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Abstract: This article comparatively shows the evolution of parameters of three types of arrays for
MIMO microstrip antennas, to which the number of ports is gradually incremented until reaching 32.
The three arrays have a 1 × 2 configuration in each port and present different geometry or type of
coupling in the next way: square patch with quarter-wave coupling (Antenna I), square patch with
inset feed (Antenna II) and circular patch with quarter-wave coupling (Antenna III). The arrays were
designed and simulated to operate on the millimetric wave band, specifically in the 60 GHz frequency
to be used in wireless technologies such as IEEE 802.11 ad. A method of rapid prototyping was
formulated to increase the number of elements in the array obtaining dimensions and coordinates of
location in the layout in short periods of time. The simulation was conducted through ADS software,
and the results of gain, directivity, return loss, bandwidth, beamwidth, and efficiency were evaluated.
In terms of array results of 32 ports, Antenna III obtained the lowest return loss with −42.988 dB,
being more than 19 dB lower than the others. The highest gain is also obtained by Antenna III with
24.541 dBi and an efficiency of 66%. Antenna II obtained better efficiency, reaching 71.03%, but with a
gain of more than 2dB below the Antenna III. Antenna I obtained the best bandwidth.

Keywords: dielectric; directivity; gain; microstrip antenna; mmWave; MIMO

1. Introduction

The radio spectrum is a resource with which more applications live nowadays, many
of them with high bandwidth consumption due to the evolution of digital technologies and
the high demand of wireless connections from people and systems. The use of the lowest
range of this spectrum has been widely utilized because of the simplicity of propagation
that allows for advantages of coverage and minimizes the installed infrastructure. With the
advantages of propagation presented in these frequencies, the spectrum has been saturated
in this range, preventing modern technologies from accessing higher bandwidths; however,
in higher frequency bands, there is enough available bandwidth, but with bigger problems
in the propagation of the signal. The availability of higher bandwidths opens the possibility
of operating in frequency ranges from 24 to 100 GHz; these signals are within the band of
millimetric waves (mmWave). For the use of millimetric wave bands, the deployment of
a bigger amount of infrastructure is planned to provide less coverage so that the signal
propagation distances are not too long. Incidentally, the development of technologies such
as massive MIMO and beamforming would be of great help for the optimization of energy
use and the reduction in mobile communication interference using millimetric waves. In
this sense, it is pertinent to evaluate different types of arrays of MIMO antennas with
the purpose of obtaining more efficient designs and optimizing the energy transmitted in
mobile technologies such as Wi-Fi, Bluetooth, IoT, 5G, among others [1].

Considering the importance of the array in MIMO antennas in the implementation
of wireless technologies in millimetric wave bands, designing and evaluating different
configurations are sought for, which are capable of transmitting or receiving a determined
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range of frequencies. The computational development in recent years has allowed for
the implementation of electromagnetic simulation software, which enables the modeling
of phenomena related to the radiation of antennas, in a way that their behavior can be
predicted with high precision before actual implementation and testing. Some of the
antennas that can be modeled with great precision by means of this type of software are
microstrip antennas; these antennas appeared in 1950 [2] and are currently widely used
in different wireless devices, given that their implementation is done on PCB (printed
circuit board). This work shows the design and simulation of arrays of MIMO microstrip
antennas working in the 60 GHz frequency, one of the work frequencies of Wi-Fi IEEE
802.11 ad [3]. Working with microstrip technology provides advantages such as the easy
incorporation in latest-technology devices and the great availability of tools for the design
and simulation process. On the other hand, some unfavorable points for these antennas
should be considered, such as their relatively narrow bandwidth, management of low
frequency in any worked frequency, and low efficiency. One of the reasons to use such
technology in array of MIMO antennas is that it enables an efficient management of power,
and in comparison to other types of antennas, the biggest advantage of the microstrip
technology is its low fabrication cost and the lack of necessity of a powerful feeding source
for its proper functioning [1,4–6].

In the last few years, different studies have geared towards the development of
antennas that work in the millimetric wave frequency band. Initially, developments are
shown with microstrip antennas simulated or made with FR-4 substrate. In [7], the design
of an antenna is proposed for a frequency of 1930.8 MHz. It is proved that the exact
measurements of the utilized substrate must be at hand in order to obtain good results in
practice. When implementing the antenna in a real environment, a return loss of −27 dB
was measured in an operation frequency of 1929.6 MHz, which represents an error of 1 MHz
in relation to the desired frequency. It is concluded that with more exact substrate data,
results in simulation and in a real environment improve until reaching the frequency of
1930.8 MHz. In [8,9], the antenna development to work in the WiMAX technology operating
in the 3.5 and 5.5 GHz band is found. The set goal is to reduce mutual coupling caused
by MIMO technology given that it places multiple antennas in the same patch. Regarding
this, two possible solutions are established, the first one uses resounding elements that
minimize the mutual coupling effect, and the second one starts from having a minimum
spacing of 0.5 λ (Wavelength) between antennas. In [10], the development of 2 × 2 MIMO
antennas is shown working in a frequency of 28 and 38 GHz, highlighting parameters of
the designed antennas such as the result of return loss reaching values of −54 and −51 dB
and a high efficiency of 98%. This design is set for 5 g technologies. In [11], a small antenna
design is elaborated reaching a 10 × 12 mm2 size working a unique frequency of 28 GHz
with the purpose of being used in 5 g communication devices and IoT technology. In [12], a
simulation is presented to a frequency of 60 GHz with an array of 1 × 2 base antenna in
each port, with the aim of reaching high gain. The development of different tests is shown
increasing the number of ports to 16. A gain of 19.89 dBi was reached, a directivity of
21.59 dBi and an efficiency of 67.57%. This antenna is destined to work in 5G and 802.11 ad.
The developments of microstrip antennas involve the measurement of different parameters
to establish its performance. These parameters can be bandwidth, gain, directivity, return
loss, efficiency, among others [13–20]. In the review of the state of the art related to
microstrip antennas that work at high frequencies, comparative studies were not found to
establish the performances of MIMO antenna arrays with different geometries or types of
coupling that work in the same frequency. There is no evidence either of methodologies of
rapid prototyping that allow for designing, simulating, increasing the number of elements,
or rapidly finding operating parameters to validate the performance of the antenna. This
article presents the design, simulation, and performance evaluation of three types of MIMO
antennas array of maximum 32 ports each. Each port is connected to a 1 × 2 array of one of
the three types of antennas: square patch with quarter-wave coupling (Antenna I), square
patch with inset feed (Antenna II), and circular patch with quarter-wave coupling (Antenna
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III). As part of the development, a method of rapid prototyping is established for the design
and simulation of microstrip antenna arrays. This methodology will be a useful tool for the
design, simulation, and performance evaluation of other microstrip antenna arrays.

For the development of this research, the ADS (advanced design system) [21] simula-
tion tool was used; ADS uses the method of moment to model the electromagnetic behavior
of antennas. This numeric method allows for establishing the different parameters of anten-
nas accurately; it also allows for running simulations of microstrip MIMO antennas with
the required number of ports. From the simulation parameters, such as gain, directivity,
efficiency, and return loss, 3d and 2d radiation diagrams can be extracted, among others.

The article is organized in five sections. In Section 1, an introduction about the purpose
of the research is elaborated. In Section 2, the proposed methodology is presented, which is
divided into five phases: Phase A, design parameters; Phase B, design of Antenna I, taking
the work done in [12] as the starting point; Phase C, design of Antenna II; Phase D, design
of Antenna III; lastly, in Phase E, a method of rapid prototyping and simulation of antennas
is proposed; the antennas are drawn from Cartesian coordinates to finally be located in the
ADS software. In Section 3, the discussion and the obtained results are presented. In this
section, the way the geometry of antennas affects the obtained parameters is established,
as well as the impedance coupling in square patch antennas, and which antenna obtained
better results to work in the desired frequency. In Section 4, the conclusions of the present
work are disclosed, and the references are found at the end.

2. Methodology

Figure 1 shows the methodology used in the development of the research. Initially,
characteristics of antennas were established such as design frequency and type of material
used. Subsequently, design calculations were performed for each of the three microstrip
basic antennas: square patch with quarter-wave coupling length (Antenna I), square
patch with inset feed (Antenna II), and circular patch with quarter-wave coupling length
(Antenna III). In this design stage, calculations of the transmission lines are also performed
according to their impedance, and the 1 × 2 array dimensions that connect each port are
established. As simulating arrays of different sizes is intended, a rapid prototyping method
is established to perform calculations and increase the number of ports for each array, so
that the used software tools deliver the dimensions automatically replicating the base array
(1 × 2 array) any number of times desired. In this case, antennas of 1, 2, 4, 6, 8, 12, 16,
and 32 ports were simulated for each type of antenna. In the final phase, the calculated
parameters in the antenna arrays are analyzed.
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Figure 1. Proposed methodology.

2.1. Phase A. Parameters of the Antennas

In this phase of the methodology, the antenna parameters of operation are defined.
One of the fundamental aspects for the success in the implementation of the antenna, is the
knowledge of the substrate parameters, because the calculations and the simulation vary
with small changes in this material. In previous works, it was evident that the most used
materials are Rogers Duroid 5880 and FR4 [22]. In Table 1, the parameters with which the
mathematical calculations and the simulation will be made are shown. The chosen substrate
is FR-4, which was also used in [12,23] for the development of microstrip antennas.
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Table 1. FR-4 substrate parameters.

Parameter Value

fr = operation f requency 60 GHz

Tl = Loss Tangent 0.0004

εr = Substrate dielectric constant 4.4

ε0 = Permittivity Constant 8.8542 · 10−12 C2

Nm2

h or d = Substrate thickness 0.2 mm

V0 or C = Speed o f Light 3 · 108 m
s

2.2. Phase B. Design of Antenna I

In this phase, the square patch antenna with quarter-wave coupling length is designed.
In Figure 2, the geometry of the antenna is shown, as well as the notation utilized for its
dimensions. Following this, the equations with which dimensions were determined are
shown. Equation (1) allows for finding width W.

W =
v0

2− fr

√
2

εr + 1
(1)
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Figure 2. Square patch antenna with quarter-wave coupling length.

Length L is determined using equations from (2) to (5). In (2), εre f f is found, which
corresponds to the effective permittivity of the dielectric. Subsequently, all variables
necessary for the calculation are determined.

W
h

> 1 , εre f f =
εr + 1

2
+

εr − 1
2

[
1 + 12

h
w

]− 1
2

(2)

The value of ∆L is determined solving (3), and the value of Le f f , which corresponds to
patch effective length, using (4) [24].

∆L
h

= 0.412

(
εre f f + 0.3

)(w
h + 0.264

)(
εre f f − 0.258

)(w
h + 0.8

) (3)

Le f f =
c

2 fr
√

εre f f
(4)
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The actual length considers the results obtained in (3) and (4), replacing ∆L and Le f f in (5).

L = Le f f − 2∆L (5)

Once patch data have been found, impedance is calculated in the feeding point (Rin).
Through (6), the wavelength λ0 is determined [22], as well as the conductance on the border
of the patch through (7) [25].

λ0 =
c
fr

(6)

Ge = 0.00836
w
λ0

(7)

Considering the result obtained in Equation (7), impedance is calculated on the border
of patch (Rin) using (8).

Rin =
1

(2Ge)
(8)

Impedance of the transmission line Zc is 50 Ω; therefore, impedance of the quarter-
wave transformer Z1 is calculated, replacing Rin and Zc in Equation (9) [22]:

Z1 =
√

ZcRin (9)

Once the values of the transmission lines impedance have been obtained, their di-
mensions are calculated using Equations (10) to (15); Figure 3 shows the dimensions of a
microstrip transmission line on the selected substrate.
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The transmission line width (Wt) is calculated using Equations (10)–(12), where Z0
corresponds to the impedance of the segment of the transmission line to be calculated [26];
in the case of Figure 2, the calculation must be made independently for Z1 and Zc.

A =
z0

60

√
εr + 1

2
+

εr − 1
εr + 1

(
0.23 +

0.11
εr

)
(10)

B =
377π

(2Z0
√

εr)
(11)

Wt
d

=


8eA

e2A−2 para Wt/d < 2
2
π

[
B− 1− ln(2B− 1) + εr−1

2εr

{
ln(B− 1) + 0.39− 0.61

εr

}]
para Wt/d > 2

(12)

Once the transmission line width has been measured, the effective dielectric con-
stant is calculated (εre f f Lt), as well as the phase constant in free space (k0), through
Equations (13) and (14); these data will be utilized to obtain the length in the transmis-
sion line (Lt).

εre f f Lt =
εr + 1

2
+

εr − 1
2

1√
1 + 12 d

Wt

(13)

k0 =
2π f

c
=

2π

λ
(14)



J. Sens. Actuator Netw. 2022, 11, 59 6 of 15

Replacing values provided by Equations (13) and (14), the length of the transmission
line is obtained in Equation (15).

Lt =
D f c(π/180)
√

εre f f Lt k0
(15)

As per previous calculations, the dimensions obtained for Antenna I are shown in Section 3.
1 × 2 array is shown in Figure 4. It is formed with two of the antennas from Figure 2

(Base antenna). A power combiner is used with impedances of 100, 50 and 100 Ω in seg-
ments 1, 2 and 3 as a feeding point of 1× 2 array. On the ends 1 and 3 of the power combiner,
quarter-wave transformers are implemented with impedance of 70 Ω (Z1low), which are
connected to the feeding transmission lines of 50 Ω from patches (Rinlow). Dimensions of
lines with the mentioned impedances can be calculated with Equations (10) to (15). The
antenna of Figure 4 is connected to one of the ports and is replicated N times to form the
first type of MIMO array (with N = 1, 2, 4, 6, 8, 12, 16, 32).
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This phase consists of the design of the square patch antenna with inset feed. Figure 5
shows the geometry of the antenna. The objective of the inset feed is to achieve proper
impedance coupling by making the transmission line connect to an internal point of the
patch. The size of the resulting 1 × 2 array is smaller since a quarter-wave transformer will
not be used in the antenna source. To find the patch width and length (W and L), Equations
(1) to (5) were used. The estimation of depth y0 involves Equations (16) to (22), and the
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The transmission line (Zc) in Figure 5 has a 50 Ω impedance, and its dimensions are
determined by Equations (10) to (15).

To calculate y0, it is necessary to determine impedance on the border of the patch
Rin first. Impedance Rin is found considering the conductance at the opposite end of the
feeding point (G1) and the mutual conductance between the opposite sides of the antenna
(G12). To begin with, k0 is found by means of (16) [23].

k0 =
2π f

c
=

2π

λ
(16)

An intermediate step to find G1 is the estimation of I1 by means of Equation (17) [22].

I1 =
∫ π

0

 sin
(

k0w
2 cosθ

)
cosθ

2

sin3θdθ (17)

When I1 is obtained, G1 is found by using (18).

G1 =
I1

120π2 (18)

Mutual conductance G12 is calculated with Equation (19), where J0 is the Bessel
function of the first kind of order zero. Impedance Rin is obtained by using (20).

G12 =
1

120π2

∫ π

0

 sin
(

k0w
2 cosθ

)
cosθ

2

J0(k0Lsinθ)sin3θdθ (19)

Rin =
1

2(G1 ± G12)
(20)

Once the impedance on the border of the patch is obtained, the calculation of the depth
of the notch y0 follows. When solving Equation (21), y0 is obtained from (22).

z0 = Rincos2
(π

L
y0

)
(21)

y0 = acos
(√

z0

Rin

)
∗ L

π
(22)

The inset feed width (g) is found with Equation (23) [4].

g =
v0√

2εre f f
∗ 4.65 ∗ 10−12

f (GHz)
(23)

Figure 6 shows the final setting of the 1 × 2 array of patch antenna with inset feed.
The connection to the power combiner was performed similarly to Antenna I.

During the simulation phase of this antenna, the inset feed depth values were opti-
mized by slightly modifying its dimensions to achieve better results for a 60 GHz frequency.
In the Section 3 will be shown the final dimensions of the array.
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2.4. Phase D. Design of Antenna III

This phase contains the calculations to determine the dimensions of the circular
Microstrip Antenna with quarter-wave coupling. The 1 × 2 array is shown in Figure 7,
where the radius (a) is found by means of Equations (24) and (25). By using (24), F is found,
which is a necessary variable to determine the value of a by using (25).

F =
8.791 ∗ 109

fr
√

εr
(24)

a =
F{

1 + 2h
πεr F

[
ln
(

πF
2h

)
+ 1.7726

]} 1
2

(25)
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In Figure 7, the dimensions of transmission lines, quarter-wave transformer, and
power combiner are the same as those for Antenna I.

2.5. Phase E. Rapid Prototyping and Simulation

A rapid prototyping method was developed to perform calculations, establish im-
plementation coordinates, and increase the number of elements in an array. The array
dimensions can be digitized into the ADS software by means of console commands. The
input data of the rapid prototyping process are the characteristics of the antenna design
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and the substrate, while the output is the sketch of the array on the ADS software template.
Different tools are used during this process, and the procedure is shown in Figure 8.
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Figure 8 presents four steps. In Step 1, MATLAB is used to perform the design
calculations with the equations shown in phases B, C, and D. In this platform, a function
is created with the following input parameters: substrate width, substrate loss tangent,
dielectric constant of the substrate, length of transmission lines in terms of wavelength, and
operation frequency. MATLAB provides the width and length of each antenna section; thus,
it is necessary to consider that the 3 antennas have different geometry, and their equations
and estimations vary in each case. In Step 2, Microsoft Excel VBA macros are used since this
program has the input data of the length and width of each antenna section from MATLAB.
It also requests the number of antennas, which will be registered in rows and columns with
spacing between each other. The output is a concatenated coordinate vector that represents
the complete antenna matrix. For the largest array, an 8 x 4 matrix was established for
32 antennas (1 × 2 arrays). This procedure helps to accelerate the process of establishing
coordinates of the MIMO array on ADS. Step 3 allows for separating the coordinates of the
1 × 2 arrays because each array is sketched with the “ap”—used for drawing polygons
from Cartesian coordinates—and “ac”—used for drawing circles—commands on ADS.
The separation of the 1 × 2 arrays of the concatenated coordinate vector is performed
with Python. Finally, in Step 4, the commands provided by Python are registered on
the ADS software, which carries out the simulation that will allow for performing the
result analysis for each antenna. To run the simulation in ADS, different parameters were
configured, which allows one to have a better approach to reality. The software uses the
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method of moments to model the electromagnetic behavior of antennas. Table 2 shows the
used parameters.

Table 2. Simulation characteristics.

Parameter Value

Modeling Method Momentum microwave
Frequency 58 GHz–62 GHz

Number of Frequency points 100
Cells/Wavelength 60

3. Results and Discussion

Considering the base antennas and the 1× 2 arrays presented in Figures 4, 6 and 7, the
equations proposed for each design are used to obtain the measurements of each antenna
for a 60 GHz frequency. The resulting dimensions are shown on Table 3.

Table 3. Estimated data for the development of antennas.

Patch

Parameter Antenna 1 Antenna 2 Antenna 3 Units

Radius (a) N/A N/A 0.653 mm
Length (L) 1.11 1.11 N/A mm
Width (W) 1.52 1.52 N/A mm

Notch width (g) N/A 0.0084 N/A mm
Notch depth (y0 ) N/A 0.15 N/A mm

Quarter wave transformer patch

Parameter Antenna 1 Antenna 2 Antenna 3 units

Transmission line Z1
Length (L) 0.726 N/A 0.935 mm
Width (W) 0.082 N/A 0.082 mm

Transmission line Zc
Length (L) 0.68 0.435 0.68 mm
Width (W) 0.37 0.37 0.37 mm

Lower quarter wave transformer

Parameter Antenna 1 Antenna 2 Antenna 3 units

Rin lower position
Length (L) 0.68 0.68 0.68 mm
Width (W) 0.37 0.37 0.37 mm

Z1 lower position
Length (L) 0.705 0.705 0.705 mm
Width (W) 0.2 0.2 0.2 mm

Zc lower position
Length (L) 0.725 0.725 0.725 mm
Width (W) 0.082 0.082 0.082 mm

Power combiner

Parameter Antenna 1 Antenna 2 Antenna 3 units

1
Length (L) 0.725 0.725 0.725 mm
Width (W) 0.082 0.082 0.082 mm

2
Length (L) 0.68 0.68 0.68 mm
Width (W) 0.37 0.37 0.37 mm

3
Length (L) 0.725 0.725 0.725 mm
Width (W) 0.082 0.082 0.082 mm
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Figure 9a–c show the arrays of 32 ports for each type of designed antenna. These
arrays were the largest ones that were simulated in each case.
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Figure 9. These arrays were the largest ones that were simulated in each case: (a) 1 × 2 array of
32 square patch elements with coupling length λ/4; (b) 1 × 2 array of 32 square patch elements with
inset feed; (c) 1 × 2 array of 32 circular patch elements with coupling length λ/4.

The horizontal and vertical spacing between the array elements is λ (a wavelength
unit), and, as previously stated, arrays of 1, 2, 4, 6, 8, 12, 16, and 32 elements were simulated
to observe the evolution of the different parameters with the increase in elements.

Figure 10 depicts the behavior of return loss vs. frequency for each 16-element array,
which present minimum values in the 60 GHz frequency. It can be noted that Antenna I
(square patch with quarter-wave coupling) has a −23.8 dB value, Antenna II (square patch
with inset feed) has −21.72 dB, and Antenna III (circular patch with quarter-wave coupling
length) has −39.64 dB.
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For 32-element antennas in Figure 9a–c, the return loss simulation is also presented in
Figure 11. While values for Antennas I and II slightly change, a significant improvement is
obtained for Antenna III in relation to 16-element arrays.
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Figures 10 and 11 are examples of the variation of an antenna parameter when the
number of array elements is increased. However, the parameters of gain, directivity,
beamwidth, radiation efficiency, bandwidth, and return loss have also been obtained for
each simulated array. The VSWR (voltage standing wave ratio) value is found by means of
the reflection coefficient (Γ) with Equation (26).

VSWR =
1 + Γ
1− Γ

(26)

In Table 4, it is observed that some parameters such as bandwidth and return loss
vary less than others, such as gain, directivity, beamwidth, and efficiency when the number
of ports is increased. Figure 12 shows the evolution of efficiency when the number of
ports is increased.
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Table 4. Estimated data for the development of antennas.

Square Patch Antenna with Coupling Length λ/4 (Antenna 1)

Parameter Port 1 Port 2 Port 4 Port 6 Port 8 Port 12 Port 16 Port 32
Frequency (GHz) 60 60 60 60 60 60 60 60
Return Loss (dB) −24.542 −24.531 −24.174 −24.223 −24.211 −23.359 −23.795 −23.406

Bandwidth (GHz) 1.5 1.5 1.52 1.52 1.5 1.52 1.5 1.46
Gain (dBi) 8.42 11.654 14.325 16.102 17.326 18.959 20.02 23.335

Directivity (dBi) 10.861 13.802 16.726 18.509 19.798 21.734 23.096 26.305
Beamwidth (◦) 22 10 10 6 4 4 4 4

Antenna
efficiency (%) 57.0033 60.9818 57.53075 57.4513 56.59786 52.7837 49.2493 50.4661

Square patch antenna with inset feed model (Antenna 2)

Parameter Port 1 Port 2 Port 4 Port 6 Port 8 Port 12 Port 16 Port 32
Frequency (GHz) 60 60 60 60 60 60 60 60
Return Loss (dB) −20.425 −20.475 −21.552 −21.575 −21.616 −21.312 −21.717 −21.301

Bandwidth (GHz) 1.46 1.18 1.18 1.16 1.16 1.16 1.15 1.15
Gain (dBi) 6.746 9.978 12.061 13.936 15.213 17.1865 19.028 22.176

Directivity (dBi) 9.25 12.391 14.966 16.764 18.058 19.5471 20.6732 23.645
Beamwidth (◦) 20 10 10 6 4 4 4 4

Antenna
efficiency (%) 56.18236 57.372 51.22713 52.1435 51.93977 58.0684 68.4668 71.3017

Circular patch antenna with coupling length λ/4 (Antenna 3)

Parameter Port 1 Port 2 Port 4 Port 6 Port 8 Port 12 Port 16 Port 32
Frequency (GHz) 60 60 60 60 60 60 60 60
Return Loss (dB) −35.722 −34.93 −36.424 −37.063 −36.833 −38.022 −39.643 −42.988

Bandwidth (GHz) 1.27 1.27 1.27 1.29 1.29 1.31 1.31 1.32
Gain (dBi) 8.104 11.012 14.233 16.049 17.291 19.57 20.984 24.541

Directivity (dBi) 10.861 13.876 16.846 18.708 20.029 21.963 23.221 26.317
Beamwidth (◦) 22 10 10 6 6 6 6 6

Antenna
efficiency (%) 53.00294 51.713 54.78984 54.2126 53.23534 57.6368 59.7448 66.4355

According to Figure 12, Antenna I tends to reduce its efficiency when ports are in-
creased, unlike Antennas II and III. Figure 12 displays that the inset feed coupling antenna
(Antenna II) is the one with the highest efficiency when ports are increased, achieving a
5% difference above the circular antenna (Antenna III) when there are 32 ports. Besides,
Antenna II is the smallest one since it does not have a quarter-wave transformer. From a
broader perspective, Antennas I and III have similar directivity, higher than Antenna II
directivity in all cases. In the case of 32-port antennas, Antenna I has a 26.305 dBi directivity,
Antenna II has 23.645 dBi, and Antenna III has 26.317 dBi. This fact establishes that the
high efficiency of Antenna II compensates for its low directivity, which is close to half the
directivity of Antennas I and III (−3 dB, approximately). Therefore, Antenna II has the
lowest gain in all cases, including the 32-port one (22.176 dBi). In this case, Antenna I has
a gain of 23.33 dBi, whereas Antenna III has 24.41 dBi. In conclusion, the best antenna in
terms of efficiency and gain performance is Antenna III.

Regarding return loss, Antenna III has also produced the best results, which enable
it to couple to the transmitter more properly. Table 4 also presents that Antenna I has the
highest bandwidth in all cases, followed by Antenna III. In the case of 32-port antennas, the
bandwidth difference between Antennas I and III is 140 MHz, while the difference between
Antennas I and II is 310 MHz. Half power beamwidth is lower for Antennas I and II, but
it diminished in all antennas when ports were increased. After six ports, this reduction is
very low.
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4. Conclusions

Three types of MIMO microstrip antenna arrays were simulated to operate at a 60 GHz
frequency between 1 and 30 ports with FR-4 substrate. After the simulation, it can be
noted that increasing the number of ports in the MIMO array also increases some param-
eters, such as directivity and gain, while others, such as bandwidth and return loss, are
relatively constant.

From the three antennas that were used in the experiment, the circular patch antenna
with quarter-wave coupling (Antenna III) shows the best performance in terms of return
loss and gain. In the 32-port case, Antenna III gain was approximately 2 dB above Antenna
II, and 1 dB above Antenna I. The difference in terms of return loss between Antenna
III and Antennas I and II was over 10 dB for 32-port antennas, which indicates a better
radio coupling. Regarding efficiency, Antenna III places second, 5% below the Antenna II
performance in the 32-port array.

The square patch antenna with quarter-wave coupling (Antenna I) has the highest
bandwidth. It shows a 140 MHz bandwidth higher than Antenna III, and 310 MHz higher
than Antenna II, which can be useful depending on its application.

This article also contains a rapid prototyping method that helps to reduce times,
especially when each array requires specific coordinates on the ADS software to respect
design dimensioning. When considering the number of built and simulated arrays, rapid
prototyping is highly helpful to develop these tests.
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