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Abstract: Quality control is one of the industrial tasks most susceptible to be improved by imple-
menting technological innovations. As an innovative technology, machine vision enables reliable and
fast 24/7 inspections and helps producers to improve the efficiency of manufacturing operations.
The accessible data by vision equipment will be used to identify and report defective products,
understand the causes of deficiencies and allow rapid and efficient intervention in smart factories.
From this perspective, the proposed machine vision model in this paper combines the identification
of defective products and the continuous improvement of manufacturing processes by predicting
the most suitable parameters of production processes to obtain a defect-free item. The suggested
model exploits all generated data by various integrated technologies in the manufacturing chain,
thus meeting the requirements of quality management in the context of Industry 4.0, based on pre-
dictive analysis to identify patterns in data and suggest corrective actions to ensure product quality.
In addition, a comparative study between several machine learning algorithms, both for product
classification and process improvement models, is performed in order to evaluate the designed
system. The results of this study show that the proposed model largely meets the requirements for
the proper implementation of these techniques.
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1. Introduction

Industry 4.0 brought about automation of manufacturing processes by introducing
customized and flexible mass production technologies [1]. Therefore, the traditional
methods of production are being replaced by new methods and smarter production is
taking place as the machines are perceived to have qualities such as self-awareness, self-
prediction, self-comparison, self-configuration, self-maintenance, self-organization and
resilience [2]. This means that machines will operate independently and will be able to
take decisions and improve automatically by a continuous learning process [3].

Nowadays, the fall in the cost of sensors and connectivity has led to a constant
increase in the number of industrial objects connected to the internet [4]. Therefore, objects
connectivity has become the key component of Industry 4.0, as this connectivity enables
the collection of massive amounts of data that are never exploited because they are simply
not understood or analyzed. Nevertheless, the optimal exploitation and real-time analysis
of these data can increase productivity, improve machine health, enhance production line
automation and lead to defect-free manufacturing [5].

In the manufacturing industry, quality control is the process that ensures customers
receive products free from defects and which meet their needs. However, when it is
performed in the wrong way, it can put consumers at risk and affect the reputation of com-
panies [6]. The issue in the manufacturing industry is that a minor variance in production
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processes (invisible to the human eye) can distort the whole production. Inspecting the
product before it leaves the manufacturer’s premises is an effective way to prevent quality
problems and supply chain disruptions. However, there are several drawbacks related
to manual inspection. The speed of inspection is slow and limits the throughput of the
production line. Scalability is low and it takes a long time to train a qualified inspector.
Moreover, it is not uncommon for human performance to be unstable after a long working
time. Today, machine vision, which is a relevant subfield of artificial intelligence [7], allows
the control of 100% of the production in processes with high cadences and especially with
the integration of machine learning algorithms for image identification [8]. Moreover,
machine learning can go beyond fault detection and precisely know the causes of failures
by examining the data generated by the production chain in real time [9].

The contribution of this paper falls within this framework and proposes an optimal
architecture of a machine vision system based on new research results. The model combines
the identification of defective products and the continuous improvement of manufacturing
processes, by predicting the most suitable process variables to obtain a defect-free item.
The model aims to satisfy Industry 4.0 requirements based on the proper exploitation
and analysis of generated data by connected objects in the production chain in order
to implement faster, more flexible and more efficient processes to deliver higher-quality
products at lower costs [10].

This paper is organized as follows. Section 2 outlines the current state of the art
and related works. Section 3 overviews the various technologies that are involved in the
suggested model. Section 4 provides a detailed description of the proposed model scenario.
Section 5 describes the IoT architecture of the proposed model. The experiments performed
and the analysis of results are outlined in Sections 6 and 7.

2. Related Work

In the past few years, various research activities have been carried out in order
to propose intelligent machine vision systems for defective product inspection, based
on the exploitation of generated data by different integrated technologies into modern
manufacturing lines, using a variety of machine learning techniques. What follows are
some outstanding accomplishments in this field.

Wang et al. [11] proposed a machine vision model for product defect inspection based
on deep learning and the Hough transform. The designed method detects defective prod-
ucts through three main steps: image pre-processing, region of interest (ROI) extraction and
image identification. As a first step, a Gaussian filter was performed on the acquired image
to limit random noise and obtain a better representation of the raw image. Continuous
running of the imaging device inevitably leads to an excessive increase in its temperature.
As a result, the captured images will be corrupted by Gaussian noise. Therefore, a Gaussian
filter was used as a pre-processing stage in order to enhance image structures and reduce
noise. Secondly, the probabilistic Hough transform was employed to extract the ROI from
filtered images. Captured images do not guarantee that all contained information is task-
related. For example, the background content may occupy a considerable part of the image,
resulting in unnecessary calculations in the next identification stage. Therefore, the Hough
transform technique was used to isolate features and extract the ROI from filtered images.
Finally, the authors used a convolutional neural network to construct the identification
module. They constructed the image identification module based on the inverted residual
block, which is a good alternative to reduce the model size and computation time. Image
identification was performed using the proposed method with a large number of datasets,
which consisted of defective and defect-free bottle images. The analysis of the obtained
results revealed that the preparation of data is a crucial and decisive step for the success
of any model. The application of the probabilistic Hough transform-based ROI extraction
method with the assistance of a rectangular light source enabled obtaining the correct bottle
region in the original image. Consequently, the required time for image identification was
significantly reduced. The considered inspection method spends 47.60 ms on each image
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identification on average and achieves an accuracy of 99.60%. Evaluation of the results
confirmed that the suggested model in this paper is capable of satisfying the needs of most
production lines considering that the system has the potential to achieve more accurate
results as more defective samples are discovered during production and used for network
training.

Ireri et al. [12] proposed a tomato grading machine vision system based on RGB
images. Initially, segmentation algorithms were applied to remove the background from
the captured images. In this study, a simple image subtraction technique was used to
remove the background for the reason that the image acquisition system was stationary.
Therefore, the background pixels had lower values than the foreground pixels. Hence, the
background was entirely removed by a histogram thresholding technique. Next, calyx
and stalk scars were detected and defects were segmented. The schemed system detects
calyx and stalk scars for both defected and healthy tomatoes by histogram thresholding
based on the mean g-r value of these regions of interest. Third, the color, texture and shape
characteristics of all the images were extracted. In this study, the LAB color space was
used because of its limited variance capability due to the sensitivity of the sensors [13],
textural features were computed from gray-level co-occurrence matrices (GLCM) [14] and
the tomato shape asymmetrical value was computed as a measure of shape regularity [15].
Finally, classifiers based on support vector machine (SVM), artificial neural network (ANN)
and random forest algorithms were applied for the classification of different tomato cat-
egories. The obtained results indicate that the RBF-SVM algorithm outperformed all the
other models with the highest accuracy of 97.09% for the healthy and defected categories.
However, the accuracy of classification decreased as the number of grading categories
increased. The proposed system in this paper can be used as an in-line tomato-grading tool
to ensure adherence to quality standards.

Jiang et al. [16] introduced the fundamentals of common computer vision techniques
for textile quality control. Initially, the authors listed the difficulties encountered in imple-
menting a computer vision techniques-based method for fabric defect detection in real time.
For example, the existence of many kinds of fabrics and the characterization of defects
in fabrics that is generally not clearly defined require the employment of many types of
algorithms. Further, the algorithms must be efficient and implemented in real time. Next,
the authors defined the basic system architecture of an automated fabric inspection system
consisting of a set of cameras, frame grabbers, a computer and a lighting system. Two types
of camera are used to detect fabric defects: line-scan and area-scan. Line-scan cameras
can capture clearer textured images than area-scan cameras, but the cost of a line-scan
camera is very high; therefore, a series of area-scan cameras is commonly used for eco-
nomical detection of fabric defects. The frame grabber is an electronic device that captures
individual digital images from a digital video sequence. The host computer performs
two functions: defect detection and classification. Defect detection is performed by the
corresponding defect detection algorithms and classification is carried out automatically
using a defect size-based rule to score the defects. In addition, lighting is also very impor-
tant for image collection as it determines the quality of the captured images. The authors
then divided computer vision-based techniques for fabric defect detection into three types
of algorithm: statistical approaches, spectral approaches and model-based approaches.
Statistical and spectral approaches use low-level algorithms that operate directly on the
data, while model-based approaches focus on the structure of the data. They suggested two
models: the autoregressive model, which is a representation, using the linear dependency
between the different pixels of a texture to describe the characteristics of the texture, and
the Markov random field model, which is successfully applied in texture segmentation and
classification. Several problems must be considered for the implementation of fabric defect
detection technologies: most of the algorithms applied perform poorly when applied to
real-world tissue images and are computationally too expensive for real-time implemen-
tation. Further, the cost of implementing an automated visual inspection system is very
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expensive. Therefore, future research must focus on a cheaper and faster fabric inspection
system for real industrial application.

Sahoo et al. [17] suggested a dynamic bottle inspection structure. First, the image of
the bottle to be inspected was captured by a high-resolution smart camera. Then, image
processing techniques were employed to reduce noise and improve the quality of the
captured images. The region of interest (defective parts of the bottle) was selected from the
original image by cropping and then converted to a grayscale image. The image of the bottle
was segmented from the image background by applying segmentation methods. Next,
a dataset was constructed from the estimated adaptive characteristics using mathematical
concepts such as the average grayscale two-dimensional feature vector, wavelet transform
and principal component analysis (PCA). An artificial neural network (ANN) trained
by the back propagation (BP) algorithm, differential evaluation algorithm (DEA) and a
support vector machine (SVM) was used to classify the images by considering the extracted
characteristics as input variables and the defective bottle types as output variables. During
the inspection, there is a risk of insufficient illumination and a change in the position
of an object due to various factors, meaning that a sensory arrangement needs to be
implemented. The authors of this paper carried out a comparison between the different
classification algorithms using three methods of feature extraction (AVG grayscale 2D
feature vector, PCA-based features and wavelet-based features) with and without a sensor
implementation in the machine vision inspection system. The obtained results revealed
that the computational time of the ANN using the DEA is comparatively less than the
ANN using BP. The average calculation time of the proposed system without and with the
use of sensors is 33.04 and 29.80, respectively. Comparison of the average computational
time indicated that the computation time is more important for the classification of bottles
without a sensor than for classification with a sensor. The suggested system is capable of
classifying bottle imperfections with a classification success ratio of 91.25–97.5%. Eventually,
it was concluded that the AI-based machine vision inspection system is most suitable for
the inspection of the quality level of imperfections in bottles.

Liqun, W. et al. [18] designed an improved model based on VGG16 [19,20] and intro-
duced the Inception v3 module for vehicle parts defect detection of the six most common
categories of front axle left front and middle bolts, transmission shafts, parking locks
and shift mechanisms, special steering tools, right headlight positioning bolts and shock
absorbers. VGGNet is a deep convolutional neural network model developed by re-
searchers at the Visual Geometry Group and Google DeepMind of the University of Oxford.
The VGGNet network model mainly explores the relationship between the depth of the
convolutional neural network and its performance by constructing a convolution neural
network with a depth of 16 to 19 layers by repeatedly stacking 3 × 3 small convolu-
tion kernels and 2 × 2 maximum pooling layers. The Inception v3 method decomposes
convolution kernels to integrate a larger two-dimensional convolution into two smaller
one-dimensional convolutions. For example, the network of 7 × 7 convolutions is divided
into three 3 × 3 convolutions, which produces more parameters than dividing the network
of 7 × 7 convolutions into 1 × 7 and 7 × 1 convolutions to reduce the computational time.
The experimental samples are divided into a training set and test set and each of the seven
categories of vehicle defect detection is divided into positive and negative samples. The ex-
periment in this paper was divided into three parts which use the traditional HOG + SVM
method, the unimproved VGG16 network model and the improved VGG16 network model
to detect defects of vehicle parts. The obtained results are as follows: firstly, the accuracy
rate of the VGG16 network structure model is 94.36%; secondly, the accuracy rate of the
VGG16 network structure model improved by introducing the Inception v3 module is
95.29%; and, finally, the accuracy of the traditional HOG + SVM classification method
is only 93.88. The VGG16 network structure model that is improved by introducing the
Inception v3 module gives better results than other methods.
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3. Theoretical Background

Industry 4.0 incorporates various technologies such as the Internet of Things (IoT) [21],
cloud computing [22], automation (e.g., intelligent robots in product assembly lines) [23],
big data and analytics [24] and artificial intelligence (AI) [25], amongst others. Most of
these so-called Industry 4.0 technologies have been around much longer than the Fourth
Industrial Revolution, so they are the technical prerequisites of Industry 4.0. However,
the innovative character of Industry 4.0 lies in the fact that the components are able to
communicate with each other and act autonomously, independently of the intervention of
human operators. Therefore, the implementation of a computer vision-based automated
system in the manufacturing chain for detecting defective products requires a judicious
combination of the following different technologies:

The Internet of Things (IoT) is considered as the backbone of our model. Learning
algorithms applied in the model will be fed by the generated data by the different connected
components of the production chain. Without big data that is collected from sensors and
other used devices to connect industrial objects, the system cannot learn how to identify
defective products and predict the correct production processes. The IoT is a network
of interconnected objects (the “things”), with varying levels of intelligent functionality:
sensing and actuating, control, optimization and autonomy, which are integrated with
specific device technologies that help communicate data and interact with these objects [26].
For Industry 4.0, IoT enables the connection of a huge variety of digital and physical
resources. Thus, the network formed allows decentralized decision making and real-time
reaction at the level of cyberphysical systems (CPS) [27]. Furthermore, IoT has become a
great resource of data for industries especially with the massive deployment of sensors and
IoT devices in manufacturing systems.

The IoT has several applications in various fields, and the use of this new technology in
computer vision would benefit the system because of its diverse possibilities. For instance,
a computer vision system includes smart IoT cameras looking at the production line that
capture images, which are then algorithmically compared to a predefined image in order
to detect defective objects [11]. In addition, integrated sensors in the production line allow
gathering data related to the production processes and interacting with the various system
components.

Cloud computing is crucial for the proper functioning of the system. Machine learning
applications such as computer vision problems require the processing of a massive amount
of computing resources (e.g., images). However, cloud computing can satisfy this need with
the computing power and storage capacity available and also allows collaboration between
image processing environment practitioners [28]. In addition, machine learning is not a
baseline proposition and the requirements of such a system change depending on what is
being learned. Therefore, local hardware may not handle the surges of the computational
demand intrinsic in such a system. However, these issues are largely negated in the cloud
because of the computing power that gives us a lot more flexibility. For our solution, cloud
technology helps to pool and centralize information while also offering a platform for open
source collaboration. Thus, the cloud facilitates a real-time exchange of data, creating and
promoting an environment of digital collaboration and integration [25].

Edge computing is a distributed computing architecture characterized by decentral-
ized processing power. Concretely, edge computing enables data to be processed directly
by the device that produces them, or by a local server. The aim is to process data directly
at the edge of the network where they are generated, instead of transferring them to the
cloud or a data center. Industry 4.0 benefits from edge computing as this technology offers
several advantages [4,24]. Edge computing reduces the used bandwidth and information
processing latency, due to the fact that data flows are processed locally in real time. In ad-
dition, the ability to process data without transferring it to a public cloud adds a useful
layer of security for sensitive data. Therefore, edge computing is crucial for the integration
of product inspection systems into manufacturing lines, as these machine vision systems
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must process the captured images by vision equipment in real time in order to provide fast
responses, without disrupting manufacturing processes.

The implementation of industrial automation and machine automation technologies
is decisive to Industry 4.0’s success. Machines have long been used in production to accom-
plish complex programmed tasks. In the Industry 4.0 paradigm, machines are equipped
with new connectivity technologies and become more intelligent, flexible, cooperative and
autonomous in decision making. They interact with each other and even operate safely
with humans (e.g., cobotics). This automation of work processes will have a direct impact
on the productivity of companies and especially in terms of time and cost savings [29].
The proposed model in this paper can only be implemented if the manufacturing line is
automated. Thus, it will benefit from the advantages of automation, especially with the
convergence of new technologies that have enabled the implementation of new intelligent
automated systems.

Big data and analytics is the technology that enables the processing of huge volumes of
data from a variety of sources and formats in order to make sense of them and make better
decisions. Big data production in the Industrial Internet of Things (IIoT) is evident due
to the massive deployment of different technologies such as sensors, enterprise resource
planning (ERP) systems, manufacturing execution systems (MES), supervisory control and
data acquisition (SCADA) systems, customer relationship management (CRM) systems
and machine/IoT devices. Therefore, analytics tools can exploit available big industrial
data and help obtain value from it, thereby leading to making fast and better decisions [24].
The use of big data tools enables the machine learning algorithms employed in our image
recognition system to analyze an exhaustive number of product images and thus learn to
differentiate between defect and defect-free products [30].

Artificial intelligence (AI) technology will allow the system to operate intelligently and
to replace human operators in the task of inspecting finished products. AI is “the science
of making machines do things that would require intelligence if done by men” [31]. In the
context of Industry 4.0, AI can be applied to decision making and promises to change the
way manufacturing works today by equipping machines with more intelligence capabilities.
Therefore, machines will know when they make mistakes and will correct themselves,
which will make production faster and cheaper [25]. AI has been used to develop many
sectors, including finance, health, education and transport. AI technologies in terms of
machine vision make it possible to identify an image, classify it and consequently launch
an associated action [8].

One of the most common applications of AI for manufacturing is machine learning,
and most machine vision systems rely on this technique to classify images and formulate
predictions. The advantages of machine learning are numerous and can significantly
improve system performance. The introduction of machine learning in machine vision
systems for the control of defective products represents a great change for quality control
in manufacturing companies, which can open up new opportunities and result in better
quality control with actionable insights to constantly raise product quality [32]. Machine
learning is the ability of the machines to learn by themselves [9]. The idea is to make
the machine or computer capable of providing solutions to complicated problems by
processing an unlimited amount of information. Big data production and the available
computing power in the Industrial Internet of Things are the major factors that have led to
great advances in machine learning implemented in different fields of industry [32].

4. Proposed Model

Intelligent machine vision systems enable early error detection in the manufacturing
line and help ensure the high quality of the product before it is delivered to the customer.
However, designing an optimal machine vision architecture for defective product inspec-
tion should consider the appropriate collaboration between the different technologies
involved in the production chain from the raw material to the final product. In addition,
all the generated data during the manufacturing process must be exploited to strengthen
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the system and go beyond defect detection to identify the causes of failures and improve
product quality. From this perspective, the machine vision scenario we propose, as shown
in Figure 1, can be described as follows.
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Initially, an IoT installed camera at the end of the processing line captures a real
high-resolution image of the finished product and sends it to the edge image processing
system. There are several parameters to consider when capturing images, for example,
the part of the product to be checked must be clearly visible on the image content. Further,
lighting is an essential ingredient affecting the quality of the captured images that must be
properly adjusted.

Image pre-processing is very necessary to optimize the model and reduce the calcula-
tion time. Captured images do not guarantee that all contained information is task-related.
For example, the background content may occupy a considerable part of the image, re-
sulting in unnecessary calculations in the next identification stage. Therefore, filtering
techniques can improve the quality of captured images and remove unnecessary con-
tent [33]. The last step is image compressing, to reduce the redundancy of the data in an
image, so that it can be rapidly transmitted to the cloud and stored without taking up a lot
of space [34].

The database used by the image identification algorithm contains collected product
sample images labeled defect and defect-free, divided randomly into training images
and evaluation images. The training phase uses training images to continuously correct
parameters with a supervised learning approach in order to minimize prediction errors.
Accordingly, model evaluation is important in searching for a good network structure and
a suitable training strategy, thereby obtaining a practical identification model and storing
it. Finally, the constructed classification model analyzes the processed real-time image and
gives feedback (“defect product”, or “defect-free product”).

With the rapid development of deep learning, convolutional neural networks (CNNs)
have been, in particular, suggested for automated inspection problems and have shown
promising performance. They can automatically extract important features and perform
classification in the same network. The results could be close to or even better than human
performance [35,36]. CNNs are one typical type of artificial neural network (ANN) that
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have a similar methodology to traditional supervised learning methods: they receive
input images, detect the features of each of them and then train a classifier. However,
the features are learned automatically by CNNs, doing all the tedious work of feature
extraction and description themselves [37,38]. Achieved results in research during recent
years confirm that CNNs remain the best approach to achieve high performance in solving
image classification problems [39,40].

There are four types of layers for a CNN: First, the convolutional layer is the key
component of CNNs and is always their first layer. Its purpose is to identify the presence
of a set of features in the input images. To do this, we perform a filtering by convolution.
Then, the pooling layer is often placed between two convolutional layers, it receives as
input several feature maps and applies the pooling operation to them. The pooling process
consists of reducing the size of images while preserving their important characteristics.
Therefore, the pooling layer reduces the number of parameters and calculations in the
network, and this improves the efficiency of the network and prevents overfitting. Next,
rectified linear units (ReLUs) are the most widely used activation function by adding
non-linear transformations to the output response of the convolutional or fully connected
layers. The formula of this function is given in Equation (1). It replaces all negative values
that are received as inputs with zeros. Finally, the fully connected layer classifies the input
image on the network: it returns a vector of size N, where N is the number of classes in our
image classification problem [37].

f(x)= max(0, x) (1)

A CNN is simply a stack of several layers of convolution, pooling and ReLU correction
that are fully connected, as shown in Figure 2. Each received image as input will be filtered,
reduced and corrected several times, to finally form a vector. In the classification problem,
this vector contains the class affiliation probabilities.
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Deep learning also provides more flexibility because CNN models and frameworks
can be re-trained using a custom dataset for any use case. The principle is to use the
knowledge acquired by a neural network when solving a problem to solve a similar one.
Thus, transfer learning accelerates network training and prevents overfitting [35].

In the proposed architecture, the training section is managed at the cloud level.
The principle benefit of this choice is that the machine learning system is not limited
to the local hardware. Traditionally, machine learning required local hardware that could
handle the surges of computational demand intrinsic in such a system [40]. The problem
with this is that machine learning is not a baseline proposition and the requirements of such
a system change depending on what is being learned. However, these issues are largely
negated in the cloud because of the computing power that gives us a lot more flexibility
and therefore a lot quicker and higher-value computing metrics [28]. In addition, the cloud
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will strengthen the system with several features such as data sharing, excellent real-time
accessibility and back-up and restore data.

After training and updating, the cloud implements the constructed image identifica-
tion model at the edge, which is responsible for real-time processing of captured product
images. This saves the time and energy that are required to transmit data to the remote
cloud server by generating inspection results locally, close to the data sources. Commu-
nications between the cloud and the edge are performed when the network is not busy.
Therefore, running the classification algorithm at the edge instead of in the cloud reduces
latency, costs, cloud storage, processing and bandwidth requirements. In addition, edge
nodes have the capability to scale up the computational power when necessary, which
can provide faster and more accurate results [35,40]. Finally, achievement of the aforemen-
tioned scenario requires effective communication between the three component layers of
the system. Installation of an edge IoT gateway between the external internet and the local
intranet bridges the IoT devices, sensors, equipment, systems and the cloud to facilitate
communication between the different layers [41,42].

5. IoT Architecture of the Proposed Model

There are three main sections in the proposed IIoT architecture, as shown in Figure 3.
The first section is the production environment, including the manufacturing line with
the control system and all connected sensors. The second section is the connection and
processing environment, which is an IoT gateway that provides sufficient edge computing
resources and maintains an efficient communication and collaboration between the various
layers of the system. The last layer is a cloud back-end with massive computational power
for computation-intensive tasks (i.e., CNN model training in this case). It is connected
remotely via the internet, so it can act as a central server to manage algorithms and to play
a crucial role to enable all the functions to be smoothly operated as expected.
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Figure 3. Internet of Things (IoT) architecture of the proposed model.

The control system receives data from connected sensors that measure the process
variables (PVs) and transmits them to the central collection point, which is the IoT gateway.
The camera captures the image of the finished product and sends it to the edge for process-
ing. The edge performs the identification of the real captured image via the constructed
classification model and communicates the processing results to the control system, which
keeps defect-free products and eliminates defective products via a programmable logic
controller. PV values and the captured image are sent to the cloud to be stored in databases
and used to update models.
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The exchanges are multiple between the various components of the system: generated
data in the production line are transmitted to the edge and to the cloud via the IoT gateway
using a variety of protocols. In addition, the cloud transfers trained and constructed models
to the edge to be used for product image processing. Finally, the IoT gateway communicates
processing results to the control system to apply the appropriate actions. The role of the
IoT gateway is to maintain a permanent and efficient communication between the different
layers of the model in order to ensure the integration of the system into manufacturing lines,
which requires fast and real-time responses. A real-time and fast connection is necessary
to ensure the exchanges between the three layers of the system and not to disturb the
execution of the manufacturing processes.

6. Experiments

Considering the large number of different involved techniques in machine learning,
a comparative study between several machine learning algorithms for both product classi-
fication and process improvement models is elaborated in order to evaluate the proposed
system. Results of this study will allow us to know if the suggested model meets the
requirements of the proper implementation of these techniques.

The rapid evolution of computer vision and, consequently, image classification has
been accelerated by the introduction of transfer learning. Training is very expensive,
both in time and in resources. However, transfer learning reduces the cost of training
new deep learning models, and since the datasets have been verified, we can be assured
of quality. In this paper, we will test three main preformed image classification models
that are widely used in the industry and compare them to a simple CNN model. We will
analyze the performance of the different models and choose the most suitable one for
the image identification model of our proposed system. The three pre-trained models for
image classification are presented as follows:

• VGG-16 is one of the most popular pre-trained models for image classification. Devel-
oped at the Visual Graphics Group at the University of Oxford, VGG-16 was quickly
adopted by researchers and the industry for image classification tasks;

• Inception v3 is a commonly used image recognition model that has demonstrated
an accuracy of more than 78.1% on the ImageNet dataset. This model is the result of
many ideas developed by several researchers over the years;

• EfficientNetB0 is a convolutional neural network published by Google in 2019, which
was designed by an optimization procedure that maximizes the accuracy for a given
computational cost using a new scaling method called compound scaling.

In the second experiment, we will evaluate several machine learning regression
techniques. Machine learning algorithms are programs that can learn from data and
improve from experience. Learning tasks can include learning the function that links
input to output, learning the hidden structure in unlabeled data or instance-based learning,
where a class label is generated for a new instance by comparing the new instance to
instances of the training data, which have been stored in memory. This experiment aims to
compare various regression algorithms used in machine learning. In this study, the most
popular algorithms were evaluated, such as K-nearest neighbors (K-NN), decision trees,
Lasso regression and linear regression, and a big dataset was used to verify the efficiency of
each algorithm. Thus, we can choose the best algorithm to use for the processes prediction
model of our proposed system.

The dataset used in the first experiment consists of casting manufacturing prod-
ucts [43]. Casting is a manufacturing process in which a liquid material is usually poured
into a mold, which contains a hollow cavity of the desired shape, and then allowed to
solidify. The objective of collecting these data is to make the task of inspecting casting
defects automatic by implementing a deep learning classification model for this problem.
This dataset was collected in a stable lighting environment with an extra arrangement.
The camera used was the Canon EOS 1300D DSLR. The dataset contains a total of 7348 im-
age data. These are all the size of (300*300) pixel gray-scaled images. In all images,
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augmentation was already applied. An illustration of the objects to be inspected is pre-
sented in Figure 4. The dataset is divided into two parts: training set and testing set,
for training and evaluation, respectively.
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The dataset used in the second experiment [44] comes from one of the most important
parts of the mining process: a flotation plant. The main objective is to use these data to
predict the quantity of impurities in the ore concentrate. Since this impurity is measured
hourly, if we can predict the quantity of silica (impurity) in the ore concentrate, we can help
engineers by giving them early information to take predictive measures. The first column
shows the time interval and the date. The second and third columns are measurements of
the quality of the iron ore pulp just before it is introduced into the flotation plant. Columns
four to eight are the most important variables that have an impact on the quality of the ore
at the end of the process. From column nine to column twenty-two, we can see the process
data, which also have an impact on the ore quality. The last two columns represent the
final measurement of the quality of the iron ore pulp in the laboratory. The input set will
be composed of columns 4 to 22, and the output is the value of the quantity of impurities
in the ore concentrate. An illustration of the dataset is presented in Table 1.

Table 1. A portion of the dataset used in the second experiment [44].

Date Iron Feed Silica
Feed

Starch
Flow

Amina
Flow

Ore Pulp
Flow

Ore Pulp
pH

Ore Pulp
Density

Flotation
Column
01 Air
Flow

. . . Silica
Concentrate

10/03/2017
01:00 55.2 16.98 3019.53 557.434 395.713 10.0664 1.74 249.214 . . . 1.31

10/03/2017
01:00 55.2 16.98 3024.41 563.965 397.383 10.0672 1.74 249.719 . . . 1.31

10/03/2017
01:00 55.2 16.98 3043.46 568.054 399.668 10.068 1.74 249.741 . . . 1.31

10/03/2017
01:00 55.2 16.98 3047.36 568.665 397.939 10.0689 1.74 249.917 . . . 1.31

10/03/2017
01:00 55.2 16.98 3033.69 558.167 400.254 10.0697 1.74 250.203 . . . 1.31

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
09/09/2017

23:00 49.75 23.2 2692.2 500.488 383.496 9.61874 1.65338 303.662 . . . 1.71

09/09/2017
23:00 49.75 23.2 1164.12 491.548 384.976 9.61686 1.65324 302.55 . . . 1.71

09/09/2017
23:00 49.75 23.2 1164.12 468.019 384.801 9.61497 1.6531 300.355 . . . 1.71
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The two datasets used were downloaded from the following website: www.kaggle.
com. The first one was produced by Ravirajsinh Dabhi, a student at the VVP Engineering
College, Rajkot, Gujarat, India, and the second was produced by Eduardo Magalhães
Oliveira, a Data Scientist Leader at IHM Stefanini, State of Minas Gerais, Brazil.

This experiment is coded on the Anaconda platform in the Windows environment,
using Python language. The computer hardware environment configuration is as follows:
the system is 64-bit Windows 10, the processor is the Intel(R) Core(TM) i7-1065G7 CPU
@ 1.50 GHz, the memory is 8.00 GBRAM and the graphics card is the NVIDIA GeForce
MX230. The machine learning frameworks are TensorFlow 2.3.0 and scikit-learn 0.23.2.

7. Results and Analysis
7.1. Image Identification Model

Once the training was completed, we calculated the performance of the models using
new image datasets (i.e., not included in the training dataset), as shown in Table 2. We used
two statistical measures to evaluate the models: precision and recall. Precision indicates
the fraction of identified classifications that are correct. We checked the percentage of true
predictions out of the total obtained predictions for the models. We used the formula given
in Equation (2) to calculate the precision of the models. Recall indicates the fraction of
actual classifications that are correctly identified. We measured how much the objects are
covered by the models for classification. We used the formula given in Equation (3) to
calculate the recall of the models.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

where FP (false positive) represents the number of negative samples judged to be positive,
TP (true positive) is the number of positive samples judged to be positive and FN (false
negative) is the number of positive samples judged to be negative.

Table 2. Accuracy measurement in different models.

Model TP FP FN Precision Recall Accuracy

CNN 273 37 31 0.8806 0.8980 0.9042
VGG16 295 17 14 0.9455 0.9547 0.9563

Inception v3 273 14 36 0.9512 0.8835 0.9324
EfficientNetB0 302 9 13 0.9711 0.9587 0.9688

The obtained results show a precision of 88% and a recall of 89% for the CNN model,
while the precision and recall increase, respectively, to (95–97%) and (88–96%) for the
pre-trained models. The pre-trained models achieve high validation accuracy with only
10 epochs and without major model modifications. This proves the power of transfer
learning and the utility of pre-trained models for image classification and also illustrates
that transfer learning is flexible, allowing the use of preformed models directly for solving
entirely new problems. The difference between a simple CNN and pre-trained models is
clear even if we are faced with a simple binary classification problem. The difference may
be more obvious if we are confronted with a more complex problem, with a large number
of classes and huge data to process. Figure 5 shows the performance graph of the results
obtained for the classification by different models.

However, it is important to mention that some pre-trained models take a lot of time
to train compared to other models, which can be a disadvantage when dealing with huge
datasets. In addition, the cost of implementing the system in high-speed production lines
will be expensive, as the system will need large computing resources to function correctly.
Figure 6 shows the epoch training time of each model in seconds. The graph indicates

www.kaggle.com
www.kaggle.com
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that pre-trained models take longer to train, which is normal considering the complex
architecture of these models compared to a simple CNN model. It also shows that Inception
v3 is much faster than VGG16 and EfficientNetB0. As a result, we can see that Inception
v3 is the most suitable for our classification model, since it achieves high accuracy in a
relatively acceptable time. In addition, pre-trained models can achieve higher accuracy
and recall values if we increase the number of epochs and the amount of training data.

J. Sens. Actuator Netw. 2021, 10, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 5. Data analysis results of trained models. 

However, it is important to mention that some pre-trained models take a lot of time 
to train compared to other models, which can be a disadvantage when dealing with huge 
datasets. In addition, the cost of implementing the system in high-speed production lines 
will be expensive, as the system will need large computing resources to function correctly. 
Figure 6 shows the epoch training time of each model in seconds. The graph indicates that 
pre-trained models take longer to train, which is normal considering the complex archi-
tecture of these models compared to a simple CNN model. It also shows that Inception v3 
is much faster than VGG16 and EfficientNetB0. As a result, we can see that Inception v3 
is the most suitable for our classification model, since it achieves high accuracy in a rela-
tively acceptable time. In addition, pre-trained models can achieve higher accuracy and 
recall values if we increase the number of epochs and the amount of training data. 

Related to the proposed model in this article, the obtained results in this experiment 
confirm the correct choice to manage the training of the image classification model at the 
cloud level. The cloud has the computational resources required for model training in 
large amounts of data and within an acceptable time. The results also confirm the intro-
duction of an image filtering and compression step before identifying and transferring 
images to the cloud, which reduces the required time to train models and identify images. 
For example, these techniques remove background content that occupies a considerable 
part of the image, resulting in unnecessary calculations during identification and training. 

82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

CNN VGG16 Inception v3 EfficientNetB0

Precision Recall

Figure 5. Data analysis results of trained models.
J. Sens. Actuator Netw. 2021, 10, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 6. Epoch training time of each model in seconds. 

7.2. Processes Prediction Model 
Regression metrics are different from classification metrics because they predict a 

continuous quantity. To evaluate the four regression models, we used three major metrics. 
Mean absolute error (MAE) is one of the most common metrics that is used to calculate 
the prediction error of models. We need to calculate prediction errors for each row of data, 
get their absolute value and then find the mean of all absolute prediction errors. MAE is 
calculated by the formula given in Equation (4). Mean squared error (MSE) takes the mean 
squared difference between the target and predicted values. This value is widely used for 
many regression problems and larger errors have correspondingly larger squared contri-
butions to the mean error. MSE is calculated by the formula given in Equation (5). The 
coefficient of determination (R2 score) determines how well the regression predictions ap-
proximate the real data points. The value of R2 is calculated with the formula given in 
Equation (6). R2 can take values from 0 to 1. A value of 1 indicates that the regression 
predictions perfectly fit the data. Table 3 summarizes the performance of each model. 

MAE = 
1
N  |Yi

N

i = 1 - Xi| (4) 

MSE = 
1
N  (Yi

N

i = 1 - Xi)
2 (5) 

R2 = 1 - ∑ (Yi
N
i = 1 - Xi)

2∑ (Yi
N
i = 1 - Y)2  (6) 

where Yi  represents the predicted value of Xi , and Y is the mean of observed data, 
which is calculated as given in Equation (7). 

Y = Yi

N

i = 1  (7) 

 

  

70

226

1100
1050

0

200

400

600

800

1000

1200

CNN Inception v3 VGG16 EfficientNetB0

Figure 6. Epoch training time of each model in seconds.

Related to the proposed model in this article, the obtained results in this experiment
confirm the correct choice to manage the training of the image classification model at the
cloud level. The cloud has the computational resources required for model training in large
amounts of data and within an acceptable time. The results also confirm the introduction of
an image filtering and compression step before identifying and transferring images to the
cloud, which reduces the required time to train models and identify images. For example,
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these techniques remove background content that occupies a considerable part of the image,
resulting in unnecessary calculations during identification and training.

7.2. Processes Prediction Model

Regression metrics are different from classification metrics because they predict a
continuous quantity. To evaluate the four regression models, we used three major metrics.
Mean absolute error (MAE) is one of the most common metrics that is used to calculate
the prediction error of models. We need to calculate prediction errors for each row of data,
get their absolute value and then find the mean of all absolute prediction errors. MAE
is calculated by the formula given in Equation (4). Mean squared error (MSE) takes the
mean squared difference between the target and predicted values. This value is widely
used for many regression problems and larger errors have correspondingly larger squared
contributions to the mean error. MSE is calculated by the formula given in Equation (5).
The coefficient of determination (R2 score) determines how well the regression predictions
approximate the real data points. The value of R2 is calculated with the formula given
in Equation (6). R2 can take values from 0 to 1. A value of 1 indicates that the regression
predictions perfectly fit the data. Table 3 summarizes the performance of each model.

MAE =
1
N

N

∑
i=1
|Yi− Xi| (4)

MSE =
1
N

N

∑
i=1

(Y i− Xi)
2 (5)

R2 = 1− ∑N
i=1(Yi − Xi)

2

∑N
i=1

(
Yi − Y

)2 (6)

where Yi represents the predicted value of Xi, and Y is the mean of observed data, which is
calculated as given in Equation (7).

Y =
N

∑
i=1

Xi (7)

Table 3. Performance measurement in different models.

Model MAE MSE R2 Training Time (s)

Lasso Regression 0.4953740 0.4107599 0.6759881 1.9547
Linear Regression 0.4933475 0.4070632 0.6788780 0.6504

K-NN 0.1342836 0.1420677 0.8875313 5.1160
Decision Trees 0.0076407 0.0072581 0.9942702 15.3998

The results show that the decision trees and K-NN models significantly outperform
the other two models. The (MAE, MSE, R2) values obtained by the linear regression and
Lasso regression models are very medium, which shows that these algorithms are not so
accurate, but they can still make good predictions. In addition, the results show that these
models do not fit the data very well because they cannot explain all the variance, and we
have some outliers. The decision trees model remains the best of the four models with
perfect scores. Figure 7 shows the performance graph of the different models.

To further explore the measures and numbers, we plotted our data on the actual versus
predicted graph for our test dataset. This is one of the most useful graphs because it can
tell us a lot about the performance of our models. The graphs below, shown in Figure 8,
use MatPlotLib to perform their visualizations for analyzing residuals versus model fit.
On this plot, we can check where the points are located. The decision trees plot shows that
most of the points are close to the diagonal and we can conclude that the R2 score for this
model will be high. This proves that the model fits the data very well. However, for the
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other models, we can see that many points are far from the diagonal, and we can conclude
that the R2 scores will be low. This shows that the models do not match the data very well.
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Figure 7. Data analysis results of trained models.
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The decision trees model takes relatively more time to train. However, since all models
have very acceptable training times, we will focus on the quality of prediction in order to
choose the most adequate algorithm for our model. Therefore, the decision trees algorithm
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is the most suitable for our processes prediction model since it achieves a very high R2

score (0.99) and allows us to make predictions with high accuracy.

8. Conclusions

This paper presents a machine vision-based inspection model for product quality
control, combining two types of machine learning: a classification model for product
inspection and a regression model for processes prediction. The suggested system enables
early error detection in the manufacturing processes and helps ensure a high quality of the
item before it is moved to the next manufacturing step. In addition, the system helps in
gathering historical and production statistics for both defective and defect-free products
used to improve manufacturing processes. As a result, it helps in reducing material waste,
repair and rework costs, as well as added manufacturing labor time and expenses [11].
Nevertheless, the designed system has some limits related to the implementation of CNNs.
These models consume large computational resources, and they need large amounts of
training data to optimize their performance.

The obtained results lead us to choose the most appropriate machine learning models
for our system in order to optimize its performance. Inception v3 is the most adequate
for our image identification model as it achieves an accuracy of 95% within a relatively
acceptable time and can improve its performance by increasing the amount of training
data and computational resources. The decision trees algorithm is the most suitable for
our processes prediction model since it achieves a very high R2 score (0.99) and provides
predictions with high accuracy.

The proposed architecture in this paper has several advantages: The implementation
of an IoT gateway to maintain a permanent and efficient communication between the
different components of the system that communicate with different protocols. Model
training is managed at the cloud level, allowing the system to benefit from the available
computing power in the cloud. Real-time processing of captured product images at the
edge saves the time and energy that are required to transmit data to the cloud server
by generating inspection results locally, close to the data sources. Image pre-processing
optimizes models and reduces the calculation time. Finally, the proposed architecture can
be adapted and used for different use cases, which is very important for the successful
integration of the system into real production lines.
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