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Abstract: At present, capacity control in indoor spaces is critical in the current situation in which we
are living in, due to the pandemic. In this work, we propose a new solution using machine learning
techniques with BLE technology. This study presents a real experiment in a university environment
and we study three different prediction models using machine learning techniques—specifically,
logistic regression, decision trees and artificial neural networks. As a conclusion, the study shows
that machine learning techniques, in particular decision trees, together with BLE technology, provide
a solution to the problem. The contribution of this research work shows that the prediction model
obtained is capable of detecting when the COVID capacity of an enclosed space is exceeded. In
addition, it ensures that no false negatives are produced, i.e., all the people inside the laboratory will
be correctly counted.

Keywords: Bluetooth Low Energy (BLE); machine learning; COVID capacity control; level occupancy;
occupancy detection; indoor detection

1. Introduction

Knowing the location of people inside a building is very useful for many different
scenarios (smart buildings, energy efficiency, emergency situations, obtaining patterns of
movement, etc.). However, recently, capacity control in indoor spaces has become critical
in the current situation in which we are living in, due to the pandemic. Being able to know,
in an accurate way and in real time, the number of people who are inside a room is a
relevant issue at present. In this work, we propose a new solution for this real problem in
the university environment.

Indoor occupancy detection is a well-known problem that has been studied since the
1990s from different approaches as technology has evolved, with the first solutions using
infrared sensors [1], and more recent ones using radio frequency identification (RFID) [2],
near-field Communication (NFC) [3] or Wi-Fi technologies [4,5]. Among them, the most
studied are Wi-Fi technologies, mainly because no additional hardware is needed for their
use. However, the main drawback that it presents is that the signal strength of a wireless
device may change over time, making it difficult to operate. In addition, a high battery
consumption is required in the user’s mobile phone because it needs to frequently scan the
Wi-Fi signal. Other solutions combining hardware devices and algorithms for localization
and tracking can be found in [6,7].

With respect to the other, more recent technologies, RFID [2] has the disadvantage of
requiring the installation of antennas, as well as receivers in user devices. On the other
hand, the main drawback/difficulty of NFC [3] is the need to be very close (<20 cm) to the
NFC tags for them to work properly.

More recently, Bluetooth Low Energy (BLE) technology [8] has also been used for
both location and occupancy detection. This technology presents numerous advantages
compared to the previous ones; it is included on most smartphones, is low-cost, has easy
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installation, low energy consumption, and therefore, requires only basic maintenance, is
non-intrusive and has high performance. Some authors [9] have used beacon systems for
detecting the presence of people in different zones of a building but without an accurate
people count by area. In particular, beacons are used for presence detection in smart homes.
Other researchers [10,11] use beacons for indoor tracking. In [10], the authors propose an
architecture for a working environment composed of a few receivers in a fixed location
and BLE tags for the employee. The main drawback of their solution is that employees
could forget to carry their identification tag. In [11], beacons are used for knowing the
location of patients in an emergency zone in a hospital. In none of these studies is a control
of the capacity of the rooms carried out. Moreover, precision is not critical for them, an
approximate location by zones being acceptable.

Some approaches that use BLE technology for counting people indoors can also be
found in the literature [12–14]. Conte et al. [12], pioneers in contributing solutions to count
people based on BLE, require additional hardware (Ardunio) and do not use standard
beacons. The authors in [13,14] are focused on finding out building occupancy for energy
reduction, so precision is not important. We have also previously worked with BLE to
calculate the level of occupancy in indoors spaces [15]; in this work, we used triangulation
algorithms to determine if a person was inside the classroom. In this case, strict capacity
control was not so important; therefore, it was permissible to accept a small error of
accuracy, which is not allowed in our use case now. This is why these algorithms do not
have enough precision to be used in the control of the capacity of a classroom in COVID
times. Our goal is to improve accuracy using a model based on artificial intelligence and
machine learning techniques.

Using artificial intelligence and machine learning techniques for indoor location
problems is not a new approach. There are several studies [16–18] based on the combination
of this type of technique together with the Wi-Fi signal for indoor location. Regarding the
combination of BLE and machine learning, there was a recent study in which it was used for
presence control, with the aim of use in emergency situations [19]; in [20], machine learning
techniques are used to recognize patterns and occupancy profiles of office spaces, while
in [21], they are used to recognize movement patterns to optimize energy consumption.
Our proposal is completely different from these, since in none of them is capacity control
performed; moreover, for us, the accuracy of the model is a critical factor. Specifically,
the model is not allowed to undercount. In those found in the bibliography, as they have
different goals, this characteristic is not so important.

Therefore, our contributions in this research work are summarized as follows: (1) We
have not found any approach in the literature that solves the problem of not exceeding
the capacity in an indoor space using BLE together with machine learning techniques.
(2) In addition, the model obtained ensures that it never counts less people than those
in the laboratory. This is critical for COVID capacity control. We have not found any
other research work in which this accuracy was achieved, nor has it been used for this
recent problem.

We propose our work with a view to finding a system that is able to detect if the COVID
capacity of a classroom is exceeded. This detection must be performed automatically and
in real time. In this paper, we suggest and study three different prediction models using
machine learning techniques—specifically, logistic regression, decision trees and artificial
neural networks. In our case, the model will only be valid if the precision is high, and it
counts, without error, all the people in the classroom. That is, we must ensure that the
capacity is never exceeded. Therefore, it could be accepted that in some cases, it counts
more people, but never less.

The paper is structured as follows. The next section describes our experiment and the
different models obtained; Section 3 shows the results, while Section 4 draws the conclusions.
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2. Materials and Methods

The main goal of this work is to control classroom COVID-19 capacity, in an automatic
and very accurate way, to ensure it is not exceeded. In order to manage it, we use BLE
technology and several machine learning techniques such as logistic regression, decision
trees and artificial neural networks.

The experiment consists of determining if these techniques can be used for the purpose
of indoor positioning, as well as making a decision on which of the proposed ML techniques
achieves the intended goal of controlling the COVID capacity of a classroom, without
exceeding it.

The model should be able to predict whether a person is inside a classroom from the
distance information collected from the beacons placed in the faculty. In order to carry out
the experiment, the laboratory with the highest student demand in the Faculty of Computer
Science of the Pontifical University of Salamanca was chosen. Due to the characteristics of
this laboratory (equipment, natural light, furniture), it is the one preferred by the students.

2.1. Data Gathering

The first step in the study was data collection, which was used for obtaining the
model. The beacons were strategically positioned in the laboratory in a way that they
covered all of the seats of the room as shown in Figure 1. For the placement of the beacons,
the classroom was divided into four quadrants, discarding part of the side aisle and the
back. The students use only the part of the classroom where the tables and computers are
located. The beacons were placed so that this area was covered. Initial detection tests were
carried out in all the classroom stations, with good results in the placement of the beacons.
Moreover, some beacons were also placed in adjoining laboratories and classrooms so that
information collected from these beacons could also be used in the model. Data gathering
was performed by a mobile application that registered the distance of each of the detected
beacons from the mobile. For beacons that were not detected by the mobile app, the value
that was registered was a distance of 99 m; therefore, this value denotes that the beacon is
too far to be perceived.

In this first phase, beacon distances were obtained by searching both laboratory and
adjacent areas. Measures were gathered taking into consideration all possible environmen-
tal contexts. For instance, some measures were obtained with computers off, and others
were obtained with computers on, in order to take into account the possible interferences
with other signals produced when these computers are on. Data were collected by mobile
devices—some of them were Android and others were iOS. In total, 488 measures were
specifically registered. Part of them (298) corresponded to measures taken inside the labo-
ratory and others (190) outside (adjoining laboratories and corridors). All information and
data collected were exported to an Excel file for processing.

Before carrying out data processing, a cleaning pre-phase was performed. Specifically,
some data were deleted due to the observation that beacons placed in the adjacent lab-
oratory (A and B beacons, Figure 1) were not detected from any point of the laboratory
used for the experiment, nor from any other point in the corridors. That is why all data
corresponding to these undetected beacons were deleted. This situation is produced, on
the one hand, due to the high width of the wall that separates the adjoining laboratory
from other dependencies, and on the other hand, because of the material with which this
wall is built. This material is called Villamayor stone and the wall has a half meter of
width; therefore, the signal sent out by the beacons cannot pass through this kind of wall. It
should be pointed out that the historical building, where the Faculty of Computer Science
is University is placed, started its construction in the beginning of the XVII century, and
ended in the middle of the XVIII century; the wall where some beacons were located is one
of the original walls built for isolating the building from cold and heat, and this is the main
reason for the thickness of this wall.
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Figure 1. Laboratory of Faculty of Computer Science of Pontifical University of Salamanca.

2.2. Choosing Training and Test Data

From the previous data collection process, 80% of them are randomly selected to
train the model and 20% to test the model. Repeated cross-validation is used to validate
the model. This technique allows the quality of the dataset to be interpreted and the
understand of whether the model is susceptible to data variations. The ROC metric (area
under the curve) is used as a metric for this validation.

Both training and test data were picked in a random way using the R Studio tool
for this task [22]—specifically, the createDataPartition from the caret (classification and
regression training) library developed by Kuhn in 2016 [23]. The same training and testing
sets were used for all the evaluated models, in order for all of them to be considered under
the same conditions.

2.3. Obtained Prediction Models

In order to obtain the prediction model, three different approaches are proposed: a
logistic regression model, a model based on a decision trees model and an artificial neural
network. All of them are obtained by the R Studio tool and the Caret package. This package
has a set of functions available that allows different classification and regression methods
to be applied by employing a unify code; this fact makes its use and understanding easier.

As an endogenous variable of the model, the dentro (inside) variable is used. This
variable can take two possible values, yes and no, denoting whether the person is inside
or outside the laboratory, respectively. This dichotomous variable became a factor for
utilization in different models. As exogenous variables, the distance measures from the
mobile to each detected beacon are used, and the 99 m value is for beacons that are not
discovered by the mobile. Therefore, there are not missed data in our model.
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The hyperparameter optimization method used is the grid search method. This used
method automatically creates a grid of tuning parameters and performs an exhaustive
search over a subset of the hyperparameter space of a learning algorithm. A grid search
algorithm must be guided by a performance metric—in our case, by cross-validation on
the training set. This method is a computationally expensive option but guaranteed to find
the best combination in the specified grid.

2.3.1. Logistic Regression Model

Firstly, a generalized lineal regression model is used; in particular, a logistic regression
model is used for the prediction. This model is a regression method that allows the
estimation of the probability of a binary qualitative variable based on quantitative variables.
In spite of the fact that it is a regression method, one of its main applications is binary
classification, such as how it is applied in this experiment. In this case, error evaluation
is carried out by means of repeated cross-validation and as a metric, the area below the
ROC curve. An ROC curve (receiver operating characteristic curve) is a graph showing the
performance of a classification model at all classification thresholds. This curve plots two
parameters: true positive rate and false positive rate. On the other hand, AUC stands for
“Area under the ROC Curve” and measures the entire two-dimensional area underneath
the entire ROC curve (integral calculus from (0,0) to (1,1)).

With the calculated model, the predictions about both test data and probabilities are
obtained, obtaining the chart in Figure 2. As we can observe in the chart, the model is
suitable; moreover, the chart shows that the error probability of the model detecting No
being Yes is higher than the opposite.

Figure 2. Histogram of probabilities distribution. Logistic regression model.

The obtained data of the probabilities are confirmed by observing the data of Sensitiv-
ity and Specificity, taking into consideration that ‘Positive’ Class: No. Considering that,

Sensitivity = ∑ True positive/∑ Actual positive;
Specificity = ∑ True negative/∑ Actual negative.
In these data, it is noted that the Sensitivity is far below the Specificity; that is, the

capacity of our estimator to correctly detect people that are inside the laboratory is much
better than for correctly detecting those that are not inside the laboratory.

Sensitivity: 0.7895;
Specificity: 0.9661.
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The area under the ROC curve is also obtained in order to make a model comparison
(Figure 3). In this case, a value of 0.9429 is obtained.

Figure 3. ROC Curve. Logistic Regression Model.

2.3.2. Decision Trees

The second model used for predicting was Random Forest-type decision trees, which
is a non-parametric supervised technique. As is known, this predictive technique uses a
set of individual decision trees, each of them trained with a slightly different sampling
produced by bootstrapping. The prediction of a new observation is obtained by adding
predictions of individual trees that form the model. The evaluation of errors is realized by
repeated cross-validation and the area under ROC curve is employed as a metric.

The predictions of the testing data are obtained through the calculated model. Ad-
ditionally, a graph concerning how the probabilities are distributed is obtained, which is
shown in the next chart (Figure 4). In this figure, we can observe a probabilities histogram
with better quality than the one generated by the logistic regression model.

Figure 4. Histogram of probabilities distribution. Random Forest Model.
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Bearing in mind values of Sensitivity and Specificity, we can say that with this model,
the Sensitivity is much higher than that obtained with the previous model, so the detection
of those that are not inside the laboratory improves over the previous one. For the Speci-
ficity, a result of 1 is obtained; therefore, all cases that are inside the laboratory are detected
correctly.

Sensitivity: 0.9474;
Specificity: 1.0000.
Regarding the ROC curve that is obtained for this model, its chart can be seen in

Figure 5, the value under the curve being 0.9991.

Figure 5. ROC curve. Random Forest Model.

2.3.3. Artificial Neural Network

Finally, a predictive model using Artificial Neural Network techniques is calculated.
Artificial Neural Network is an information processing system with a structure inspired
by biological neural networks. These techniques work with artificial neurons that are
combined to make up the network. In this network, a set of inputs produces an output,
and this output depends on the different activated neurons of the network. The Radial
Basis Neural Network was selected among other types of neural networks. This network is
based on a multilayer network with forward connections that use functions of radial base
as neuron activation functions. In order to evaluate the errors, repeated cross-validation is
applied and the area below the ROC curve is also used as a metric.

Once the model is obtained, extractions of the predictions and probabilities about
testing and training are performed. Figure 6 shows the probabilities distribution histogram
for this new model, in which we can again observe that the model works better in the case
when people are inside the laboratory.

Regarding this model and Sensitivity and Specificity metrics, it can be observed that
Sensitivity is still substantially lower than Specificity, obtaining worse data than those
produced in the previous model.

Sensitivity: 0.7632;
Specificity: 0.9492.
Finally, the area under the ROC curve obtained in this case is 0.9759, having the

following graph for the ROC curve (Figure 7).
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Figure 6. Histogram of probabilities distribution. Radial Basis Neural Network.

Figure 7. ROC curve. Radial Basis Neural Network.

3. Results

The results obtained from the different models can be compared by obtaining the
confusion matrix resulting from the validation of the model’s performance for each of them.
The confusion matrix reflects the real cases (is it inside or outside the classroom) in the
columns and in the rows, the model’s prediction of where it is found. In each cell of the
matrix is the number of cases found when validating the model, the percentage of that case
per row and the percentage of that case with respect to the total number of cases. The last
column contains the number of total rows and the last row contains the number of total
columns. The main diagonal reflects the model’s successes, while the secondary diagonal
reflects the errors.

The three confusion matrices for each of the models obtained are shown below
(Tables 1–3).
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Table 1. Confusion matrix. Logistic regression model.

Predicted
Real

Row Total
No Yes

No
30 2 32

0.938 0.062 0.330
0.309 0.021 -

Yes
8 57 65

0.123 0.877 0.670
0.082 0.588 -

Column Total 38 59 97

Table 2. Confusion matrix. Random Forest model.

Predicted
Real

Row Total
No Yes

No
36 0 36
1 0 0.371

0.371 0 -

Yes
2 59 61

0.033 0.967 0.629
0.021 0.608 -

Column Total 38 59 97

Table 3. Confusion matrix. Radial Basis Neural Network model.

Predicted
Real

Row Total
No Yes

No
29 3 32

0.906 0.094 0.330
0.299 0.031 -

Yes
9 56 65

0.138 0.862 0.670
0.093 0.577 -

Column Total 38 59 97

The confusion matrix shows that our model is correct (success rate) in 89.7% of cases
(58.8 + 30.9). The most frequent error is 8.2% and corresponds to the case in which it is not
found inside the laboratory although it is predicted to be. The case with the highest success
rate is no/no—it is not in the classroom and was predicted as such—with 93.8%.

The data of the confusion matrix of the Random Forest model (Table 2) show that the
success rate of the model is very high—97.7%. However, what is really important is that
the model does not produce false negatives (the number of yes/no cases is 0), an essential
condition for its validity in our case study.

Finally, if we analyze the data of the confusion matrix of the model using neural
networks, we find that the success rate is 87.6, the lowest of the three. Furthermore, the
percentage of false negatives is also the highest, making this model the worst approximation
for our case.

4. Discussion and Conclusions

This paper presents a complete experiment in which Bluetooth Low Energy technology
is used plus several prediction models based on machine learning techniques, such as
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artificial neural networks, regression models and decision trees (random forest) that are able
to predict and monitor the COVID-19 capacity in classrooms in a university environment.

If we make a comparison of the three models, we can conclude that the model with the
best fit for prediction is the Random Forest model. This is the best model for all the parameters
studied: probability distribution, sensitivity and specificity, results of the confusion matrix and
the area under the ROC curve (very close to 1). The data with which we performed the study
were not balanced; this fact could have made the tree models perform better than the rest.

The confusion matrix for this model (Random Forest) presents only two prediction
errors. Both errors occurred when people were outside the laboratory, but the model said
they were inside. This type of error is considered insignificant, on the one hand, because the
percentage error is very small, and on the other hand, because this error is not important for
our purpose. When this error occurs, the system tells us that there are more people inside
the laboratory than there are actually inside, but this fact is not critical in our case. The
main objective is that the laboratory does not exceed the capacity limit in COVID-19 times.

In any case, we analyzed the two cases in which the model made erroneous predictions,
finding that this fact occurred when the person was very close to the laboratory, i.e., when
they were right next to the door in the hallway. It should be taken into account that the
application running on each mobile phone periodically sends the distance to the detected
beacons, so if the person in the corridor is finally entering or leaving the laboratory, the
occupancy data will be correctly updated in the system at the next measurement.

The three explained models show that control using these prediction techniques is
possible, obtaining satisfactory results in all cases. Nevertheless, the model obtained using
the Random Forest algorithm stands out above the rest. This model is the only one among
the three proposed models that is able to guarantee that the classroom COVID-19 capacity
is never exceeded due to the model never counting less people than are actually inside.
The obtained model using Random Forest is the only one that achieves both conditions.
Additionally, it is the model with the best results in accuracy terms so that it is the model
chosen and used for the system of counting.

The results obtained from the experiment show that by combining BLE technology
and predictive models based on automatic learning, such as Random Forest, it is possible
to control the capacity of enclosed spaces with high accuracy. This automatic control makes
it possible to know and monitor the number of people inside enclosed spaces, a relevant
issue in times of pandemics where a solution is required.

The high accuracy in our experiment is one of the contributions of the work. There are
research papers that use a combination of BLE and machine learning techniques [19–21] but,
on the one hand, the purpose of the studies is different from ours. In these studies, the aim
is either to detect presence without counting [19] or machine learning techniques are used
to detect movement or occupancy patterns [20,21]. Additionally, on the other hand, in none
of them is the accuracy of the model critical, not allowing the error of undercounting. In
addition, the use case in a university environment and adapted to the COVID-19 situation
we are living in is also a contribution to highlight.

In future work, our aim is, on the one hand, to implement this system in the classroom or
laboratory for which the prediction model was obtained and to analyze the results obtained
in real time. On the other hand, we aim to extend the system to the rest of the Faculty’s
classrooms, especially in classrooms where capacity control is a challenge to be solved.

Finally, this system has been implemented in a specific university context, but it could
be extrapolated to other contexts where strict capacity control is required.

Author Contributions: Conceptualization, M.E.B.G., M.M.S. and R.B.G.; methodology, A.M.F.G.
and R.B.G.; software, M.E.B.G., M.M.S. and R.B.G.; validation, M.E.B.G., M.M.S. and R.B.G.; formal
analysis, A.M.F.G. and R.B.G.; investigation, M.E.B.G., M.M.S., R.B.G. and A.M.F.G.; resources,
R.B.G.; data curation, M.E.B.G., M.M.S.; writing—original draft preparation, M.E.B.G., M.M.S.;
writing—review and editing, A.M.F.G.; project administration, M.E.B.G., M.M.S.; funding acquisition,
A.M.F.G., M.E.B.G., M.M.S. and R.B.G. All authors have read and agreed to the published version of
the manuscript.



J. Sens. Actuator Netw. 2021, 10, 35 11 of 12

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data underlying this article will be shared on reasonable request
from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Want, R.; Hopper, A.; Falcao, V.; Gibbons, J. The active badge location system. ACM Trans. Inf. Syst. 1992, 10, 91–102. [CrossRef]
2. Ni, L.M.; Liu, Y.; Lau, Y.C.; Patil, A.P. LANDMARC: Indoor location sensing using active RFID. In Proceedings of the First IEEE

International Conference on Pervasive Computing and Communications (PerCom 2003), Fort Worth, TX, USA, 26 March 2003;
IEEE: Piscataway, NJ, USA, 2003; pp. 407–415.

3. Strutu, M.; Caspari, D.; Pickert, J.; Grossmann, U.; Popescu, D. Pedestrian smartphone based localization for large indoor areas.
In Proceedings of the 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS),
Berlin, Germany, 12–14 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 450–454.

4. Balaji, B.; Xu, J.; Nwokafor, A.; Gupta, R.; Agarwal, Y. Sentinel: Occupancy based HVAC actuation using existing WiFi
infrastructure within commercial buildings. In Proceedings of the 11th ACM Conference on Embedded Networked Sensor
Systems, Roma, Italy, November 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 1–14.

5. Melfi, R.; Rosenblum, B.; Nordman, B.; Christensen, K. Measuring building occupancy using existing network infrastructure. In
Proceedings of the Green Computing Conference and Workshops (IGCC), Orlando, FL, USA, 25–28 July 2011; IEEE: Piscataway,
NJ, USA, 2013; pp. 1–8.

6. Sathyan, T.; Humphrey, D.; Hedley, M. WASP: A system and algorithms for accurate radio localization using low-cost hardware.
In IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews); IEEE: Piscataway, NJ, USA, 2011; Volume 41,
pp. 211–222.

7. Fascista, A.; Coluccia, A.; Ricci, G. A Pseudo Maximum likelihood approach to position estimation in dynamic multipath
environments. Signal Process. 2021, 181, 107907. [CrossRef]

8. Bluetooth SIG. Specification of Bluetooth System. 2010. Available online: http://www.bluetooth.org (accessed on 11 April 2020).
9. Yang, Y.; Li, Z.; Pahlavan, K. Using iBeacon for intelligent in-room presence detection. In Proceedings of the International

Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), San Diego, CA,
USA, 21–25 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 187–191.

10. Barsocchi, P.; Crivello, A.; Girolami, M.; Mavilia, F.; Palumbo, F. Occupancy detection by multi-power Bluetooth low energy
beaconing. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan,
18–21 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6.

11. Wang, Q.; Guo, Y.; Yang, L.; Tian, M. An indoor positioning system based on ibeacon. In Transactions on Edutainment XIII; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 262–272.

12. Conte, G.; De Marchi, M.; Nacci, A.A.; Rana, V.; Sciuto, D. BlueSentinel: A first approach using iBeacon for an energy efficient
occupancy detection system. In Proceedings of the 1st ACM International Conference on Embedded Systems for Energy-Efficient
Buildings (BuildSys), Memphis, TN, USA, 4–6 November 2014; Association for Computing Machinery: New York, NY, USA,
2014; pp. 11–19.

13. Corna, A.; Fontana, L.; Nacci, A.A.; Sciuto, D. Occupancy detection via iBeacon on Android devices for smart building
management. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE), Grenoble, France,
9–13 March 2015; EDA Consortium: San Jose, CA, USA, 2015; pp. 629–632.

14. Pratama, A.R.; Widyawan, W.; Lazovik, A.; Aiello, M. Multi-User Low Intrusive Occupancy Detection. Sensors 2018, 18, 796.
[CrossRef] [PubMed]

15. Mateos, M.; Berjón, R.; Beato, M.E.; Fermoso, A.M. A tool to calculate the level of occupancy in indoor and outdoor spaces using
BLE and open data to be published in real-time. Sensors 2020, 20, 3916. [CrossRef] [PubMed]

16. Wang, W.; Chen, J.; Hong, T.; Zhu, N.O. Occupancy prediction through Markov based feedback recurrent neural network
(M-FRNN) algorithm with WiFi probe technology. Build. Environ. 2018, 138, 160–170. [CrossRef]

17. Zou, H.; Zhou, Y.; Yang, J.; Sapnos, C.J. Device-free occupancy detection and crowd counting in smart buildings with WiFi-enabled
IoT. Energy Build. 2018, 174, 309–322. [CrossRef]

18. Lee, S.; Moon, N. Location recognition system using random forest. J. Ambient. Intell. Humaniz. Comput. 2018, 9, 1191–1196.
[CrossRef]

19. Filippoupolitis, A.; Oliff, W.; Loukas, G. Bluetooth low energy based occupancy detection for emergency management. In
Proceedings of the 2016 15th International Conference on Ubiquitous Computing and Communications and 2016 International
Symposium on Cyberspace and Security (IUCC-CSS), Granada, Spain, 14–16 December 2016; IEEE: Piscataway, NJ, USA, 2017;
pp. 31–38.

http://doi.org/10.1145/128756.128759
http://doi.org/10.1016/j.sigpro.2020.107907
http://www.bluetooth.org
http://doi.org/10.3390/s18030796
http://www.ncbi.nlm.nih.gov/pubmed/29509693
http://doi.org/10.3390/s20143916
http://www.ncbi.nlm.nih.gov/pubmed/32674470
http://doi.org/10.1016/j.buildenv.2018.04.034
http://doi.org/10.1016/j.enbuild.2018.06.040
http://doi.org/10.1007/s12652-018-0679-5


J. Sens. Actuator Netw. 2021, 10, 35 12 of 12

20. Tekler, Z.D.; Low, R.; Gunay, B.; Andersen, R.K.; Blessing, L. A scalable Bluetooth Low Energy approach to identify occupancy
patterns and profiles in office spaces. Build. Environ. 2020, 171, 106681. [CrossRef]

21. Tekler, Z.D.; Low, R.; Blessing, L. Using smart technologies to identify occupancy and plug-in appliance interaction patterns in an
office environment. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 609,
p. 062010.

22. RStudio. Available online: https://www.rstudio.com/ (accessed on 10 January 2021).
23. Caret. Classification and Regression Training Library. Available online: https://cran.r-project.org/web/packages/caret/index.

html (accessed on 10 January 2021).

http://doi.org/10.1016/j.buildenv.2020.106681
https://www.rstudio.com/
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html

	Introduction 
	Materials and Methods 
	Data Gathering 
	Choosing Training and Test Data 
	Obtained Prediction Models 
	Logistic Regression Model 
	Decision Trees 
	Artificial Neural Network 


	Results 
	Discussion and Conclusions 
	References

