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Abstract: Camera sensor networks (CSN) have been widely used in different applications such as
large building monitoring, social security, and target tracking. With advances in visual and actuator
sensor technology in the last few years, deploying mobile cameras in CSN has become a possible
and efficient solution for many CSN applications. However, mobile camera sensor networks still face
several issues, such as limited sensing range, the optimal deployment of camera sensors, and the
energy consumption of the camera sensors. Therefore, mobile cameras should cooperate in order to
improve the overall performance in terms of enhancing the tracking quality, reducing the moving
distance, and reducing the energy consumed. In this paper, we propose a movement prediction
algorithm to trace the moving object based on a cooperative relay tracking mechanism. In the
proposed approach, the future path of the target is predicted using a pattern recognition algorithm
by applying data mining to the past movement records of the target. The efficiency of the proposed
algorithms is validated and compared with another related algorithm. Simulation results have shown
that the proposed algorithm guarantees the continuous tracking of the object, and its performance
outperforms the other algorithms in terms of reducing the total moving distance of cameras and
reducing energy consumption levels. For example, in terms of the total moving distance of the
cameras, the proposed approach reduces the distance by 4.6% to 15.2% compared with the other
protocols that do not use prediction.

Keywords: camera sensor networks; data mining; cooperative relay; prediction recognition

1. Introduction

In the last few years, the emergence of Internet of Things (IoT) applications has
paved the way for enhancing the services provided to users in indoor smart buildings like
airports, hospitals, and supermarkets [1]. In such environments that emphasize human
needs, a person’s location is critical information. It has the potential to improve a wide
range of services and applications, including energy management, smart HVAC controls,
tracking, navigation, healthcare, and emergency response [2-6]. For example, even a one-
minute reduction in emergency response time due to improved localization accuracy can
save nearly 10,000 lives each year in the United States alone [7]. Because most people
spend the majority of their time indoors, there is a strong emphasis on improving indoor
localization, as the normal GPS cannot be utilized owing to signal interference and reflection,
which obstruct the line of sight to reference satellites. As a result, researchers are actively
looking for accurate and widely available alternatives to GPS for indoor localization.
Different technologies have been proposed for indoor localization, including magnetic
fields, WiFi, Bluetooth, and hybrid sensor fusion [8-10]. However, compared with the
previous techniques, camera sensor networks (CSN), which are composed of distributed
camera sensor nodes, require no collaboration from the object being tracked. Moreover,
CSN-based object tracking techniques have more advantages as they are robust to failures
and they utilize the communication infrastructure in the environment more efficiently [11].
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This paper concentrates on the security and safety of individuals and facilities as a
service provided by institutions. To attain this service, video surveillance is used as a
monitoring tool [12]. Over time, video surveillance records the motions of any moving
objects in a certain area. One of the most important functions of video surveillance is
to detect and assist in the investigation of illegal activities. When utilized in advance of
questionable actions, it may also serve as a deterrent [13]. Because of that, camera sensor
networks have attracted wide research attention over the past few years. Consequently,
camera sensor networks have been utilized in a wide range of applications, including
area monitoring and surveillance. Camera sensor networks are employed as a tool in
object identification and tracking tasks. Object detection determines when an object will
appear inside the camera’s visual range. On the other hand, multiple camera sensors
are employed to constantly monitor the object as it passes across the region to ensure
continuous monitoring.

For all sensors, a camera’s position in a network of cameras is critical to its performance.
A basic configuration for each site might include the number of cameras needed to cover the
whole area while maintaining relationships with other nearby cameras, the viewing range
of each camera, and which regions are covered by a particular camera. The camera sensor
network’s most important feature is its ability to monitor suspicious objects by moving the
cameras around the network’s perimeter. However, the overlap between the neighboring
cameras resulted in a waste of energy and duplicated recorded images. As a result, we
require more information that may be utilized to identify the camera that should be moved
to a specific location or to switch between cameras as the object moves to reduce the total
energy consumed. However, utilizing the traditional tracking and monitoring method [14]
still has security issues, such as employing fixed positions for cameras. Increased camera
deployment is required to guarantee coverage of the whole region being monitored. In
contrast, if cameras are placed in a fixed position, the target can use the blind spot that is not
covered by the cameras, allowing him to deliberately avoid the cameras while committing
crimes [15]. In most applications, the applied analysis of moving objects reveals that the
behavior of object movement is not totally random and is generally dependent on particular
occurrences. The observation of animals like birds moving generally forms an orderly
cluster during periods of migration to seek food. Data mining approaches for wireless
sensor networks (WSNs) provide numerous benefits in terms of detection and energy
savings. As part of our efforts to improve tracking accuracy, we will observe and identify
the relevant rules from the object’s prior movement pattern and compare them with the
movement pattern of the past observation to forecast its upcoming position. Consequently,
the demand for energy-efficient systems for tracking objects has risen. To choose the lowest
number of sensors to be in active mode, we present a tracking method that employs both
relay tracking between cameras and the prediction pattern of object movement.

Existing research on this topic focuses on avoiding blind areas [16], enhancing detec-
tion probability [17], or creating routes for mobile cameras [18]. However, in this paper,
cooperative relay tracking between mobile camera sensors is developed by including the
prediction of object movement in the tracking process. The primary idea of the relay track-
ing algorithm is to schedule the mobile camera sensors to follow the target and select the
cameras with the shortest moving distance that will follow the target to ensure continuous
monitoring of the target. The target movement is based on the Markov Chain Monte
Carlo model probability [19]. Using data mining techniques, we aim to develop an energy-
efficient relay tracking algorithm to identify the movement of a target. To conserve energy,
only a limited number of cameras will be utilized to monitor a single target. Figure 1 shows
a simple scenario of the target and the camera’s movement in a mall. As illustrated in the
figure, multiple camera sensors may be used to track any moving object in the mall area.
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Figure 1. An example of cooperative relay tracking and prediction of targets is in the mall.

As we can see, in this scenario, the target is moving from one shop to another. His
future path is illustrated by the red line in the figure. Whenever the target is moving,
the camera closest to it is also moving to keep up with the target’s activities. When
the target passes across an intersection point where more than one camera is available,
the total moving distance of cameras can be reduced by using a camera relay. Based
on the target’s prior movements, the prediction pattern is used to predict the target’s
upcoming movement. When the target moves, only the chosen camera will be active, and
its movement is determined by the cooperative relay algorithm, which is utilized to reduce
the total movement distance of cameras.

As the demand for information on building power consumption grows, it’s important
to explore cost-effective ways to collect, store, and visualize this data. Current building
management solutions are costly and difficult to implement in small and medium-sized
buildings that lack intelligence. Several articles proposed various techniques, but none of
them examined the prediction of target movement in the relay monitoring of the camera’s
movement. In this paper, we examine the notion of activating and scheduling cameras
in CSN by predicting the target’s future route based on the determined frequency of
movement patterns. Our main contribution in this paper is threefold, as follows:

1.  Weimplemented and enhanced the mobile cooperative relay algorithm [20] to demon-
strate that it reduces the total moving distance of cameras and provides efficient
monitoring time.

2. We consider a single target problem and apply path prediction based on data mining.

3. Cooperative relay tracking is used in cooperation with object movement prediction to
obtain the shortest possible movement distance between camera sensors while also
saving energy.

The rest of this paper is organized as follows: Section 2 reviews the related work.
Section 3 discusses the proposed approach. The simulation results are illustrated in
Section 4, and the paper is concluded in Section 5.

2. Related Work

Surveillance systems play major roles in infrastructure monitoring for the security
of things, places, and people. In order to replace outdated surveillance cameras, new
technologies with surveillance capabilities are being created. The main challenge in a
surveillance system is constantly monitoring a moving object while also trying to conserve
energy by placing each camera sensor in the most efficient location possible, which is
not always possible. In this context, Gao et al. [21] proposed a full-view barrier-covered
model that works with a randomly deployed WMSN that drives camera sensors to create
a full-view covered barrier. In order to obtain full coverage, they analyzed the needed
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number of camera sensors for their system and experimented hwith different parameters.
The authors utilized two centralized methods (S-Dijkstra, S-Thorup). The authors prove
that their technique can guarantee full view coverage while using fewer camera sensors.

The authors of [22] attempted to address the object tracking problem by employing
real-time tracking that handled position and feature vectors that would be extracted for the
area-of-interest object in two frames. They utilized the Euclidean distance to evaluate the
extracted features between the first frame feature vectors and the second frame, trying to
identify the minimum distance between the two frames. However, the feature comparison
has difficulty encoding the changes that came from the long-term view because of the
changes in the view angle and the light settings.

The authors of [23] introduced DROP, a novel framework for monitoring multiple
objects. In this framework, objects are tracked by calculating the affinity between the
previous tracking trajectory and the detection at the present video frame by creating several
measurements such as appearance and motion and then merging them based on confidence.
The authors employed a lightweight convolutional neural network to extract characteristics
from observed individuals. This network can tackle the re-tracking problem by raising and
learning the affinity of the appearance features of the same object in multiple frames.

In [24], the authors utilize an adaptive model of every object that is compatible with
any adaptively updated feature. They observe the long-term perspective change online.
The authors also designed re-identification schemes to handle closer targets who share a
similar appearance. All these algorithms are based on a fixed tracking model. The problem
with selecting a fixed place for the camera sensor is that it is easy for criminal suspects to
avoid cameras by walking through blind spots where the camera cannot capture them. To
resolve the issue of the cameras being fixed in one place by making the routing protocol
adaptable to the change in network topology in advance, Ref. [25] presented a hole recovery
method that improves the routing protocol.

With the growth of deep learning, multi-object tracking systems that employ deep
neural networks partition distinct functional modules into many networks and train them
individually on certain tasks. As a result of all of the modules being used directly, tracking
will be poor, and there will be incompatibility concerns. As a result, the authors of [26]
developed a novel approach that combines object regression across frames for a single
model and exploits features to improve the coherence between diverse functional modules
of multi-object tracking. The results show that the proposed approach achieves state-of-
the-art performance. The majority of the current research focuses on the deployment of
the camera sensor while attempting to accomplish effective monitoring of the movement
path [27]. The authors of [28] suggested a control algorithm that employs local information
exchange for monitoring trains, whereas the authors of [29] attempted to achieve high
detection probability by predicting the target’s future position and then directing the
camera sensors. Many approaches have been presented to offer precise camera calibration,
such as [30,31], which uses a collection of reference points with known locations. Moreover,
the authors in [32] presented a sensor network approach that relies on estimating the
outer parameters of cameras, whereas [33] proposed a distributed technique that relies on
calibrating networked cameras. Examples include a solution described by [34] to solve
object tracking and camera calibration difficulties, such that when tracking objects, a
camera’s cooperation is required. It’s possible to use a calibrated camera system for object
tracking by using a system like [35].

However, none of the papers discussed above have considered the prediction of target
movement in the relay tracking of the cameras movements. In this paper, we investigate
the idea of activating and scheduling the cameras in CSN by predicting the future route of
the target using the calculated frequency of the movement patterns.

3. Proposed Approach

As a result of the constant operation of camera sensor nodes in many existing monitor
systems, a significant amount of energy is wasted. The proposed approach addresses this



J. Sens. Actuator Netw. 2023, 12, 35

50f19

problem and presents a tracking algorithm by scheduling camera sensor nodes in active-
sleep states efficiently, therefore reducing the energy consumption levels. The proposed
approach employs a cooperative relay tracking algorithm to construct a movement schedule
of the camera sensors to determine which camera should move and stay active and which
camera should take over the monitoring operation by predicting the future route of the
moving object. The proposed approach is divided into three stages:

1.  Prediction of an object’s future movement to activate only the camera sensor nodes
required to follow the object;

2. A wake-up technique that determines which nodes and when they should be activated
based on some heuristics that take both energy and performance into account;

3. Arecovery mechanism that is activated only when the camera sensors fail to predict
the object’s future path.

3.1. Tracking Problem Definition

Assume CN mobile camera sensors are deployed randomly in an environment, such as
a building or an area composed of streets that intersect with each other. Suppose, as shown
in Figure 2a, that a target navigates around some areas in the environment. This situation
can be modeled as a graph (G =V, E), where V ={V;, V,, ..., V;} represents the set of
vertices in G and E ={Ey, Ej, ..., E;;/ represents the set of edges, as shown in Figure 2b.
Each vertex is an intersection point between two or more paths in the given environment.
Every camera has a visual range denoted as v. A tracking camera records the movement
distance Td of the target as it travels randomly from vertex to vertex. It is assumed that
each camera knows the graph topology and records the target location when the target is
within its visual range. As the target moves from one vertex to another, several camera
sensors will hold on to the path. Finding the required number of mobile camera sensors in
order to reduce the cost of tracking the target is a critical problem in CSNs. Since moving
and activating unnecessary camera sensors in order to be ready to track the target will
result in consuming some of the energy of these cameras. For example, when the target in
Figure 2b moves from V; to V3, without any kind of cooperative relay tracking mechanism,
all three cameras (m,, m3, and my) will be activated and ready to start tracking the target
when it reaches vertex V,. However, in the case of predicting the target’s future direction,
only some cameras will be needed to monitor the target, and the other cameras should be
set in a sleep state.

Vs V3 V7
Ve v3a v7 ® L
| iz iﬁ?: Mobile Camera
Area 1 Area 2 i
[Vermz| : Target
I I >
V4 V2 L Vi
V1 V2 V4 <N
n x
| s Mz
Area3 Area 4
| s
V8 V5 V) \fs6 Vs Vo
(a) Environment uses CSNs (b) A graph model of the environment

Figure 2. An example of CSN environment and its graph model.

Example: As shown in Figure 2, assume the target is moving from V; toward V3.
Assume the following distances: X, = 120 m (the distance between V; and V5), X»3 =100 m
(the distance between V, and V3), X4 = 120 m (the distance between V, and V), X5 =100 m
(the distance between V), and V5), dy; = | V1 | = 10 m (the distance between V, and m;),
dyy = 1 Vo | =20 m (the distance between V, and my), and dy; = | V31 = 15 m (the



J. Sens. Actuator Netw. 2023, 12, 35

6 of 19

distance between V;, and mj3), and dyy = | V5,4 | =20 m (the distance between V), and my).
Assume the visual range of camera sensors is 30 m. There are three methods for scheduling
the camera sensors to track the target. The first one is to schedule m, to vertex V, to replace
mjy. In this case, the total distance of moving the camera sensors will be 150 m (120 — 60
+ 20 + 100 — 30). The second choice is to schedule m3 to vertex V5. In this case, the total
distance of moving the camera sensors will be 115 m (120 — 60 + 15 + 100 — 20 — 30). The
third choice is to schedule m4 to vertex V5. In this case, the total distance of moving the
camera sensor will be 120 m (120 — 60 + 20 + 100 — 20 — 30). Thus, the second method has
the shortest distance among the three choices.

The problem can be modeled as a linear programming model. Assume a target moves
from a starting vertex vs. = V; to a final vertex V; = V}, through a sequence of vertices vs.
=V, V2, Vs, ..., Vin = V. Let Td be the total distance between vs. and V. Assume X;; is
the distance between V; and V. Let CN be the number of camera sensors that should be
activated to track the target along all the paths from vs. to Vy. Assume that di is the total
distance that a set of activated camera sensors will move when the target reaches the vertex
Vi. Then, the objective of the problem is:

Minimize
m
Y d; 1)
i=2
Subject to
m
T,<)Y Xy, 1<j<m, i#]j )
i=1
m < CN 3)

The objective function in Equation (1) is to minimize the total distance that the activated
camera sensors will move. Constraint (2) indicates that the total distance that the target will
move should be less than or equal to the total distance between vs. and V. Constraint (3)
indicates that the number of activated camera sensors should be at least m, assuming there
is at least one camera between any two vertices. However, the cooperative relay tracking
with multiple mobile camera sensors problem is NP-hard, as was proved in [20].

3.2. Relay Tracking Algorithm

According to Figure 2, the target is moving from V; to V3 and will select the next
camera for monitoring. In order to reschedule the camera sensor, we must consider the
following scenarios: The first one is when a single camera can only be used if the target is
moving and no other cameras are available to be used to follow the target’s progress on the
future route line. For example, in Figure 2b, suppose that there is only one camera, which
is m;. Using Equation (4), the total distance can be computed as follows:

Ti=X1+Xp—v 4)

where X7 and X, represent the distance between V; and V; and V; and V3, respectively,
and v represents the camera’s visual range. As for the second scenario, if there is another
camera in the current path line, we will not move it to avoid incurring additional distance
costs. Another camera on the future path is the third scenario. Suppose there are two
cameras, 17, which is the camera that currently follows the target, and m,, which is the
camera on the future route. In this case, the reduced distance is calculated as follows:

— <
A:{ v—2lvomy|, v <y 5)
y—2lvomy|, v >y
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where A represents the reduced distance, v is the camera’s visual range, and y is the

distance between V, and the moving target, and this will be satisfied if this meets the
following equation:

{ 2Jugmy| < v <y ©)

2lupmy| <y <w

The last scenario is that if we have two cameras, 7, which is the camera that currently
follows the target, and a camera in V, V7, like my, as shown in Figure 2b, which is not the
future selected path, in this case, the reduced distance that will apply will be calculated
using Equation (7):

_ <
A 20 —2|vomy| , v <y @
y+v—2lvomy|,v >y
And this will be applied only if Equation (8) is satisfied:
lvpmy| <2, y>0v ®)
lvpgmy| < v, y<v

To reschedule the camera sensors, we will calculate the expected value for each camera,
including the current processing, and then select the camera that has the maximum value
to replace the current one. Let 77 Vi Vj represent the movable probability of each edge. In
light of [24]’s analysis, any camera can be chosen. Therefore, we will go with the one that
will offer us the maximum reduced distance, which means that it will give us the shortest
moving distance. The following equation will be applied to every camera near the target:

Exp =niyy X A+ (1 —nwj) % Ay )

The pseudo-code of the movement pattern generation and cooperative relay algorithm
for a single target is shown in Algorithm 1. One of the two scenarios is if the target moves
and the next vertex does not contain a camera sensor. Either a new camera is required to
cover the region, or the existing camera, which is currently moving, continues to monitor
until it reaches the next vertex. The selection of the next moving camera is based on the
maximum expected value, so that the camera with the highest value will move to start
monitoring. At the end of each step, we will update the states of the vertex and edge.
However, the current monitoring camera will keep recording if there is no satisfactory
camera. The second case is that future paths will have camera sensors, so they will take
over the current camera to continue the tracking.

Algorithm 1: movement pattern generation and cooperative relay algorithm for single target.

Input: target’s position, state of vertex (v-State), state of edge (E-State), log all movements.

Output: schedule of camera sensors; movement patterns.

1 Divide network to regions.

2 While target is moving do

3 Calculate all satisfied EXP using Equation (9)

4. The camera sensor with the maximum EXP is chosen

5. Update V-state, E-state /* based on location of cameras */
6 Log all sequential path p

7 For sensor id s in p

8 For level

9. S =S + 1 Increase count of pattern for s to next sensor in the corresponding level
10. End For

11. End For
12. Update V-state, E-state
13. Repeat steps 3 through 12

14. End while
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3.3. Pattern Recognition Algorithm

The primary notion behind our proposed approach is that the sensor will enter the
sleep state whenever it is not within the range of object movement. Meanwhile, a sensor
node that has an object to monitor within its visual range will try to make it enter sleep
mode as fast as possible by considering the cooperative relay tracking and prediction model.
Based on this, the current monitoring camera will predict the object’s likely next location
and inform the next sensor node, and if a relay happens, the current node will go into sleep
mode. The prediction is made based on some heuristics.

A pattern recognition algorithm attempts to obtain efficient real-time tracking. Using
data mining techniques, the objective is to detect any moving target and predict its future
path based on previously extracted information [35]. As shown in Figure 3, the proposed
algorithm for pattern recognition has several steps. It begins with a classification method
to cluster the sensors into regions, forming a hierarchical model of sensor nodes to log
each movement of the object. Then, a data mining algorithm will analyze the logs to
construct the movement patterns. We utilize the target’s movement patterns to predict his
next location. By dividing the testing area into regions, we can minimize the number of
cameras that are active, allowing us to turn on just those cameras that are in the area where
the target is located. therefore, saving energy for the remaining cameras. Node-to-node
patterns and node-to-region patterns are two types of movement patterns in the network
that characterize the target’s movements. An object transfer from node-to-node occurs in
the same region, whereas an object transfer from node-to-region occurs in a different region.
Because of this, the movement patterns of each sensor node are distinct. As the last step,
we calculate the frequency of the derived pattern to determine which one is most likely to
be accurate.

Mining Movement Node to Node,

Pattern. Node to Region

Patterns

Figure 3. Steps of the pattern recognition algorithm.

We add a sink node that is responsible for collecting data from all sensor nodes. Each
node keeps a record table that includes the object movement information as it is delivered
to the sink. Table 1 shows an example of a record table for a sensor node. According
to the table, the sensor node has a frequency count of 7, indicating that it has detected
seven motions. Assume the table is for node 10 in a CSN. The likelihood of an object
moving from node 10 to node 8 is 43%, 29% for node 2, and 14% for node 3 and node 4. We
observe the target path pattern in the camera’s test area. Table 2 illustrates an example of
the target movement log’s structure and also acts as the transaction database for learning
association rules to forecast an object’s next position. Rather than being completely random,
the movement of the object often follows certain defined patterns. Some details, including
the location of the object, the time of arrival, and the overall route, are useful to conceal
some relevant association rules that may be unearthed by employing an appropriate data
mining technique.
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Table 1. Example of a record table of a sensor node (Assume the node ID is 10).
Node ID Time of Arrival Next Node Final Destination
Objectl 14:15 Node 8 Node 13
Object2 14:20 Node 2 Node 20
Object3 14:45 Node 4 Node 10
Object4 15:10 Node 8 Node 13
Object5 16:30 Node 8 Node 26
Object6 16:50 Node 2 Node 10
Object7 17:17 Node 3 Node 13

Table 2. Example of the structure of the target movement log.

Obj-Path-id Movement Path

1 21,16,17,12,13,8,9, 10

2 21,22,17,16,11,12,17,18

3 21,22,23,16,17,18,19,14,9,4,3,4,5,10,9

4 1,2,7,12,13,18,17,22, 23, 24,19, 14, 15, 20, 25, 24, 19, 14, 15

5 21,16,21,22,17,12,7,6,7,12,17,16,17, 18, 17,16, 17, 18, 23, 24, 25, 24, 19, 18, 23, 22, 23, 18

6 1,6,11,12,21,22,23,18

7 1,2,3,8,7,12,13,14,9, 10, 15,11, 12,17, 18, 23, 15, 20

8 1,6,7,12,11, 16, 21,22,12,17,18, 13, 18, 19, 14, 15, 20, 25

9 21,22,17,22,23, 24,19, 20, 25, 24, 25, 20, 19, 14, 13, 8,9, 10, 5

10 21,16,21,22,17,12,7,6,7,12,17,16,17,18,17,16,17,12,7,6,1,2,7, 8,9, 15, 20, 19, 18

11 21,22,17,22,23, 24, 19, 20, 25, 24, 25, 20, 19, 14,13, 8,9, 10, 5

12 21,16,17,12,7,6,7,12,17,16,17,18,19, 13, 8, 9, 14, 18, 23, 24, 25, 24,19, 18, 13, 8,9, 10, 5

13 1,6,7,8,13,12,17,18,23,18,13,5, 9, 14, 19, 20, 25, 24,19, 14,9, 4, 5

Instead of being completely random, the movement of the moving object often follows
certain defined patterns. Moving object position, arrival time, and overall route are likely
to conceal some useful association rules that can be extracted using a suitable data mining
algorithm. The priori algorithm is a data mining approach for identifying association rules
from transaction databases. The algorithm traverses the transaction database numerous
times, finding the set of items whose count exceeds the minimum support count in each
run. For example, consider the transaction database R from Table 3.
Table 3. Item transaction database.
TID T1 T2 T3 T4 T5 T6 T7 T8 T9

Item set 11,12, 15 12,14

12,13 11,12, 14 11,13 12,13 11,13 I1,12,13,15 11,12, 13

Each item in the first iteration of this method is a member of the set of candidate first
item sets, S1. Assume the minimum number of supported counts is two. The set of frequent
items P1 is the set of items in S1 with more than two occurrences in R, as shown in Figure 4.
The method then executes a join of P1 on P1 to generate the candidate of second items S2,
and the set of frequent item sets P2 will be formed by collecting all the items in S2 with a
support count larger than 2. This technique is continued until there are no more common
k-item sets detected.
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Scan R for count {5 6| count with Minimun [|7 5

ofeachcandldfte = | supportcount = -

"~ i3 6 13 6
14 2 14 2
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Figure 4. An illustration of how pattern recognition algorithm works.

3.4. Tracking the Location of the Target

We can predict the next future path of the target by using extracted movement patterns
from the previous algorithm, then activate the fewest number of nodes. The algorithm is
shown in Algorithm 2. Recursively, we extend the range of the region for camera sensor
activation to keep track of the future path of a moving target. Our predictive algorithm is
based on the highest frequency related to movement patterns identified through pattern
generation when selecting the next moving camera sensor. If the prediction fails, however,
we will expand the area to a higher level, which will contain more nodes in the camera
sensors, and then we will activate all the sensor nodes in this area. Then we start predicting
again until the moving target is found. The worst case is that we will not discover the object
until we reach the last level. All sensor nodes in the network are then activated, and we
will rely on an algorithm in this scenario.

As shown in Table 4, we begin by counting the frequencies of different object motions
at each level, i.e., node-to-node and node-to-region. Level 1’s column illustrates node-to-
node movement patterns. Level 2, Level 3, and Level 4 columns show the frequency of
node-to-region movement patterns. It should be noted that Level 4 represents the worst-
case scenario, in which all sensor nodes are activated. The sensor node ID in the first
column of Table 4 represents the last sensor node that identified the missing object. Level 1
holds all potential next locations of objects. For example, if an object’s last detected position
is sensor node 1, activating node 6 rather than nodes 2 and 3 raises the probability of
recapturing the object since the number of visited times for node 6, node 2, and node 3 are
9,6, and 1, respectively. If the prediction fails, the prediction process is initiated to predict
the object that was missed. By checking the pattern table, we first expand the region up to
Level 1, and the number of times moving from sensor node 1 to Region 3 is determined to
be 10, and the number of times passing to Region 2 is determined to be 6. As a result, we
wake up all sensor nodes in region 3, i.e., sensor nodes 10, 13, and 4, and detect whether the
object is within the scope of region 3. The level will be raised until the object is captured.
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Algorithm 2: movement predicting the future location of a moving object

Input: patterns: movement patterns.

Output: predictable path.

1: For level

2: Procedure predict (R, minSupport)

3: Si: Candidate itemset of size k

4: Py: frequent itemset of size k

5: P; = {frequent items}

6: For (i=1;P ! =0O;i++) do

7 Sks+1 = candidates generated from Py

8: Fore transaction t in R do

9: Sk+1 = Ske1+1

10: Pi1 = Min(Sy.q) , candidates (Py,q) € minSupport
11: End

12: If the pattern i is correctly predicted then
13: Success and activate sensors in p only
14: Calculate the energy consumption

15: Else

16: Extend to higher region and predict

17: If predict fails then Call Cooperative relay algorithm
18: Calculate the energy consumption

19: End if

20: End For

21: End For

Table 4. The movement frequency table.

Source Node ID Level 1 Level 2 Level 3 Level 4
60) 3% (10)
1 2(6) . 2%(3) =
3 (7) * * £
2 7 6) 3*(4) 2*(3)
4 (5) * * ¥
3 8 (4) 3*(6) 2*(6)
4 5(3) " % =
36 1@ 1% (1)
10 (6) . . -
5 1) 4*(3) 3*(3)
o 3+ ) 1% ()
6 11 (4) . . =
L@ 2%(2) 2%(2)
8(5)
; 12 (4) 3% (4) 1% (4) w
2(2) 2*(2) 2*(2)
6 (1)
13 (8)
8 95 2*(5) 2*(5) *
3 (4) 3%(2) 1*(2)
7 (1)
10 (5) 4% (6) 4* (4)
9 8(4) " + =
14.6) 1%(2) 2%(2)
15 (10) 4%(3) 4% ()
10 9 (5) . . **
50) 1@ 2*(2)

*: Moving to different region. **: Prediction is failed and all sensor cameras will be activated.



J. Sens. Actuator Netw. 2023, 12, 35

12 0of 19

4. Performance Evaluation
4.1. Simulation Setup

The proposed approach was evaluated using the MATLAB simulation tool. For the

purpose of comparison with Ref. [20], the same testing environment, which is a square
topology, was used. The size of the environment is 450 m x 450 m. A set of camera
sensors were deployed randomly in the edges of the testing area. A picture of the simulated
environment is shown in Figure 5. The figure could represent a building composed of five
floors where each floor has five intersections or an area composed of [5 x 5] streets with an
edge length of [80, 120]. Each camera sensor has an initial energy of 200 J. The parameters
that were used in the simulation are shown in Table 5.

45
(Lr m— I I / I I I —
wr |j B
“" D
30 m A | B
L { /
0 D =
250 i
¥ n m n ol o D
v \‘( =} y =} v
wh .
fEing \D 0 N
0 0 0 0 0
100 D
5 [ 0 N
© | Mn_A | | ) | | E | |
0 5 10 150 m % k) 30 0 450
—O— Edge Point

D Camera Sensors

Figure 5. An example of a simulation environment.

Table 5. Simulation parameters.

Parameters Values
Area Size (m?) 450 x 450
Camera Number 20, 30, 40
Round 50
Moving Distance of Target (m) 1000-4000
Visual sight of a Camera (m) 10-40
Initial Energy 200 ]
Switch Energy 0.026]
Consumed Energy 0.6]
Sensing Energy 0.028 ]

The performance analysis of the proposed approach is performed using the

following metrics:

1.

2.
3.
4.

The total moving distance of the cameras;

The total energy consumed by the cameras;

The prediction error;

The effective energy cost percentage (EECP), which is calculated as:
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EECP = Edetected nodes (10)

Eﬂctive nodes

where E jorocted nodes 15 the energy consumed by the nodes that actually detect the target, and
E ctive nodes 1 the energy consumed by all the nodes that were set in the active state.

4.2. Simulation Results

In this section, we discuss the simulation results that were produced by conducting
several experiments. We compare the proposed enhanced cooperative relay tracking with
prediction (CRP) algorithm with the camera relay (CR) algorithm proposed in [20] and the
Wait algorithm, which is an approach of scheduling the cameras such that they will wait
until the relay occurs.

4.2.1. The Total Moving Distance of the Cameras

Figure 6 shows the total moving distance of cameras vs. virtual range. When the
number of cameras is 20, the visual range increases from 10 m to 40 m, and the target’s
total path is 3000 m. As shown in the figure, the overall distance decreases as the visual
range increases. This can be justified as when the visual range is high, the distance will
be reduced since increasing the value of the visual range will increase the probability of
finding the shortest path for each camera. This will result in the overall moving distance
of all cameras decreasing. Moreover, the proposed CRP protocol represents a significant
improvement compared with the Wait and CR protocols. For example, when the virtual
range is 40 m, the moving distance of cameras is 1780 m in the case of the CRP protocol,
1782 m in the case of the CR protocol, and 2100 m in the case of the Wait protocol. This
means that the CRP protocol reduces the total moving distance by 5% compared with the
CR protocol and by 15.2% compared with the Wait protocol.

2500

2400

N
[]
o
o

2200

2100

Totatl Moving Distance of cameras

2000

1900

1800

1700 1 1 L L 1
10 15 20 25 30 35 40

Virtual Range

Figure 6. Total moving distance of cameras vs. virtual range.
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Figure 7 shows the relationship between the moving distance of the target when
it increases from 1000 m to 4000 m and the total moving distance of 20 cameras when
the visual range is set to 25 m. It shows that the total moving distance of the cameras
increases as the distance of the target increases. This is an intuitive conclusion: as the target
moves into the area, more cameras will be activated in order to keep it under surveillance.
Therefore, the total moving distance of cameras will increase as well. However, as shown
in Figure 7, our proposed CRP tracking approach is more efficient than the CR and Wait
algorithms due to its ability to schedule the cameras in advance. For example, when the
moving distance of the target was 4000 m, the CRP protocol recorded 2720 m, the CR
protocol recorded 2850 m, and the Wait protocol recorded 2999 m. This means that the CRP
protocol reduces the total moving distance by 4.6% compared with the CR protocol and by
9.2% compared with the Wait protocol.

3000

2800

2600

2400

2200

2000

1800

Total Moving Distance of Cameras

1600

1400

1200

1000 ‘ ‘ ‘ ‘
1000 1500 2000 2500 3000 3500  400C

Moving Distance of Target

Figure 7. Total moving distance of cameras vs. moving distance of target.

Figure 8 presents the distance differentiation when the number of cameras is increased
from 10 to 40 and the visual range is set to 25 m. For each number of used cameras, the
target moves randomly for a distance of 3000 m. It can be noticed that as the number
of cameras increases, the process of relaying information between them becomes more
frequent and more efficient, which results in a smaller total moving distance for all the
activated cameras. This can be justified by saying that increasing the number of cameras
will increase the options for selecting the next camera for activation. Therefore, the relying
probability will be high due to the large number of available deployed cameras. However,
in the real-life scenario, the cost problem should be taken into consideration because
whenever the number of total cameras increases, the cost will increase too, which will affect
energy efficiency as well. Therefore, there should be a compromise between the number of
used cameras and their cost and consumed energy such that the deployment of the cameras
in the environment guarantees the coverage of all areas while taking the cost and energy
issues into consideration.
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Figure 8. Total moving distance vs. number of mobile cameras.

4.2.2. The Total Energy Consumed by the Cameras

Figure 9 compares our CRP prediction approach in terms of energy consumption with
the CR and Wait algorithms. In this experiment, the number of cameras is 20, the distance
moved by the target is 3000 m, and the camera’s visual range is 25 m. As shown in the
figure, the CRP approach gives better energy savings due to the active-sleep schedule
and the advanced path prediction. As shown in the figure, at round 4000, the energy
consumed by all camera sensors is 50.23 joules, while it is 59.37 joules in the CR approach
and 63.59 joules in the case of the Wait protocol. This means the CRP approach achieves
a 13.36% reduction in the consumed energy compared with the CR approach and a 21%
reduction compared with the Wait approach.

70 T T
=—fp— Avg Energy CRP
P Avg Energy CR
Avg Energy Wait

60 - >

Average Energy Consumption in |

0 L L 1 1 1 -
1000 1500 2000 2500 3000 3500 4000

Round

Figure 9. Energy consumption of nodes vs. round.
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While the camera sensors in the CR and Wait algorithms will be active all the time,
the CRP algorithm will activate only the corresponding cameras that are responsible for
detecting the object. Even though it will sometimes have to turn on all the sensors within a
specific region, the overall energy consumption will be less than with typical relay tracking.

4.2.3. The Prediction Error

Figure 10 shows the prediction error percentage versus round for the proposed ap-
proach when the camera number is [20, 30, and 40]. The distance traveled by the target
is 4000 m, and the camera’s visual range is 30 m. The prediction error percentage is cal-
culated as the number of failed predictions over the total number of steps with respect
to the number of cameras that were activated in each round. The figure shows the error
percentage in each round, and these errors are independent of each other, which means that
there is no relationship between the rounds and the values related to the movement log
and the correctness of the prediction. However, it can be observed that the error percentage
in every round is significantly smaller compared to the overall prediction moves, and its
values are limited between 2.7% and 9.5%.

1 T T T T

Error Prediction Percentage

—e— Prediction Error at CN=20 ||
o— Prediction Error at CN=30
p—— Prediction Error at CN=40

%OOO 1500 2000 2500 3000 3500 4000
Round

Figure 10. Prediction error vs. round.

4.2.4. The Effective Energy Cost Percentage (EECP)

Figure 11 illustrates the values of the effective energy cost percentage. A high EECP
value implies that the protocol uses the energy more efficiently for the actual detection of
the target, which is the desired goal of a wireless sensor network. A low EECP value, on
the other hand, would indicate that a smaller proportion of the energy consumed by the
nodes is being used for the actual detection of the target, which would be less efficient and
may not achieve the desired goal of the network.

Compared to the CR and Wait algorithm, the figure shows that our CRP approach has
a higher average effective energy cost due to its ability to schedule the camera sensors to be
active and sleep efficiently, while in the CR and Wait algorithm every sensor will be active
all the time.
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Figure 11. EECP vs. round.

5. Conclusions

Target tracking using camera sensor networks has received wide attention in recent
years. In this paper, we propose an approach called CRP that utilizes the mobility of camera
sensors in order to enhance the cooperative operation between camera sensors by applying
a pattern recognition algorithm based on the past records of the targets. The CRP approach
predicts the future route of the moving object and then constructs a movement schedule for
the camera sensors to determine which camera should move and stay active and which
camera should take over the monitoring operation. Compared with the Wait approach and
the CR approach that uses cooperation relaying without prediction, simulation results have
shown that the proposed approach is more efficient in terms of reducing the total distance
of the mobile cameras that are activated to track the object and in terms of reducing the
energy consumed by camera sensors. For example, the reduced total distance of the camera
sensors reaches 5% compared with the CR protocol and up to 15.2% compared with the
Wait protocol. On the other hand, in terms of the consumed energy, the CRP approach
achieves a 13.36% reduction in the consumed energy compared with the CR approach
and a 21% reduction compared with the Wait approach. Furthermore, simulation results
showed that the prediction error percentage is significantly small compared to the overall
prediction moves.

The proposed approach is designed and limited for single target movement. As future
work, we intend to study and propose algorithms for multiple target movements using a
pattern recognition model to find the shortest distance between camera movements and
achieve the energy-saving objective.
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