 0 0%

95-4C 28-1F 16÷ 24 0.06 0.7% 0 0% 0.62 19.7% 0 0%

28-1F 1E-57 9÷ 17 0.04 1.1% 0 0% 0.33 10.1% 0 0%

95-4C 1E-57 6÷ 14 1.33 42.5% 0 0% 0.89 24.9% 0 0%

mean 0.60 28.9% 0.33 1.3% 0.64 26.2% 0 0%

variance 0.55 30.9% 0.56 0.1% 0.27 16.6% 0 0%
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Table 4. Cont.

Node Multilateration—Error Proposed method—Error

TX RX RSSI distance RSSI distance RSSI

[dB] a.v.[m] [%] a.v.[dB] [%] a.v.[m] [%] a.v.[dB] [%]

Office

00-00 28-1F 12÷ 20 2.52 44.5% 7 35 % 0.01 0.3% 0 0%

00-00 95-4C 19÷ 27 2.32 52.7% 10 37 % 0.25 13.7% 0 0%

00-00 1E-57 14÷ 22 0.98 25.6% 1 4.5 % 0.57 25% 0 0%

95-4C 28-1F 22÷ 30 2.51 58.5% 12 40 % 1.3 42.2% 6 20%

28-1F 1E-57 31÷ 39 1.10 49.8% 9 23 % 0.02 1.8% 0 0%

95-4C 1E-57 18÷ 26 0.10 4.1% 0 0 % 0.02 0.9% 0 0%

mean 1.58 39.2% 6.5 68.2% 0.36 14.0% 1 3.3%

variance 1.01 20.5% 24.3 59.7% 0.51 16.9% 6 0.5%

Flat

00-00 28-1F** –18÷ –10 0.63 8.1% 2 20% 0.7 8.9% 0 0%

00-00 95-4C** –12÷ –4 0.51 8.7% 1 25% 1.31 19.7% 0 0%

00-00 1E-57** –6÷ 2 1.76 31.3% 8 400% 0.7 15.3% 0 0%

95-4C 28-1F* 2÷ 10 1.68 33.2% 7 70% 0.23 6.4% 0 0%

28-1F 1E-57* 1÷ 9 1.39 27.7% 9 100% 0.41 10.2% 0 0%

95-4C 1E-57** –6÷ 2 1.56 29.2% 10 50% 1.39 26.9% 2 100%

mean 1.25 23.0% 6.17 170.5% 0.79 14.6% 0.33 16.7%

variance 0.55 11.5% 14.16 418% 0.47 7.7% 0.67 13.2%

* Path with one wall; ** Path with two walls.

Figure 8. Distance estimation error in percentage using 10 anchors.
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As discussed in Section3.1, we applied the multilateration algorithm using to ten anchors

measurements to achieve the first estimation of blind nodes positions, from which we then computed

the relative distance among them. Then we computed the link budget from these relative distances by

applying the appropriate propagation models to the path loss. We first analyze the results obtained with

the multilteration algorithm using only the OLS, which are shown in the “multilateration”columns of
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Table4. Other than the absolute values (referred to as “a.v.”), thetable presents the error in percentage.

It can be noted that the errors in the conference room are smaller than in other scenarios. This result

is due to the presence of more obstacles in both the office and the flat. This is a cause of stronger

multipath fading that affects the measurements. It is also possible to note another problem when looking

at the path loss logarithmic progress in Figure10. For short distances, a small variation in the distance

value corresponds to small variations in the path loss, whereas the same variation at greater distances

corresponds to larger variations in terms of path loss. Accordingly, the absolute value of the error

has to be considered together with the distance it is relatedto. This problem is more evident in large

environments than in smaller ones, as can be clearly seen in Table4.

Figure 9. RSSI estimation error in percentage using 10 anchors.
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Figure 10. Path Loss progress.

The estimation of physical layer performance is clearly improved with the application of the indirect

observations (“proposed method”columns in Table4). This method achieves significant improvements

also in the scenarios characterized by the problem of large environments discussed before, allowing for

compensating multipath fading effects due to the presence of more consecutive obstacles. As show in

Table4, it allows for reducing the RSSI estimation error from the results obtained with the application

of the multilateration algorithm of 1.33 dB for the conference room scenario, 5.5 dB for the office

room scenario and 5.85 dB for the flat scenario. The more complex is the scenario, the higher are

the benefits of applying the proposed algorithm. With respect to the distance estimation, the RSSI

evaluation presents lower errors. This is due to the fact that the RSSI and the node distance are linked by
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a logarithmic relationship, as discussed in Section5.2. Accordingly, a big error in terms of distance does

not correspond to a big error in terms of RSSI if we analyze therelationship where the curve of path loss

has a little slope.

We also performed some runs that vary the number of anchors inthe estimation of the distances.

The results are shown in Figures11–13, where the vertical axis shows the CDF (Cumulative Density

Function) of the RSSI estimated error value and the horizontal axis shows the number of anchors used

in the estimation process. At first, we have performed the experiments by using the entire set of ten

anchors, and then we iteratively removed one anchor in sequence, estimating again each time the RSSI

value. These experiments are intended to analyze what is theneeded number of anchors to achieve a

given error. This is important to either limit the time spentto perform the measurements when only one

real anchor is used at different positions or to reduce the number of different anchors used in parallel. In

any case, the minimum number of anchor measurements is clearly three. Looking at the curves, we see at

first that the behavior is different for the three scenarios.In the first scenario, which is the simplest one,

as soon as the minimum number of anchors has been exceeded (three), the probability of the estimation

is not affected by error. Indeed, it increases linearly until 7 anchors are used, then the value is stable

until 9 anchors are used and then it increases rapidly with 10anchors. In contrast, in the other two

scenarios, the number of anchors is very important, and the estimation would benefit from using more

than only ten anchors. In any case, it is possible to note thatthe probability that the estimation process

is not affected by error increases according to logarithm mode and the probability to have some errors

decreases after the application of indirect observations for any number of anchors. The improvement of

the proposed method is more visible when the number of anchors is low. In all scenarios, the proposed

method increases the probability that the RSSI estimation is not affected by error; indeed, in all the

considered cases, the CDF of the proposed method is shifted upwards with respect to the CDF of the

multilateration method. On average, thanks to the proposedmethod, the probability to have a correct

RSSI estimation is improved by 15%.

Figure 11. Cumulative Distribution Function of the RSSI estimation error at varying number

of anchors for the office scenario.
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Figure 12. Cumulative Distribution Function of the RSSI estimation error at varying number

of anchors for the conference room scenario.
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Figure 13. Cumulative Distribution Function of the RSSI estimation error at varying number

of anchors for the flat scenario.
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When performing the proposed iterative method, we have empirically observed that after three

iteration, the gap(δx, δy) is very small and comparable with the variance of the resultσ. Therefore,

in our experiments, we stopped the method after having performed just three iterations (the results

shown before refer to this setting). However, we wanted to further investigate this phenomenon, and in

Figures14–16we present the average error as the number of iterations in the proposed method increases

at different number of anchors. These curves confirm that after three iterations, the method does not

benefit from performing more steps for all the cases. Indeed,even the number of anchors does not seem

to affect the number of iterations that are needed to achievea stable result. Accordingly, this number

appeared to be a good trade-off between computational costsand accuracy.
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Figure 14. Decrease of error by method iteration in the conference room.
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Figure 15. Decrease of error by method iteration in the office.
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Figure 16. Decrease of error by method iteration in the flat.
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6. Conclusions

In this work, we applied the method of indirect observationsto estimate the physical layer

performance in the WSNs. The proposed criterion is completely not invasive because it makes use

of external sniffers to capture the packet data. From sniffed data, we first compute the information of

signal strength (RSSI), and using this information we estimate the position of the nodes in the WSN

by applying the WLS to the method of indirect observations. By the resulting information, we estimate

the status of all links in the network using the appropriate propagation model. We have conducted real

experiments in three different scenarios: an office room, a conference room, and a flat. By applying the

proposed method, we have been able to increase the accuracy in the estimation of the RSSI in all the

scenarios with respect to the application of the OLS to the multilateration problem. Such an increase

is on average 6 dB and reaches as high as 10 dB. The experimentsalso show that the proposed method

allows for estimating the channel link status with an error lower than 2 dB with respect to the calibration

accuracy in 75% of measurements and lower than 5 dB in 90% of measurements.
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