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Abstract: The intensification and expansion in the cultivation of olives have contributed to the
significant spread of Verticillium wilt, which is the most important fungal problem affecting olive
trees. Recent studies confirm that practices such as the use of innovative natural minerals (Zeoshell
ZF1) and the application of beneficial microorganisms (Micosat F BS WP) restore health in infected
trees. However, for their efficient implementation the above methodologies require the marking of
trees in the early stages of infestation—a task that is impractical with traditional means (manual
labor) but also very difficult, as early stages are difficult to perceive with the naked eye. In this paper,
we present the results of the My Olive Grove Coach (MyOGC) project, which used multispectral
imaging from unmanned aerial vehicles to develop an olive grove monitoring system based on
the autonomous and automatic processing of the multispectral images using computer vision and
machine learning techniques. The goal of the system is to monitor and assess the health of olive
groves, help in the prediction of Verticillium wilt spread and implement a decision support system
that guides the farmer/agronomist.

Keywords: precision agriculture; intelligent management; multi-spectral sensing; multi-spectral
co-registration; multi-spectral fusion of multispectral spectroscopy data

1. Introduction

Olive cultivation in Greece is widespread. Olive groves occupy an area of more than
2 million acres, having about 130 million olive trees [1]. This represents a large percentage
of the total agricultural land and a very large percentage of agricultural land that would
be, considering territorial characteristics such as low fertility and sloping, difficult or
impossible to exploit from other crops.

Verticillium wilt is the biggest fungal problem of olive cultivation. It contributes to
a serious reduction in olive productivity, plant capital destruction and soil degradation.
Verticillium wilt causes a gradual malfunction and eventually a complete blockage of the
vessels of the tree, in part or in whole, interrupting the movement of water from the roots
to the leaves, resulting in interruption of the water supply in the affected part of the tree.
This reduction in water supply leads to nutritional deficiencies and even starvation of the
branches. Before the complete blockage and total necrosis of the affected tissue associated
with the part of the root that has been infected, there precedes a stage of temporary water
stress, a reversible stress, which can be mainly attributed to the closure of the stomata of
the affected plant tissue [2].
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In this preliminary stage of temporary stress, deregulation in the process of photosyn-
thesis is caused, since the leaf pigments that are responsible for the canopy photosynthetic
activity (mainly chlorophyll) are unable to function properly [3]. This impediment of
the photosynthetic activity leads to a subsequent degradation of the canopy pigment per-
centage which results in a slight light-green discoloration of the leaves; a discoloration
that is very subtle and very difficult to detect with the naked eye, especially in its early
stages where photosynthetic activity has been hampered but the percentage of chlorophyll
pigments in the canopy remains unchanged.

Thermal and multispectral surveying has shown high correlations of leaves’ spectral
characteristics with the degree of infestation (Table 1), as measured in the 11 point scale of
Table 2 [4]. On this basis, using aerial imaging by unmanned aerial vehicles, we created the
platform “My Olive Grove Coach” (MyOGC).

Table 1. Hyperspectral indices that are often used for the prediction and detection of Verticillium
wilt in olive trees [2,5,6].

Structural

(Enhanced) Normalized Difference Vegetation Index—(E)NDVI
Renormalized Difference Vegetation Index—RDVI
Optimized Soil-Adjusted Vegetation Index—OSAVI
Normalized Difference Red Edge Index—NDRE
Visible Atmospherically Resistant Index—VARI
Green Exceedance Index—GEI

Carotenoid

Structure-Intensive Pigment Index—SIPI
Pigment Specific Simple Ratio Carotenoids—PSSRc

Chlorophyll a + b

Pigment Specific Simple Ratio Chlorophyll a, b—PSSRa/b
Transformed Chlorophyll Absorption in Reflectance Index—TCARI

The main goal of MyOGC is the development of an intelligent system that will monitor
olive groves and support farmers in the detection and treatment of Verticillium, using
multispectral sensors and spectrophotometers. With MyOGC it will be possible to (a) collect
important data on the progress of tree infestation; (b) quickly detect the problem using
innovative signal processing methods and multispectral imaging and computer vision,
in combination with machine learning techniques, thereby providing accurate spatial
identification of affected trees; (c) guide the farmer/agronomist when required, with a
communication and decision-making support system, with appropriate interventions and
maps of quantitative and qualitative characteristics of the grove.

Table 2. Verticillium infection scale [4].

Infection Level Description

0 Healthy tree
1 Tree looks healthy (slight crown discolloration)
2 Chlorotic hair (yellow-bronze color)

slight twisting or curving of the extreme leaves
3 Dry inflorescence-inflorescence-dehydration of twigs
4 Drying of a twig or a branch
5 Dry arm-section or half of the tree
6 A main branch or arm of a tree retains vegetation
7 75 % of the tree has died
8 A branch of the tree retains vegetation
9 A small section or a branch of the tree retains vegetation

10 Drying of the whole tree
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Related Work

Remote sensing of agricultural crops that facilitates the timely prediction of plant
infestation by diseases has developed rapidly. Both in Greece and abroad, companies have
been set up to provide services that monitor and support farmers and their fields. Table 3
presents platforms available to farmers and producers that offer remote monitoring of their
fields and collection of agricultural data by remote sensing. Table 4 presents a comparison
of some systems and data capturing sensors that are on the market, available as commercial
solutions for monitoring vegetation and crops.

Apart from commercial applications targeting farmers and other specialists of the
field, there is significant research interest in using remote sensing data [7–11] in relation
to automating and facilitating all aspects of crops management, like disease monitoring,
predicting and preventing [2,5], to crops yield monitoring and optimization [12–15].

Specific applications include computer vision algorithms targeting productivity mon-
itoring through tree counting/tree crown delineation [7,8,10,16] and health assessment
through calculations of vegetation indices [17,18]. More specifically, a very relevant ap-
proach has been proposed in [19] for fast detection of olive trees affected by xyllela fastidiosa
using multispectral images from unmanned aerial vehicles (UAVs).

Table 3. Platforms available to farmers and producers for remote monitoring of fields.

Platform Region Algorithms Description Imaging

AGERpoint US NDVI, VARI, ENDVI,
NDRE

Capture precise agriculture
data using Lidar enabled
drones

Lidar, optical sensors

Gamaya Switzerland NDVI, VARI
A farming management
solution using hyperspectral
imaging

Lidar

Hummingbird
UK, Russia, Ukraine,
Brazil, New Zeland,
Australia

NDVI, VARI, ENDVI
Artificial intelligence business
that provides advanced crop
analysis

Lidar, Satellite Planes

Ceres Imaging US, Hawaii, Australia NDVI, VARI
Aerial spectral imagery
company that is using
low-flying planes

Planes

Taranis
Russia, Israel,
Argentina, Brazil, US,
Ukraine

NDVI, VARI

Agriculture intelligence
platform that uses computer
vision, data science and deep
learning algorithms to
effectively monitor fields

Lidar, Satellite, Planes

DroneDeploy ALL NDVI, VARI, ENDVI

Analyze and provide a full
range of stats: plant counting,
plant health tools and stress
detectors that enable precise
yield increase and increase of
overall profit.

Lidar

AgEagle US NDVI, VARI, ENDVI

Aerial data collection and
analytics solutions help
farmers and agronomists to
acquire high quality, actionable
intelligence

Lidar, Satelite, Planes

Deveron Canada, US NDVI, NDRE Drone data company focused
on agriculture Lidar
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Table 4. Comparison of indicative remote sensing systems available on the market.

RedEdge-MX
(Micacense)

SlantView
(SlantRange) Parrot SEQUOIA+ Sentera Quad Sensor

Application Plant health indexes Precision agriculture Precision agriculture Precision agriculture.
Plant health analysis

Spectral Bands Blue, Green, Red, Red
Edge, Near-IR

470, 550, 620, 650, 710,
850 (nm)

Green, Red, Red Edge,
Near-IR

Sensor Global Shutter Global Shutter Global Shutter 16 MP RGB
4 × 1.4 MP

Global Shutter 1.2 MP
RGB 3 × 1.2 MP Mono

Resolution GSD: 8 cm/px@120 m GSD: 2 cm/px@160 m RGB: 4608 × 3456 px,
Single: 1280 × 960 px

GSD: 4.5 cm/px@200 m,
9.1 cm/px@400 m

Capture Rate 1 fps, 12-bit RAW 1 fps, 8–10 bit depth 1 fps 7 fps@1.2 MP.
20–24 fps@720 p

FoV 46.2◦ HFOV - RGB: 63.9◦ HFOV.
Single: 48.5◦ HFOV

50◦ HFOV.
49◦ VFOV

Tech Advantages Multiple triggering
options GPS / IMU + EKF

GPS, IMU, mangetometer
SD Card slot. Image
Processing by Pix4D

32 GB SD card per sensor

In the detection and delineation of individual tree crowns, deep learning and machine
learning approaches [7,16,20] also exhibit commendable results. A recent semi-supervised
approach [16], employing a convolutional neural network (CNN), combines Lidar and
RGB data, yielding similar outcomes to classical unsupervised algorithms. CNNs were
also used with multi-spectral imaging data [20,21]. In [20], a deep network was employed
to differentiate trees, bare soil and weeds. Li et al. [22] developed a CNN framework to
detect oil palm trees. Even though they provide accurate results, they need large amounts
of training data.

There is also significant research going on in the use of visible and infrared spec-
troscopy for disease detection in plants in a fast, non-destructive and cost-effective manner.
Photosynthetic pigments in the canopy of every plant, such as chlorophyll, anthocyanins
and carotenoids interact with sunlight, constantly absorbing the energy of certain useful
bands and reflecting the excess energy from bands that are not utilized in photosynthesis.
The visible and infrared portions of the electromagnetic spectrum are the prime candidates
for providing timely information on the physiological stress levels in the plants, even
before the symptoms can be perceived from the human eye. Different studies have been
conducted for disease detection in plants using this technology and new useful insights on
the correlations between plant reflectance properties and their biophysical properties are
being discovered constantly [23–25].

Lastly, on sourcing data for remote sensing, there exists a variety of active, passive and
mixed sources, such as Geodetic Satellites, Lidars and more recently, UAVs [11,14,18,21,26,27]
(Figure 1). Of those three main sources, none provide a clear advantage; rather, they
compliment each other on the fronts of cost, resolving power, easiness of use and other
relevant metrics. MyOGC uses unmanned aerial vehicles (UAVs), recognizing their low
cost, ability for regular updates and resolving power as key advantages towards the goal
of early infestation detection and accurate plant status classification. Other advantages of
UAVs for use in precision agriculture are detailed in the recent survey in [26].
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Figure 1. Research by remote sensing source.

2. Materials and Methods
2.1. Conceptual Architecture

The MyOGC integrated system provides an overall automation solution for detecting
the Verticillium wilt from aerial multi-spectral images. The basic user requirements for the
MyOGC platform are to support different methods of data insertion—manually from the
user or directly from the multispectral sensor located to the drone. Thus, it combines cloud
and edge computing technologies, ensuring a highly efficient and scalable high-demanding
data processing system and the execution of adapted AI prediction models in an embedded
platform in the user’s edge devices. The functional module of the MyOGC platform is
depicted in Figure 2.

Figure 2. MyOGC overall architecture.

The MyOGC system consists of four main sub systems: (a) The core has a coordination
role; it provides the interfaces to the users and edge devices and it accepts and schedules
data processes requests for execution in the other subsystems; (b) the data storage combines
a classical relational database management system (RDBMS) and file system to store
metadata, multi-spectral images and results; (c) the containers execution engine initiates
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containers which execute specific data processing tasks during a data processing pipeline;
and (d) the drone hosts the edge device, a Coral Edge TPU device from Google, deployed
for executing region of interest detection and classification tasks.

In the core subsystem, the process orchestrator is the module that receives input data
and requests for processing. Such requests can be either the process of multi-spectral
images of an olive field and the prediction of the spread of the disease on it, or use
the stored data in order to train the AI prediction models (both cloud and embedded).
According to the request, it selects the appropriate analysis workflow, it calculates the
required resources and it proceeds to create the execution plan. The plan contains the data
processing microservices that must be used and a workflow that defines the execution
order of the analysis tasks. the process orchestrator coordinates and monitors the analysis
workflow, initiating each step and passing the intermediate results between the tasks.

The two interfaces of the core subsystem are a graphical user interface (GUI) and a
HTTP-based application programming interface (API). The GUI is the point of interaction
of the users with the system. It is implemented using the Python Django Framework and
Angular Js library for the frontend. The user can define fields, upload new multispectral
images of a field and ask for processing while the results are depicted in a Geographic-
based interactive map. The HTTP API is mainly used for the interoperability between the
cloud platform and the edge device, embedded in the drone. The HTTP API uses the GET
and POST methods for allowing the invocation of methods that support various tasks, such
as image uploading, downloading new trained IA models, image process execution and
prediction uploading.

The data storage, as mentioned before, is the centralized subsystem, responsible to
securely store all the data of the MyOGC integrated system. An RDBMS is used for storing
users and fields’ metadata, pre-processed data, devices connection info, prediction results,
etc. On the other hand, the filesystem is used to save binary files, such as the input and
processed images and the AI trained prediction models.

The containers execution environment takes advantage of the virtual containers tech-
nology, providing on demand data process functionalities in a cloud infrastructure. Each
container is independent of computational resources and provides a specific data analysis
task using the microservices architectural model [28]. There are four microservices in the
MyOGC architecture: (a) the tree crown detection, (b) the vegetation indices calculation,
(c) the AI prediction for the Verticillium wilt disease—presence and spread and (d) the AI
prediction model training. All these microservices run independently and they execute
specific tasks which are invoked as services by the process orchestrator. The container
orchestrator’s main role is the instantiation of the appropriate containers to be available for
the execution of an analysis task. It executes a credit-based algorithm [29] for scheduling
the instantiation of the containers according to the number of user requests and the avail-
able computational resources of the cloud infrastructure. This approach ensures both the
scalability and the reuse of the cloud resources for serving the on-demand user’s requests
in the most efficient manner.

Finally, the drone sub-system aims to bring the intelligence provided by the AI predic-
tion models near to the user’s main device. In MyOGC, the drone with a multi-spectral
camera is used to capture the aerial image datasets. These datasets contain overlapping
images that can be merged to create a reflectance map, which is a mosaic of the area
of interest where each of the pixels in the image represents the actual reflectance of the
imaged object used for plant health analysis and the detection of the Verticillium wilt in
olive trees. The classic procedure is to upload the images in the MyOGC platform for
further processing and algorithmic analysis. The MyOGC system provides and additional
feature. An embedded board with GPU capabilities is installed with the camera in the
drone. A compact version of the AI prediction models is installed in the embedded, which
is able to perform the data process analysis on the spot. The results are sent to the MyOGC
platform for presentation to the user.
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2.2. Multimodal Processing Approaches

Plant leaves contain information which is highly associated with their health. Optical
leaf properties such as reflectance and transmittance are useful in remote sensing techniques
for disease detection. They allow early detection, well before they can be perceived by the
human eye, in a non-invasive manner.

In assessing a plant’s health, the most basic and common metric used is the reflection
of vegetation, i.e., the ratio of the reflected radiation to the incident radiation. An as-
sumption is made that the reflection of vegetation at a certain electromagnetic wavelength,
or spectral reflectivity, depends on the properties of the vegetation due to factors such as
the type of each plant, its water content, its chlorophyll content and its morphology [30].
However, there may be a need to compare measurements that are more related to biophysi-
cal variables than to the spectral reflectivity itself. For these reasons, Vegetation Indices are
often calculated. These indicators are obtained when two or more wavelength bands are
used in an equation to calculate the corresponding vegetation index. In addition, vegetation
indicators can help minimize problems related to reflectivity data, such as changes in view-
ing angles, atmospheric distortions and shadows, especially as most vegetation indicators
are calculated as ratios of two or more wavelength bands [30,31]. Different vegetation
markers use different wavelength zones and provide information on different biophysical
variables [32]. For example, one of the most commonly used indicators is the Normalized
Difference Vegetation Index (NDVI) [6,33]. NDVI uses the wavelength corresponding to
the red (RED—670 nm) color band and is absorbed to a very large extent by the chlorophyll
in the foliage of the plants, and the wavelength band corresponding to the near-infrared
(NIR—800 nm) in which the chlorophyll shows the most intense reflection (Equation (1)).
NDVI values range from−1 to 1 with the values closest to 1 corresponding to healthier and
denser vegetation. NDVI can be calculated using reflexivity or non-physical measurements
for the wave bands.

NDVI =
NIR− RED
NIR + RED

(1)

Another example where a vegetation index can provide biophysical information is the
normalized difference red edge (NDRE) which is calculated using the near-infrared and
red-edge wavelength bands (REG—750 nm), and the green exceedance index (GEI), which
is calculated using the red, blue and green wavelength bands. Research for GEI showed
that the measured gross primary product in a deciduous forest was significantly correlated
with GEI. Thus, a specialized vegetation index can be used as a substitute for measurable
biophysical variables that are important when evaluating the phenology of a particular site
or plant.

Calculation of vegetation indices is usually done on a pixel-by-pixel basis and is,
therefore, very sensitive to even slight image distortions. In order to calculate the real
changes in biochemical and physiological parameters of vegetation, collected multispectral
data have to be geometrically and radiometrically aligned, calibrated and corrected, so
as to ensure that the pixels in two images represent the same soil characteristics and the
same soil point. Thus, a crucial part of MyOGC is the correct design and implementation
of appropriate geometric transformations and spatial-temporal image filters which include,
characteristically, algorithms for image registration and alignment, image stitching, creation
of orthomosaic with photogrammetry techniques, spectral and luminosity corrections and
noise filtering. Classical computer vision techniques are, in most cases, adequate for the
implementation of the aforementioned processes. Usually, though, image registration
requires many resources, especially when, as in our case, there are significant differences
between the input images. To efficiently and accurately align them, we process them
successively in pairs, based on the similarity of the spectral response of each band: RED
and GRE; GRE and REG; and finally, REG and NIR. We then combine successive pairs
with motion homography. This yields satisfactory results. In our case, the above process
has been found to be much quicker and more accurate that other frequently employed
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techniques by other tools that were tried (Table 4) but a detailed analysis of its performance
is needed to confirm any benefits.

Another class of processing algorithms relates to the removal of image noise due to
data acquisition and enhancing the distinction between the objects under detection (i.e.,
tree crowns) and the background (i.e., shaded area). To remove unneeded details and
smooth out the detection of relevant characteristics, a median filter of disc-shaped kernel
is applied. The kernel size is correlated to the expected or the desirable minimum radius
of tree features. After experimentation with kernel sizes, a kernel corresponding to a real
length of about 50 cm was found to be adequate.

The next stage in processing of the multispectral data concerns the extraction of useful
macroscopic characteristics of the grove, in an individual tree basis. A key part of this
process is the detection of individual olive trees and the delineation of their crown. This
is achieved by using state of the art classical computer vision techniques [10,18] (Table 5)
and techniques developed specifically for MyOGC. Though the state-of-the-art techniques
are usually adequate for this task, we developed a modified version that is appropriate
for on-the-fly execution on an embedded device, mounted on a UAV, thus facilitating
the real-time monitoring process. More specifically, MyOGC employs a distance-based
algorithm, in the four dimensional multimodal space, that estimates the probability that
an image region belongs to a tree. The distance is calculated in reference to a point (RP)
in the multi-spectral intensity space that shows maximum correlation with the spectral
response of the trees to be delineated. The rationale is that regions that contain a point
very close to the RP have a very high probability of belonging to a tree as a whole, rather
than as individual pixels. Therefore, roughly, the probability P(A) that the center pixel of a
region A of area SA belongs to a tree is inversely proportional to the minimum distance
of every pixel (pi ∈ A) of the the disc to the reference point pRP. That is, we employ a
minimum local filter in respect to the distance of each pixel in the image to the reference
point. This is expressed by an equation of the form of Equation (2). The denominator part
(1 + minpi∈A‖pi, pRP‖) takes values from 1 + 0 to 1 + 2. The value of 1 is achieved when
the minimum distance is 0, meaning that there is a point in the disc that coincides with the
reference point.

P(A) ∝
1

SA

1
1 + minpi∈A‖pi, pRP‖

(2)

The (RP) can be extracted from spectral data available from the literature, or exper-
imentally estimated from the input data. Using this algorithm MyOGC achieves fast
and accurate crown delineation (Figure 3). Furthermore, this algorithm was used to
generate groundtruth data to train a type of neural network that can be executed on em-
bedded devices (Section 2.4). This allowed for real-time crown delineation using only
one-band images.

Figure 3. Automatic delineation of olive trees (overlay).
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Table 5. Representative algorithms used for crown delineation.

Simple Image Processing Machine Learning Deep Learning

Valley following Maximum probability Convolutional Neural Networks
Region growing Support Vector Machines
Watershed segmentation Random Forest
Template matching

2.3. Annotation of Data

The synergy of the UAV multispectral camera and the portable spectrophotometer
serves the purposes of early diagnosis of Verticillium wilt in olive trees [2,6]. The next
step of the multimodal processing is thus the characterization of the input data. MyOGC
employs two methods of annotation: (i) using spectral data from the laboratory analysis
and (ii) using the NDVI and NDRE indices. For annotation using the data of the laboratory
analysis, a similar procedure is followed as for the crown delineation case, extending the
categorization levels from two (ground/tree) to four (or more) stress levels. Specifically,
each pixel of the image is categorized into one of four categories, based on its spectral
proximity to a characteristic reference spectrum. The reference spectrum is obtained from
the laboratory analysis, from the average of the spectral responses of individual leaves that
are in different stages of the 11-point scale (Table 2).

For annotation using the NDVI and NDRE indices, the crown delineation algorithm
is first applied to isolate the areas of interest and enhance the resolution of the indices.
Then, a statistical analysis of the distribution of the NDVI and NDRE (Figure 4) provides
threshold values that divide the areas of interest into categories. The fusion of these
categories for each vegetation index gives the final annotation (Figure 5). Previous results
have shown that the NDVI and NDRE have high sensitivity to Verticillium wilt symptoms
in olive trees [2]. In our case, though, a full comparison to state-of-the-art methods and an
assessment of the advantages of our modified methods could not be made as the occurrence
of Verticillium wilt on the groves under study was very low. We should note, however, that
the success of the MyOGC does not depend on the details of the prediction algorithm, as
this is an easily upgradable component.

Figure 4. Histogram of NDVI and NDRE values.
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Figure 5. Annotation of images according to tree health. Spectral method (left) and NDVI/NDRE fusion (right). In this
case trees seem healthy (green) or slightly stressed (yellow).

2.4. Real Time Processing on Edge Devices

A second method is used for the same multimodal processing purposes but targeting
a different platform, an embeddable device tuned for running ML applications. This device
can be mounted on the UAV and connects to the multispectral sensors, allowing real time
processing of the captured multispectral images. To make possible the on-the-fly processing
of incomplete and noisy data, we use a convolutional neural network (CNN), a class of NN
that is ideal for tasks involving image segmentation and classification, trained on ground
truth data that are automatically generated from classically processed multispectral images.
In the CNN architecture (Figure 6) the input data are fed to successive down-scaling layers
(left branch) to reduce the spatial resolution of the feature maps and then to corresponding
up-scaling layers (right branch), increasing the spatial resolution of the feature maps.
The CNN is trained to classify either multimodal or unimodal data, balancing needs for
accuracy or speed. The results of the classification by the CNN can be seen in Figure 7.

Figure 6. CNN processing pipeline and architecture.
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Figure 7. Input images (rows 1 and 3) and respective output classifications from the CNN (rows 2
and 4).

The main trade-offs between the simple computer vision and the CNN methods are
in implementation complexity, accuracy and efficiency. On one hand, the CV approach is
much simpler to implement and shows high and consistent accuracy, but is not efficient
enough and therefore not a good choice for embedded devices. The CNN approach,
on the other hand, is significantly more complex and requires much more work to get to
satisfactory results; furthermore, the accuracy of segmentation is not as consistent as in
the CV case and the CNN may need some fine-tuning and readjustment between runs or
between fields. The deciding advantage, though, of the CNN method is that it gives very
good results when deploying data from fewer bands or even one band, eliminating the
preprocessing overhead (Table 6), and making the method suitable for low power and low
memory embedded platforms, especially on ML-tuned devices that further enhance the
efficiency benefits of the method. To the authors’ knowledge, automatically training and
accurately calculating tree crowns in real time from one-band data is a new contribution to
the literature. Details and elaboration on the method have been presented in [34].
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Table 6. Total execution time for the CNN crown delineation methods.

Operation Time (ms)

Training Preprocessing (per image) 5450
Training (per epoch) 12,200

Inference Preprocessing (per image)
- one band 110
- multi spectral 3920
I/O operations 20
Inference Table 7

Table 7. Comparison of trained models in terms of execution times (inference) and accuracy.

Inference Times (ms) Accuracy (%)

CPU Edge TPU Multi-Spectral GRE Band

Base model 96 - 89 84
TPU model - 28 88 83

2.5. My Olive Grove Coach Platforms

MyOGC system consists of two basic platforms: (a) the cloud platform that contains
the most of the MyOGC subsystems and (b) the edge platform which is an embedded
board (Coral’s Dev Board) capable of executing complex AI and image processing tech-
niques. The roles and interconnections between them are depicted in the Section 2 of the
current article.

The cloud platform’s GUI is the main access point for the users to the MyOGC
system. It provides the basic authorization and authentication mechanism and the forms for
managing the fields related meta-data, such as location, photography sessions, owner and
prediction results.

Regarding the prediction results, in order to demonstrate the condition of the fields
to their respective farmers, the platform generates multiple colored layers, which are
presented as overlays on the original map of the field. When the end-user decides to
spectate a field, the platform redirects to a specific interactive map screen where the
preprocessed orthomosaic with three basic colors (red, yellow, green) is presented. Green
represents healthy trees without phytopathological stress signs; yellow represents stress
which is quantified by reduced photosynthetic activity of the affected plant’s canopy and
therefore possible onset of disease symptoms; and finally, red indicates sick trees and/or
ground. The end-user can zoom in and out of the map, in order to preview every single
tree on the map, with great detail.

For the map’s representation, Google’s Leaflet library was utilized with Google Map’s
satellite image tiles. The overlay is a preprocessed orthomosaic that was constructed with
open source photogrammetry software (“OpenSFM” and “GDAL” libraries), ensuring
the maintenance of the spectral reflectance accuracy (reflectance map) and the exact ge-
ographical coordinates of the original multispectral images. Consequently, the image is
rendered with a level of transparency, and the map is initialized based on the orthomosaic’s
coordinates. In this manner, only the farmers’ fields which can be stretched with map
zooms are visualized (Figure 8).

The edge platform used in MyOGC is the “Dev Board” by Coral. It is a development
board for prototyping on-device ML products. The device’s Edge-TPU is ideal for running
embedded ML applications. In this project a dev-board is employed on the drone in order
to assist and assess the data collection procedure in real time, bypassing the need for the
cpu-intensive and time consuming step (uploading images to the server and processing), at
least for preliminary data analysis. More specifically, algorithms are run on the dev-board
that delineate the olive trees and provide preliminary info for their health status.
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Figure 8. The MyOGC-GUI interactive map where (a) the orthomosaic is depicted as overlay in the
original satellite field image and (b) is its zoom in on the level where the trees are clearly depicted.

3. Results
3.1. Data, Trials and Evaluation

MyOGC uses two main sources of data: (a) data from direct reflectance measurements
of leaves, collected from fields and used as samples for training the assessment and
prediction algorithms, and (b) data from aerial surveying with multispectral cameras.

Plant leaves contain information which are highly associated with their health [35].
Optical leaf properties such as reflectance and transmittance are useful in remote sensing
techniques for disease detection in a non-invasive manner well before perceived by the
human eye. In this way, disease expansion is prevented or significantly restricted in olive
groves, thereby minimizing the economic loss of the farmer [36].

Olive leaves’ reflectance measurements are performed in certain bands of the electro-
magnetic spectrum, mainly in visible and near infrared [37]. A typical reflectance spectrum
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of a healthy plant is similar to Figure 9. The reflectance of healthy leaves is usually low [38]
in the visible spectrum (400–700 nm) due to the significant absorbance of chlorophyll.
Healthy plants have high chlorophyll concentration, since this substance is crucial for
photosynthesis, allowing plants to absorb light energy. Chlorophyll reflects the green
portion of the spectrum, producing the characteristic green color of the leaves. Healthy
leaves reflect strongly in the near infrared spectrum as the absorbance of infrared light
would cause overheat and consequently damage of plant tissue.
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Figure 9. Typical reflectance spectrum of a healthy plant.

However, when a plant is stressed, the process of photosynthesis slows down, chloro-
phyll content is reduced, allowing other pigments to appear. These pigments reflect light
with wavelengths that are perceived as yellow or orange by the human eye. Diseased plant
leaves absorb infrared light while they reflect the visible portion of the spectrum. Diseased
plant is gradually drying up and eventually it dies. Generally, it has been observed that
the effect of a disease on a plant changes its leaf reflectance in a specific manner [39].
Consequently, reflectance change of plant leaves is correlated to certain diseases. Remote
sensing techniques combined with visible/near-infrared spectroscopy [40] are capable
of diagnosing diseases at an early stage [41] without observable indicators by simply
measuring the reflectance of a plant’s leaf.

When light illuminates a leaf, two types of reflectance are observed [42], specular and
diffuse reflectance. Specular reflectance occurs at the epidermis–air interface. Specular
reflectance does not contain useful information for the health of a plant as the reflected
light does not penetrate the interior tissue of the leaf and therefore does not interact with
biochemical constituents (chlorophyll, carotenoids, etc.) except with its surface, providing
some information about its properties.

In contrast, the light collected by diffuse reflectance has interacted with the meso-
phyll [43], the inner part of the leaf, where multiple scattering and absorption of light by
its biochemical constituents occurs. The light from diffuse reflectance contains information
about the biochemistry of the leaf. As a result, diffuse reflectance plays an important role
in determining the health status of a plant, while specular reflectance acts as noise [44].

The diffuse reflectance component of a leaf is usually measured using a spectropho-
tometer and an integrating sphere [45,46]. The diffused reflectance component is diffused
inside the integrating sphere, while the specular reflectance component exits to the outside
of the integrating sphere.
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In our laboratory, we performed leaf reflectance measurements using Lambda 35
UV/Vis Spectrophotometer along with an integrating sphere and Spectralon as the re-
flectance standard. We collected leaf samples from olive trees infected with Verticillium
wilt at different stages over a long period of time starting from March up to June at 15
day intervals. Five leaf samples were usually collected from randomly selected branches
of each tree. Each olive leaf was mounted in a special sample holder provided by the
spectrophotometer’s manufacturer. The sample holder was placed at the exit port of the
integrating sphere. A light source that consisted of wavelength range of 190 to 1100 nm
was at the entrance port of the integrating sphere.

We collected leaf reflectance spectra from about 400 to 1100 nm. Then, after the leaf
reflectance collection, we performed data analysis using MATLAB. We calculated a mean
reflectance for each tree and the standard deviation. Next, we performed a first-order
derivative analysis. Due to the high sensitivity of derivative analysis to noise, we applied a
Savitzky–Golay filter [47] for smoothing the data with a polynomial order of 4 and a frame
length of 17.

The first-order derivative analysis provides information for the reflectance slope in
the red-edge position. The slope in the red-edge is highly associated with the chlorophyll
content of the leaf. If the slope of a leaf reflectance spectrum is low, then its chlorophyll
content is low. This means that the leaf is infected or it is slowly dying The peak of the first-
order derivative reflectance spectrum of a diseased leaf is sharply blue shifted, while for
the healthy leaf, a moderate blue shift of the peak of the first-order derivative is observed
(Figure 10). This is an indication of a decrease in the chlorophyll concentration in the
leaves of the olive trees and their possible infection by Verticillium wilt. Moreover, in the
second-order derivative analysis, the heights of the peaks of the diseased leaf are increased
due to chlorophyll reduction [48] (Figure 11).

The aerial multispectral images were collected using a Pix4d Parrot Sequoia camera
mounted on a C0 class drone. The Parrot camera is a multispectral camera capturing
images on the four characteristic bands: green (550 nm), red (660 nm), red edge (735 nm)
and near-infrared (790 nm). Figure 12 visualizes a typical drone flight pattern, at a height
of 70 m. A sample of the collected images is presented in Figure 13.

An early processing stage takes place on the dev board mounted on the drone, pro-
viding some real-time preliminary analysis of the olive grove. Notably, this first analysis
includes visualization of olive trees crowns (Figure 3) and vegetation indices.
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Figure 10. First-order derivative analysis of a healthy and an infected tree.
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Figure 11. Second-order derivative analysis of a healthy and an infected tree.

Figure 12. Typical flight path of a UAV while collecting data from a field.

3.2. Synthetic Data Generation

The effectiveness of deep learning algorithms significantly relies on the proper ac-
quisition and manual annotation of a large amount of good quality data. In many cases,
limitations occur that have to do with the lack of expert knowledge for data labeling,
difficulties on capturing large quantities of data with sufficient variety, or even the ability
of capturing good quality data volumes might be extremely expensive and under privacy
restrictions. In such cases, the lack of real-world data can be tackled by generating synthetic
data that share the same basic characteristics with the real data.

The use of synthetic data can be twofold. For example, synthetic data can be initially
used to train a deep learning model with the intention to use them on real-world data,
or even train generative models that refine synthetic data for making them more suitable
for training. In addition, synthetic data can be used to increase real-world datasets, or even
be generated from existing data using generative models, in order to produce a hybrid
dataset able to effectively cover the data distribution that is not adequately represented in
the real dataset and, therefore, alleviate dataset bias.
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Figure 13. Sample of raw input images. One image per spectral band, taken at the same time using
a multispectral camera. From left to right and top to bottom: GRE—green (550 nm), RED—red
(660 nm), REG—red edge (735 nm), NIR—near infrared (790 nm).

In this line of research and due to lack of large volumes of proper olive tree data in
different environmental condition, generation of synthetic data is investigated here with the
use of Blender tool. Blender is an open source software for creating 3D environments, able
to run on any operating system and having the ability to write scripts and addons in Python
programming language. In our case, scripting was used in the Blender environment for
generating multiple olive trees with great variability. From just a few leaves collected from
the field and the use of specific textures of the tree branches, trunks and soil, a close-to-real
synthetic tree and a number of synthetic trees were created, using the sequential approach
shown in the block diagram of Figure 14.

Figure 14. Synthetic data creation chain for olive trees.

This approach constitutes the virtual olive grove under consideration, which can
change dynamically regarding:

• The number of trees it contains;
• The locations of the trees in the area;
• The types and levels of disease they may carry;
• The timeslot of the captured image within the day or within a period (e.g., position of

the sun, level of vegetation);
• The shooting height (from the edges of the trees up to the tree a height corresponding

to the shooting height of the images in the field).

Initially, the appropriate textures needed for the olive tree creation (healthy/ill leaves,
branches, trunk) and the positions of the soil around the trees were gathered (Figure 15a,b).
The 3D model of the leaf was then produced (Figure 15c), followed by the creation of
the branch by replicating the created leaf model, or combining multiple leaf models
(Figure 15d–f).
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Figure 15. Olive branch creation procedure: (a) leaves, front and back views, (b) leaf texture
extraction, (c) leaf 3d model, (d) branch image, (e) branch texture, (f) final branches.

Using the created branches and combining them with the olive tree trunk texture,
an olive tree can be created. By replicating the same methodology a random number of
trees can be positioned onto the given soil, as shown on Figure 16.

Figure 16. Creation of multiple trees: (a) olive tree branches, combined with the trunk texture (c),
produce the tree (d) placed onto the soil having the texture inherited by (b), with (e) being the final
olive tree.
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Using specialized tools and additional applications, trees such as those shown in
Figure 17 were created. In addition, by introducing the specifications and properties of the
camera and lens used to capture on-field images, we can accurately simulate the shooting
conditions. The correct placement of the sun (light source) is possible, if the geographical
coordinates of the field under consideration are known, but it is not certain that they will
contribute to the improvement of the resolution of the system.

Figure 17. Virtual field with olives: (a) horizontal view, (b) view from vertical to field of view.

4. Discussion

Monitoring vegetation using drones can provide important data for the assessment of
the condition of crops. The implementation of precision agriculture and its adoption has
become feasible thanks to the development of sensor technologies and the convergence
of other technological solutions, e.g., UAVs combined with procedures to link mapped
variables to appropriate farming management actions. However, it is vital that data
collection with today’s media be done as carefully as possible, as it will be the basis for
future studies of precision agriculture and ecological monitoring. Despite the plug-and-
play nature of the latest generation of multispectral sensors developed to quantify the
physiological status of crops, such as Parrot Sequoia and MicaSense RedEdge, a number of
factors require careful consideration if the goal is to collect high quality and scientifically
calibrated data that are comparable between sensors, geographically and over time.

In order to achieve the project’s goals, MyOGC was developed and implements a
workflow for processing agricultural multispectral data. This workflow takes into account
the technical aspects and challenges of multispectral sensors, such as flight planning,
weather and sun conditions and aspects of geographic positioning.

5. Conclusions

By using multispectral imaging solutions from UAV-enabled remote sensing solu-
tions and employing innovative signal processing methods in combination with machine
learning techniques, MyOGC offers an olive grove monitoring system that is useful in the
early detection and prediction of Verticillium wilt spread, and provides a platform that
helps the farmer asses the condition of his fields through maps of important characteristics
of the grove and guides the agronomist through a communication and decision-making
support system.
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