
Citation: Chiti, F.; Gandini, G.

Distributed Ledger as a Service: A

Web 3.0-Oriented Architecture. J.

Sens. Actuator Netw. 2023, 12, 57.

https://doi.org/10.3390/jsan12040057

Academic Editors: Mohamed

Benbouzid, Leandros Maglaras and

Mohamed Amine Ferrag

Received: 31 May 2023

Revised: 13 July 2023

Accepted: 18 July 2023

Published: 20 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of 

Actuator Networks
Sensor and

Article

Distributed Ledger as a Service: A Web 3.0-Oriented Architecture
Francesco Chiti * and Giorgio Gandini

Department of Information Engineering, University of Florence, 50139 Florence, Italy; giorgio.gandini@unifi.it
* Correspondence: francesco.chiti@unifi.it

Abstract: This paper proposes a general and interoperable Web of Things (WoT)-oriented architecture
to support a distributed storage application. In particular, the focus is on a distributed ledger service
dedicated to machine-to-machine (M2M) transactions occurring in an intelligent ecosystem. For this
purpose, the basic functional modules have been characterized and integrated into a comprehensive
framework relying on an IOTA approach. Furthermore, a general protocol that is built upon an
underlying publish-and-subscribe framework is proposed to support all the application phases. The
proposed approach has been validated by a simulation campaign targeting the achievable latency
and throughput and, further, by a qualitative analysis of high-level metrics, both pointing out several
advantages in terms of interoperability, scalability, and mobility support, together with addressing
some constraints affecting service availability and security.

Keywords: Web of Things; publish/subscribe architecture; MQTT; fog computing; distributed ledger
as a service; IOTA

1. Introduction

The term Internet of Things (IoT) refers to a network of autonomous interconnected
devices, which can be classified into two categories: sensors that emit periodic or asyn-
chronous data, and actuators that take action based on the output of sensors. The favorable
reception of this paradigm is highlighted by the fact that the number of IoT devices has
exceeded the world population since around 2010 [1]. This is largely due to the wide range
of value-added services enabled by IoT technology, such as home automation, e-health,
smart cities, industrial control, and vehicle automation, to name a few.

IoT networks typically consist of a large number of small, battery-powered devices,
which often have limited resources in terms of memory, processing power, bandwidth, and
energy. This can lead to two main issues, especially in Industry 4.0 environments, where
the IoT as a Service (IoTaaS) paradigm is a key feature:

• The need for lightweight communication protocols designed for machine-to-machine
(M2M) data traffic patterns. In the early years of IoT, many manufacturers developed
their own Physical and Data-link Layer protocols, resulting in devices that were not
interoperable with those produced by other manufacturers.

• The data generated by IoT devices are usually stored and processed by additional de-
vices. The most common approach is to process data in a fog computing environment
and to store them in a cloud-based database, a service typically provided by private
companies. However, this creates a potential trust issue since these companies could
potentially tamper with the registered data.

The development of heterogeneous and often incompatible technologies presented a
significant obstacle to the provisioning of quality-oriented and ubiquitous IoT-based ser-
vices. As a result, there has been a growing expectation for a common and widely adopted
standard that could accommodate different existing technologies [2]. To address this issue,
the World Wide Web Consortium (W3C) published the first architectural framework for the
Web of Things (WoT) in 2017, with the goal of making all IoT platforms and application

J. Sens. Actuator Netw. 2023, 12, 57. https://doi.org/10.3390/jsan12040057 https://www.mdpi.com/journal/jsan

https://doi.org/10.3390/jsan12040057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://orcid.org/0000-0002-0267-4733
https://doi.org/10.3390/jsan12040057
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/article/10.3390/jsan12040057?type=check_update&version=1


J. Sens. Actuator Netw. 2023, 12, 57 2 of 24

domains interoperable [3]. The information exchange occurring as a WoT domain is charac-
terized by specific features, mainly dictated by device limitations in terms of energy supply,
processing capacity, bandwidth, and intermittent connectivity. Moreover, communication
patterns are opportunistic and event-triggered updates, integrating multiple data flows [4].
Accordingly, the WoT paradigm’s main features are (i) the abstraction of devices into stan-
dard objects, (ii) the use of a common format of information representation, and (iii) the
adoption of a communication protocol operating on top of the Transport Layer.

To address the last issue, the HyperText Transfer Protocol (HTTP) [5] was first eval-
uated. It represents a client–server protocol that is widely used to access Web pages and
transfer data and information over the Internet based on a request/response model. The
Constrained Application Protocol (CoAP) was further proposed to adapt HTTP format
to constrained devices and to enable more advanced interaction patterns with respect
to HTTP, e.g., support for multicast [6,7]. However, CoAP also operates according to a
request/response model, which represents a limitation in IoT domains, where connectivity
is often discontinuous and it is not straightforward to clearly assign client or server roles
to devices.

The Advanced Message Queuing Protocol (AMQP) is a lightweight solution con-
ceived for machine-to-machine (M2M) communications and specifically designed for re-
liability, security, provisioning, and interoperability purposes [8]. AMQP supports both
request/response and publish/subscribe architectures [9]. According to this approach, in-
formation Producers or Consumers first create an exchange, whose name is broadcasted and
allows them to discover each other. Subsequently, a Consumer creates a queue dedicated to
that exchange, and the related messages successively received are matched to the queue
via a process called binding.

On the other hand, the Streaming Text Orientated Messaging Protocol (STOMP) has
been designed for asynchronous message passing between clients via mediating servers
(usually called Brokers) [10]. STOMP’s simplicity allows the on-demand creation of a client
without the need for a specific Application Programming Interface (API). It can interoperate
over many languages and platforms via a text-based wire format, with frames modeled on
those of HTTP.

Finally, another more interesting candidate is represented by the Message Queue
Telemetry Transport (MQTT) protocol designed for monitoring applications [11]. In contrast
to previous protocols, it relies on the publish-and-subscribe paradigm, in which publishers
(e.g., sensors) transmit data messages to a Broker, which in turn delivers such messages to
interested entities, called subscribers [12]. This approach is extremely flexible but places
complexity on the Broker. Furthermore, MQTT defines a lightweight header format and
requires a small code footprint. In addition, a variant of this protocol, called MQTT
for Sensor Networks (MQTT-SN), has been specifically designed to address typical IoT
constraints by means of its optimized architecture, interfaces, and components [13].

In designing our proposal, we adopted the MQTT protocol because the inherent
publish/subscribe model allows devices to remain in a low-power state until they are ready
to send or receive relevant messages. In contrast, the request/response model requires
devices to be continuously active in order to handle incoming requests. In addition, our
system is supposed to operate across geographically separate networks, so its security
features are of paramount importance. For this purpose, MQTT supports End-to-End
(E2E) encryption and client authentication, making it a better choice than CoAP, which,
despite being designed for IoT networks, is still a less mature technology in terms of
security. In addition, we decided to not rely on STOMP since it was conceived for a wired
medium rather than a wireless one, and it does not provide an effective E2E security
mechanism by default. Finally, when compared with AMQP [14], MQTT is able to provide
several benefits for extremely low power devices, since it achieves a more efficient use of
communication links and requires fewer resources than AMQP, especially when data are
sent in an asynchronous burst, and the loss rate is around 5–10%.



J. Sens. Actuator Netw. 2023, 12, 57 3 of 24

On the other hand, to tackle the aforementioned trust requirements, a potential solution
for storage is to use Distributed Ledger Technology (DLT) [15–17], which leverages a peer-
to-peer (P2P) network to create an immutable ledger of messages through cryptographic
techniques. This ledger can be used to record economic, asset, or data transactions.

DLT approaches differ in the way that nodes register data and the consensus mech-
anism used to achieve a shared immutable view. In addition, the policies to access data
(private vs. public) and network functions (permissioned vs. permissionless) also distin-
guish them. The public/permissionless solution is the most suitable for our system, as we
want to minimize the need for a central authority controlling the network.

The most well-known kind of DLT is represented by the blockchain, which gained
popularity with the publication of the Bitcoin whitepaper in 2008 by an author under the
pseudonym Satoshi Nakamoto [18]. Currently, there are three recognized generations
of blockchain, each expanding the original use cases and improving their functionalities.
However, they all share some common elements:

• As shown in Figure 1, data are recorded in a chain of blocks, where each block contains
the hash of the previous one. A block typically consists of a header with the necessary
metadata and a series of messages to be registered.

• The consensus mechanism requires the payment of a fee before publishing a message.
There are many different schemes, but usually, specialized nodes, called miners,
generate blocks and append them to the chain. They select valid messages received
through a gossiping protocol and collect a percentage of the fee as a reward for
successful publication.

Figure 1. Example of a generic blockchain chunk.

Although recent publications proposed the use of public/permissionless blockchains
to support IoT applications [19,20] and provided an overview of the evaluation of the
achievable performance [21], their typical data structure, as well as their consensus mecha-
nism, which is completely delegated to miners, makes them unsuitable for the purposes
of this paper. The remarkable growth in the number of users [22] has resulted in miners
accumulating transactions more quickly than they can process and publish into blocks.
This can result in messages being left unselected since they are not received, leading users
to resend their transactions after a certain time interval, thereby increasing the congestion
(and blocking) probability. Moreover, IoT applications typically involve frequent transfers
of small amounts of cryptocurrency or data, known as micro-transactions. A system that
requires the payment of fees for each micro-transaction, even though they are small, would
be economically impractical.

For these reasons, we have adopted a different approach in designing our solution.
Without going into detail, an alternative could be represented by Hashgraph, but it is a
patented option that can only be used by Hedera technology [23]. Instead, we chose to use
IOTA [24], an open-source solution based on a Directed Acyclic Graph (DAG) that meets
all of our requirements. More details on IOTA are further provided in Section 2.

The main contributions of this paper consist of the following aspects:

• The design of an original architectural framework capable of addressing the chal-
lenges associated with the DLTaaS paradigm for WoT domains. In detail, it involves
the characterization of each module and the related communication interfaces. The



J. Sens. Actuator Netw. 2023, 12, 57 4 of 24

framework also includes a data classification mechanism that is coupled with granular
access policies, which makes it easier to retrieve data for applications while ensuring
overall privacy.

• Technological mapping over widely available technologies, such as IOTA, MQTT, and
MQTT-SN, by specifying the primitives and data format.

• The design of an integrated communication protocol.
• A performance evaluation conducted for different scenarios, pointing out the gains

achievable in terms of overall latency and throughput.

After having briefly described the state of the art regarding solutions to interoperability
and trust issues, this paper will cover the following key topics:

• Section 2: A high-level description of the selected software technologies for communi-
cation (MQTT and MQTT-SN) and storage (IOTA and Channels).

• Section 3: The definition of a modular and secure architecture that enables the system
to be adapted to various application requirements, including mobility. This includes
the design of a communication protocol for delivering data and signaling events.

• Section 4: A low-level numerical simulation of the most relevant metrics and a general
performance analysis of the proposed framework in order point out the possible
achievable advantages and address future developments.

2. Overview of Adopted Technologies

A viable approach to developing the proposed framework could have been based on
the mere integration of IOTA technology and the Channels protocol, as they are specifically
designed to support IoT networks. However, it was necessary to include the MQTT protocol
for communication purposes. Both MQTT and Channels, as described in Sections 2.1.1
and 2.2.4, respectively, follow the publish/subscribe paradigm, but in different ways.
MQTT employs optimization for message dissemination within the IoT ecosystem, while
Channels involves the classification of encrypted data published on the IOTA distributed
ledger, which can only be decrypted by specific users. Additionally, the complexity and
resource-intensive nature of the IOTA software, along with the functionalities of Channels,
make them unsuitable for deployment on devices with limited resources, which is often the
case with IoT devices. In contrast, MQTT is implemented as lightweight software, making
it well suited for installation on such devices, especially its MQTT-SN variant.

In this section, we provide a high-level description of the two selected technologies,
focusing on their operating principles. The MQTT part also includes a description of the
MQTT-SN variant, while the IOTA subsection focuses on the so-called Channels tool.

2.1. MQTT

MQTT is an Application Layer protocol developed by IBM in 1999. Since 2013, it has
been standardized by the Organization for the Advancement of Structured Information
Standards (OASIS) [11]. MQTT’s latest version, 5.0, was released in 2019, and it provides an
M2M communication model with three possible levels of Quality of Service (QoS) to achieve
reliability through an acknowledgment and retransmission mechanism. This, combined
with the benefits of the publish/subscribe model, previously introduced in Section 1, and
the specific capabilities provided by the MQTT-SN protocol that are described below, makes
MQTT the candidate communication protocol for the proposed framework.

2.1.1. Publish/Subscribe Model

The publish/subscribe model is based on the idea that certain nodes publish informa-
tion, which is further received only by nodes interested in it. In MQTT, data are labeled with
a Universal Resource Identifier (URI) string called the topic, which follows a tree structure
(e.g., root/parent1/leaf1). Each character in the strings used is encoded in 8-bit Unicode
Transformation Format (UTF-8). To create a tree-like structure, the “/” (U+002F) character
is utilized. During the publish and subscribe phases, which will be briefly described in



J. Sens. Actuator Netw. 2023, 12, 57 5 of 24

Section 2.1.2, wildcards can be used to refer to multiple topics. The two special wildcard
characters that can be used individually or simultaneously are as follows:

• Single-level wildcard “+” (U+002B): It matches a single level and can be used multiple
times within a single usage. For example, the string root/+/parent1/+ represents any
topic starting with root, followed by any single-level string, then the level parent1,
and ends with any single-level string.

• Multi-level wildcard “#” (U+0023): It matches any number of levels, including the
parent and any subsequent child levels. For instance, the string root/parent1/#
represents the topic root/parent1 and all of its child topics.

A special node called the Broker, which can be a high-performance device or a hier-
archical subnetwork, plays a crucial role in the network. Its address is known in advance
to clients, and it is used to establish network connections using port 8883 for Transport
Layer Security (TLS) or port 1883 for non-TLS. The Broker receives messages from clients
and forwards them accordingly. Clients can assume the following roles with respect to a
given topic:

• Publisher: generates messages, labels them with the topic, and sends them to the Broker.
• Subscriber: subscribes to the topic by communicating it to the Broker, from which it

receives messages that belong to it.

The Broker builds a table, where each topic corresponds to a list of its publisher
and subscribers, which can be dynamically updated due to (un)subscriptions. However,
if not adequately protected, the Broker represents a single point of failure due to its
communication centrality.

2.1.2. Pseudo-Primitives

The protocol operates using messages known as Control Packets, which have a stan-
dardized structure consisting of (i) a Fixed Header, (ii) an optional Variable Header, and
(iii) an optional Payload. The Fixed Header, which is 2 bytes long, contains three fields:

• Type (4 bits): This field specifies the type of Control Packet being used.
• Flags (4 bits): The Flags field is a set of options that vary depending on the type of

Control Packet.
• Remaining Length (8 bits): This field is an unsigned integer that indicates the length

of the Control Packet beyond the Fixed Header, including the Variable Header and
Payload, if present.

The Type field in the Fixed Header reserves the value 0, and the remaining 24 − 1 = 15
values are used to identify different types of Control Packets, which can be categorized into
four functional groups:

• Session: After establishing a network connection between a client and a Broker, the
client sends a CONNECT (1) packet to the Broker to initiate an MQTT session. The
client can indicate its willingness to use an authentication method, and in such cases,
an exchange of AUTH (15) packets occurs between the client and the Broker. Once
this phase is completed, the Broker sends a CONNACK (2) packet to the client, and
the connection is established. To close a session, either the client or the Broker can
send a DISCONNECT (14) packet.

• Publication: These functions involve sending data from the client to the Broker and
subsequently disseminating it to subscribers. Depending on the Flags field in the
Fixed Header, a publication can have three levels of Quality of Service (QoS). Level
0, or “At most once delivery”, involves simply sending a PUBLISH (3) packet to the
recipient. With level 1, or “At least once delivery”, the sender retransmits the PUBLISH
packet until it receives a PUBACK (4) packet within a specified time limit. Level 2, or
“Exactly once delivery”, limits the number of retransmissions by using the PUBREC
(5), PUBREL (6), and PUBCOMP (7) packets between the sender and recipient.

• Subscription: To subscribe to one or more topics, a client sends a SUBSCRIBE (8)
packet to the Broker. The subscription process is considered complete upon receiving a



J. Sens. Actuator Netw. 2023, 12, 57 6 of 24

SUBACK (9) packet. Likewise, to unsubscribe, there is an exchange of UNSUBSCRIBE
(10) and UNSUBACK (11) packets.

• Activity check: The Broker can send a PINGREQ (12) packet to check the status of a
client in case of inactivity. The client is expected to respond with a PINGRESP (13)
packet. These packets are also used in the MQTT-SN variant to activate client devices
in a low-power state.

For the sake of generality, this article is focused on describing the high-level behavior
of the protocol using only the three pseudo-primitives mentioned in Table 1. An example
illustrating these pseudo-primitives is provided in Figure 2.

Table 1. The three main operational pseudo-primitives in MQTT.

publish(string topicURI, int QoS )

This primitive is used by clients who wish to publish information. It is directed to the Broker and
specifies the topic to which the information pertains, as well as the desired QoS level.

notify(string topicURI, int QoS )

This primitive is exclusively utilized by the Broker and is sent to subscribers of a particular topic
to forward them a publish associated with it. It specifies the topic of the publish and the QoS level
selected by the subscriber during subscription.

subscribe(string topicURI, int QoS =NULL)

This primitive is used by clients who wish to subscribe to a topic to receive notifies. It is directed
to the Broker, and if QoS is not specified, the notifies are forwarded to the client with the same
QoS level as the associated publish.

Figure 2. On the left, the subscriptions to topics T1 and T2. On the right, the publishes (in red) and
their associated notifies (in blue).

2.1.3. MQTT-SN

In order for MQTT to work correctly, adhering to the three different QoS levels, it
is necessary to rely on devices with IP-level connectivity, which is not feasible for all IoT
devices. For this reason, in 2007, IBM introduced a new version of MQTT, known as MQTT-
SN, which is analogous to and compatible with the original protocol. Its latest version, 1.2,
dates back to 2011, and it is not standardized by OASIS. As shown in Figure 3, two novel
network elements are introduced:

• MQTT-SN Gateway: This is crucial to the protocol’s operation and can either be integrated
into the Broker or be a standalone device. It serves as an interface between clients and
the Broker, translating messages received from one protocol version to another.

• MQTT-SN Forwarder: This is useful whenever clients are not on the same Data-link
Layer network as the Gateway. The packets in transit are not modified but only encap-
sulated in an IP packet if received by the client and decapsulated if the opposite occurs.



J. Sens. Actuator Netw. 2023, 12, 57 7 of 24

Figure 3. All possible MQTT-SN client configurations.

Clients can communicate by encapsulating messages directly into Data-link Layer
frames (e.g., Bluetooth, ZigBee). More compact headers are enabled by various techniques,
including translating the strings that define the topics into smaller, fixed-size IDs. When
combined with (i) the client’s capability to alternate between standby and active states
and (ii) the exchanging of appropriate control messages with the MQTT-SN Gateway, this
allows them to meet specific energy efficiency requirements.

2.2. IOTA

IOTA is an open-source project of the IOTA Foundation, founded in 2015, that defines
a public/permissionless DLT differently from the previous approaches. The Foundation
provides a wide variety of official platforms [24] for accessing documentation and enabling
user–member interaction. There are three versions of IOTA, each one following this
standardization process:

1. Guidelines for the protocol definition are published in a whitepaper.
2. Research specifications and software are defined almost independently on Devnet.
3. The protocol and its complete implementation are released for use on the Mainnet.

Currently, version 1.0 (Original) is considered outdated, version 1.5 (Chrysalis) is used
on the Mainnet, and version 2.0 (Coordicide) is still in the design phase. Moreover, in order
to access IOTA, a list of hard-coded entry nodes managed by the Foundation is provided.
IOTA is also available for use in private/permissioned networks, where the entry node is
managed by the administrator.

2.2.1. Tangle

The primary characteristic that distinguishes IOTA from blockchain technologies is its
immutable data structure for recording messages. Instead of a chain of blocks, IOTA uses a
DAG known as the Tangle, where vertices represent individual published messages and
edges represent the multiple references they may have to each other. As shown in Figure 4,
a message can fall into one of the following four categories:

• Genesis (in blue): a message published when the Tangle is created to distribute the
system’s cryptocurrency for the first time.

• Referenced message (in green): a message that has already been published and referenced
by others, with its hash included in their headers.

• Tip (in red): messages that have been published but not yet referenced by others.
• New (in black): a message that has yet to be published and must reference at least two

randomly chosen tips.



J. Sens. Actuator Netw. 2023, 12, 57 8 of 24

Figure 4. A simplified Tangle representation.

In a blockchain, there is a clear separation between the issuance and publication of a
message: a node must wait for a miner to choose, validate, and pass its message through
the mining algorithm. In IOTA, this separation does not exist, and all components of
the consensus mechanism occur after publication. Therefore, each node can theoretically
publish messages on the Tangle independently and at any time, thus avoiding the typical
bottleneck of blockchains. The Tangle results in a more scalable data structure, and its
performance improves as the number of available tips, and thus active users, increases.

2.2.2. Fee-Less Consensus and Coordinator

To achieve the benefits of scalability, that is, to maintain a large number of constantly
available tips in the system, as previously mentioned, nodes are requested to frequently
publish a large number of messages. The use of micro-transactions allows them to easily
meet this goal, and for this reason, the IOTA Foundation has decided to adopt fee-less
consensus algorithms.

In order to provide security to a highly traffic-loaded system without the filtering
provided by miners, an effective, lightweight, and high-speed distributed consensus mech-
anism is required. However, since developing such an algorithm is extremely challenging,
the Foundation has, in the meanwhile, adopted a centralized approach while waiting for a
complete paradigm transition.

The 1.x versions of the protocol include the Coordinator, a special node controlled by
the IOTA Foundation that handles various security aspects, including the consensus. The
Coordinator enforces a unique view of the network state through the periodic publication
of milestones, which are messages confirmed by default and which, in turn, confirm all
messages that they directly or indirectly reference. However, this solution does not meet
the requirements of the proposed system and will be abandoned in favor of decentralized
security and consensus mechanisms in version 2.0, as described in the next subsection.

2.2.3. IOTA 2.0

To ensure a truly P2P, secure, and decentralized DLT, the IOTA Foundation has intro-
duced a protocol stack for version 2.0 on top of the TCP/IP stack, as illustrated in Figure 5.
The node functionalities are organized into three Layers and are supported by a cross-layer
mechanism. This mechanism, known as Sybil Protection, aims to prevent malicious actors
from gaining control of the system by creating multiple false identities. It is achieved by
utilizing a limited resource called Mana, which is distributed to nodes through transactions
generated by the Value Transfer module. Mana is allocated over time in an exponential
manner based on the amount of currency transferred.



J. Sens. Actuator Netw. 2023, 12, 57 9 of 24

Figure 5. IOTA 2.0 protocol stack.

According to a bottom-up approach, the Layers are as follows:

• Network: This Layer is responsible for handling protocols related to P2P mecha-
nisms, including peer discovery, neighbor selection, and message exchange using a
gossip protocol.

• Communication: In this Layer, protocols are implemented to control the emission rate
of messages, to prevent congestion, and to support Tangle-related mechanisms that
ensure a shared, consistent, and immutable view of the registered data.

• Application: This encompasses mandatory applications for currency transfer and
consensus. Additionally, nodes can host dApps that are installed by their operators.
One example of such a dApp is Streams, which will be discussed in more detail in
Section 2.2.4.

Without delving into specifics, Mana is used in three modules of the overall system,
along with other mechanisms based on randomness: (i) the neighbor selection module
employs it to prevent the eclipsing of a node by controlling the majority of its neighbors,
(ii) the congestion control module uses it to mitigate Distributed Denial of Service (DDoS)
attacks caused by message flooding, and, lastly, (iii) the consensus mechanism leverages it
to safeguard against potential manipulations.

The IOTA Foundation outlines two possibilities for consensus making, both based on
a distributed voting mechanism. The approach described in the research specifications [25]
requires random nodes to exchange opinions until they reach a consensus, while the method
used in the software prototype on Devnet [26] involves the publishing of messages that
select tips belonging to a particular branch of the Tangle to express support in case of
a conflict.

2.2.4. Channels

Streams is a framework developed by the IOTA Foundation that offers cryptographic
tools for creating secure communication protocols based on the required Transport Layer
technologies. The alpha version was released in 2020 [27], and since then, there have been
no significant updates. Thanks to the tools offered by Streams, the Foundation was able to
create a protocol called Channels. This protocol utilizes a publish/subscribe model and
puts information on the Tangle. As of now, Channels is compatible with IOTA 1.5 [28], but
it has not yet been released on the Mainnet. The protocol organizes messages into tree-like
structures called channels, and clients can assume different roles:

• Author: responsible for creating the channel, defining its structure, and managing read
and/or write access for each branch.

• Subscriber: any user who has access to at least one branch of a channel created by
someone else; if they have write access, subscribers can also act as publishers for
a branch.



J. Sens. Actuator Netw. 2023, 12, 57 10 of 24

When creating a branch, the author requests the authorized publishers to create a key
pair and share the public key. Publishers can then use their private key to encrypt and sign
their packets, and only those from authorized sources are accepted by the protocol.

When a client subscribes to a branch, the author provides it with a list of public keys to
decrypt the packets. However, if a subscriber is removed from the branch, due to voluntary
unsubscription or a ban, it can create a security risk. In this case, the author must create a
new branch intended for the remaining authorized subscribers only while informing them
of the changes.

Every branch consists of at least one chain of consecutive packets, with distinct
publishers and subscribers, creating a finer level of detail when determining access. To
establish the order of packets issued by each publisher, a sequencing branch is utilized, with
one chain assigned to each publisher, including the author. Each of these chains contains
references to all the packets issued by its publisher in any branch in a chronological order.
Channels employs the message types specified in Table 2 in order to create this structure,
as depicted in Figure 6.

Table 2. Types of packets used to build a tree-like structured channel.

Announce

Published by the channel’s author upon its creation, this message signals the start of the channel
and includes its identifier and other parameters.

Keyload

This message is published by the author of the channel, and it is used to create a new branch; for
this purpose, it contains a list of its chains with their subscribers and publishers.

SignedPacket

Sent by channel publishers, these messages contain the actual data that have to be signed and may
be encrypted.

Sequence

This message is added to the sequencing branch whenever a data packet is published. It contains
a reference to the packet indicating its branch, its chain, and its position within it.

Figure 6. Example of a basic channel: blue represents the author’s packets, while orange and black
indicate the packets of two different publishers.



J. Sens. Actuator Netw. 2023, 12, 57 11 of 24

3. Proposed System Characterization

The proposed system aims at facilitating M2M communication patterns among all
its constituent elements using the MQTT protocol. This enables the automation of the
functionalities of a typical IoT ecosystem, comprising sensors and actuators, along with
secure and decentralized storage via IOTA. By leveraging the Channels protocol, the system
allows its administrator to organize messages into channels with finely grained access
controls tailored to the specific services offered by the provided IoT-based application.

3.1. Architecture

The general architecture of the proposed system, as shown in Figure 7, supports
the deployment of multiple geographically separated IoT sites, each comprising two
functional areas:

• IoT Area: This area encompasses various IoT devices, such as sensors and actuators
that generate and exchange data. It also includes a fog computing module to process
data before publishing them to interested devices and on the Tangle.

• DLT Area: This area consists of a node running IOTA software, responsible for pub-
lishing data on the Tangle and processing it via Channels. Additionally, it implements
a recovery mechanism in case that node experiences temporary unavailability.

Figure 7. Modular structure of single-site system.

Every site is linked to the rest of the system via a hierarchical and distributed Broker
network that effectively routes MQTT messages. This is accomplished by introducing a
Local Broker in each site; the Local Broker is responsible for managing both the internal
distribution of messages and communication with the transport network and, consequently,
the entire system. For the sake of presentation simplicity, in the following subsections, the
collection of Local Brokers and the Broker network are represented as a single unit.

3.1.1. IoT Area

Figure 8 gives insight into the IoT Area by depicting its constituent elements, including:

• IoT devices: Heterogeneous sensors that gather measurements and actuators that
respond accordingly. These devices are typically battery-powered and use Data-link
Layer protocols, making it necessary to use MQTT-SN.

• MQTT-SN Gateway: An essential component to enable IoT devices to communicate
via MQTT-SN.

• Fog Processing Unit (Fog PU): Responsible for processing and organizing data from
IoT devices in a manner that can be used by actuators at any site in the system.
Additionally, it provides data to the DLT Area to be further published on the Tangle.



J. Sens. Actuator Netw. 2023, 12, 57 12 of 24

Figure 8. Constitutive elements of an IoT Area: the MQTT-based communication interface is shown
with an arrow, while the MQTT-SN interface is shown with a dashed arrow.

3.1.2. DLT Area

In Figure 9, the elements of the DLT Area are depicted, including:

• IOTA Node: This element represents the unique interface with the IOTA P2P network,
responsible for receiving processed data from the local site, encapsulating them in
Channels packets, and publishing them as messages on the Tangle. It also employs
MQTT to signal the IOTA Cache, ensuring its proper functioning.

• IOTA Cache: This element stores the local processed data until receiving a notification
of successful publication from the IOTA Node. This function is particularly valuable
in case of the momentary unavailability of the IOTA Node, where the IOTA Cache
forwards all pending data to it as soon as it reconnects.

Figure 9. Constitutive elements of a DLT Area: the MQTT-based communication interface is shown
with an arrow, while the IOTA interface is shown with a thick arrow.

3.2. Communication Protocol

Every IoT device is associated with the site where it is located, and it is uniquely
identified within that site. By means of a [site, ID] pair, each device can publish data on
a topic that follows the format:

root/device/site/ID/type

In addition, it is convenient to extend the subtopic type to differentiate between sensor
measurements and actuator actions:

type =

{
sense/dataType

act/dataType

Without loss of generality, we further assume that a generic IoT device publishes its
data on the topic:

root/device/x where x = site/ID/type



J. Sens. Actuator Netw. 2023, 12, 57 13 of 24

All data published by IoT devices are processed by the Fog PU located at the same site
as the devices, which, in turn, republishes the data on the following topic for any interested
device and for the DLT Area to access:

root/fog/x

After proper processing, data are received by both the IOTA Node and the IOTA Cache.
The IOTA Node encapsulates the data into Channels packets, which are subsequently
published on the Tangle. Meanwhile, the IOTA Cache temporarily stores the data in
memory until it receives a notification from the IOTA Node on the following topic:

root/node/site/tangle

The notification carries a list of [topic, timestamp] pairs to identify data that are
going to be deleted by the Cache, where the timestamp is set by the Fog PU in the previous
step. This mechanism is in place to account for the possibility that the IOTA Node could be
unreachable and, thus, not able to receive data from its own site. If this occurs, the IOTA
Cache temporarily stores the data until the IOTA Node reconnects. Upon reconnection, the
IOTA Node forwards a notification on the following topic:

root/node/site/active

Upon receiving the notification, the IOTA Cache sends all pending data, along with
the corresponding [topic, timestamp] pair, through a limited number of messages to the
IOTA Node on the following topic:

root/cache/site/pending

All possible topic formats are displayed in Table 3. Therefore, if we consider Nx as the
number of subtopics, which we earlier named “x”, utilized in a given network and Ns as
the number of sites, the number of topics in the system NT is equal to:

NT = 2Nx + 3Ns

Table 3. All possible MQTT topic formats, their publishers, and their subscribers.

Topic Publisher Subscriber

root/device/x IoT device Fog PU

root/fog/x Fog PU IoT device(s), IOTA Node,
IOTA Cache

root/node/site/tangle IOTA Node IOTA Cache

root/node/site/active IOTA Node IOTA Cache

root/cache/site/pending IOTA Cache IOTA Node

3.3. Multi-Tier Broker

In order to design a hierarchical Broker network, the site subtopic can be developed
on multiple levels, as introduced in [29]. This involves connecting a Central Broker with a
series of Aggregation Brokers that are linked to the Local Brokers deployed in each site.
The required functions to enable this mechanism can be described as follows:

• The site subtopic is developed as:

site = aggregation/local



J. Sens. Actuator Netw. 2023, 12, 57 14 of 24

• If a Broker receives a subscription request for a topic related to a different site, it
accepts the request and then acts as a client by sending the same subscription request
to the Broker at the higher level.

• Each Broker saves the publish messages it receives from the lower level and, acting as
a client, forwards them to the higher level’s Broker.

The example shown in Figure 10 depicts the scenario where a device is interested in
data from a site belonging to a different aggregation group. As explained in Section 3.2,
devices subscribe to topics associated with the data processed by the Fog PU.

Figure 10. Example of MQTT message exchanges within three hierarchical levels of Brokers.

Assume that the topic of interest is denoted by:

T = root/fog/agg2/loc1/ID1/type1

The message exchange process can be summarized as follows:

1. Device D111 subscribes to topic T via Local Broker LB11.
2. Local Broker LB11 subscribes to topic T via Aggregation Broker AB1, since the site

agg2/loc1 does not match its own.
3. Aggregation Broker AB1 subscribes to topic T via the Central Broker CB, since the

group agg2 does not match its own.
4. Fog PU F21 publishes the processed data of device D211 on topic T via Local Bro-

ker LB21.
5. Local Broker LB21 forwards the publish message to Aggregation Broker AB2 as a client.
6. Aggregation Broker AB2 in turn forwards the publish message to the Central Broker

CB as a client.
7. The Central Broker CB notifies Aggregation Broker AB1 subscribed to T.
8. Aggregation Broker AB1 forwards the notify message to Local Broker LB11 subscribed

to T.
9. Local Broker LB11 forwards the notify message to device D111 subscribed to T.

3.4. Overall Communication Protocol Design

With the aim to describe the proposed overall communication protocol, we take into
account a sufficiently general use case, where all the IoT devices are located at the same site
z1, which is equipped with an MQTT-SN Gateway, a Fog PU, an IOTA Node, and an IOTA
Cache, as defined in the system architecture. For this use case, we consider two devices
employed to cover all the scenarios:

• Sensor: Identified by the pair [z1, d1], it periodically publishes its measurements,
which are of type t1. For clarity and brevity, we assume:

s1 = z1/d1/sense/t1

• Actuator: Identified by the pair [z1, d2], it acts asynchronously, and the output of its
actions is of type t2. Again, we assume:

a2 = z1/d2/act/t2



J. Sens. Actuator Netw. 2023, 12, 57 15 of 24

The number of topics in the system, as shown in Table 4, is NT = 2 × 2 + 1 × 3 = 7.
Finally, the sensor is not interested in the output provided by the actuator.

Table 4. MQTT topics considered in the investigated use case.

Topic Publisher Subscriber

root/device/s1 Sensor Fog PU

root/device/a2 Actuator Fog PU

root/fog/s1 Fog PU Actuator, IOTA Node, IOTA
Cache

root/fog/a2 Fog PU IOTA Node, IOTA Cache

root/node/z1/tangle IOTA Node IOTA Cache

root/node/z1/active IOTA Node IOTA Cache

root/cache/z1/pending IOTA Cache IOTA Node

3.4.1. Sensed Data Publishing Phase

First of all, we present the message exchange occurring when the sensor publishes its
measurements by means of the sequence diagram depicted in Figure 11.

Figure 11. Message exchange occurring when a sensor is publishing (periodic) data.

The involved steps are as follows:

1. The sensor transmits the data to be published on root/device/s1 to the MQTT-SN
Gateway using its Data-link Layer communication protocol.

2. The MQTT-SN Gateway acts on behalf of the sensor and sends data to the Broker on
root/device/s1.

3. The Broker forwards data to the Fog PU.
4. After processing data published by the sensor, the Fog PU sends the processed data

to the Broker on root/fog/s1.
5. The Broker forwards the processed data to both the IOTA Node and the IOTA Cache.
6. The IOTA Node encapsulates the processed data in a Channels packet and publishes

it on the Tangle.
7. The IOTA Node sends a notification of the publication on root/node/z1/tangle.
8. The Broker forwards the notification to the IOTA Cache, which in turn proceeds to

delete the previously stored processed data.



J. Sens. Actuator Netw. 2023, 12, 57 16 of 24

3.4.2. Actuator Response Phase

The sequence diagram in Figure 12 depicts the messages exchanged when the actuator
performs an action in response to the received sensed data.

Figure 12. Message exchange when an actuator receives sensed data and responds accordingly.

The sequence of steps is the following:

4. As previously stated, the Fog PU forwards the processed sensor data to the Broker on
root/fog/s1.

9. The same processed data carried by message 5 are also forwarded by the Broker to
the actuator, but the MQTT-SN Gateway intercepts these data.

10. The MQTT-SN Gateway transmits the processed data to the actuator on root/fog/s1
using its Data-link Layer communication protocol.

Messages 11–18 have the same structure as messages 1–8 seen earlier for the sensor,
with the only difference being that the subtopic s1 is replaced by a2. Once the actuator
completes its task triggered by the last received measurements from the sensor, it publishes
the output on the topic root/device/a2.

3.4.3. IOTA Node Unavailability Management Phase

Figure 13 depicts the sequence of messages exchanged when the IOTA Node is tem-
porarily disconnected. Messages 4–8 for sensors and 14–18 for actuators are replaced. The
subtopic d0 is used to refer to either s1 or a2 in this scenario.



J. Sens. Actuator Netw. 2023, 12, 57 17 of 24

Figure 13. Message exchange to manage the temporary unavailability of the IOTA Node.

A. During the disconnection, the Fog PU sends multiple processed data to the Broker
on the respective root/fog/d0 topics.

B. The Broker forwards the processed data to both the IOTA Node and the IOTA Cache,
but the former does not receive them due to the disconnection that occurred.

C. Once the IOTA Node reconnects, it sends a notification on root/node/z1/active to
the Broker.

D. The Broker forwards the notification to the IOTA Cache.
E. The IOTA Cache sends the pending processed data on root/cache/z1/pending to

the Broker.
F. The Broker forwards the pending processed data to the IOTA Node.
G. The IOTA Node encapsulates each entry in the pending processed data message into

Channels packets, which are then published on the Tangle.
H. After successfully publishing the Channels packets, the IOTA Node sends a notifica-

tion on root/node/z1/tangle.
I. The Broker forwards the notification to the IOTA Cache, which in turn deletes the

processed data associated with the Channels packets.

4. Performance Evaluation

In the following, a performance analysis of the proposed framework is performed in
terms of the most relevant metrics in order point out the possible achievable advantages.
Among the features presented and discussed in [21], we limited our investigation to the most
relevant ones, i.e., latency and throughput, while additional high-level aspects like scalability,
security, availability, interoperability, and mobility support are qualitatively evaluated.

It is worth noticing that, actually, a high-fidelity system emulation is not completely
possible, since the centralized consensus and security mechanisms in IOTA 1.5 are still
used in practice. According to the IOTA Foundation, the release of version 2.0 seems to be
imminent, although a specific timeframe has not yet been announced [30]. Another concern
is that Streams, and thus Channels, is still in its alpha version, and to date, there have not
been relevant updates on its development status.

4.1. System-Level Simulation

In order to model and simulate the network elements involved in the proposed system,
we selected OMNeT++ version 6.0.1 [31] as the simulation framework. Indeed, OMNeT++
is a C++-based discrete-event simulator that uses the process-interaction approach. An
OMNeT++ model consists of modules communicating by message passing. Modules
can be arbitrarily nested. The model topology is specified by a topology description



J. Sens. Actuator Netw. 2023, 12, 57 18 of 24

language that supports the separation of the interface and functionality and facilitates
model reuse. Moreover, the use of the tracing/debugging capabilities does not require
additional code [32]. Moreover, this open-source platform offers a comprehensive collection
of built-in libraries that define several network protocols. Additionally, it provides great
programming flexibility through the use of the C++ language, allowing for the introduction
of novel messages, interfaces, and protocols.

Neither the MQTT protocol nor the operation of the IOTA network is included in
the native libraries of the software. Therefore, we needed to develop and integrate these
components. Given the framework’s agnosticism toward lower-level technologies and
protocols, our emphasis was on high-level characteristics. The behavior of MQTT was
defined using the pseudo-primitives outlined in Section 2.1.2, while the IOTA network
involved was simulated by utilizing the TangleSim [33] library available on GitHub.

4.1.1. Scenario Characterization

Considering the modularity of the proposed system, we performed a single-site
analysis while neglecting the hierarchical Broker network, as it is reasonable to assume that
it represents a critical aspect for the overall performance.

To ensure generality and address the worst-case scenario, the specific nature of IoT
devices (whether sensors, actuators, or both) is not relevant. Therefore, each device was
simulated as a periodic traffic source, referred to as an IoT source.

Each packet emitted by an IoT source is empty and consists of an MQTT pseudo-
header. The pseudo-header includes the following information: (i) an integer variable
specifying the MQTT pseudo-primitive (refer to Table 1), with notify and publish being
the only ones used by the Broker and all other devices, respectively, (ii) a URI string
defining the MQTT topic, and (iii) the publication time at the IoT source represented by a
time_t variable.

This implies that the messages sent by the IoT sources in the simulated scenario do not
adhere to the MQTT-SN protocol. Consequently, the MQTT-SN Gateway serves the purpose
of receiving these messages and retransmitting them with a certain delay, simulating the
processing time that would typically take place. However, this does not have a significant
impact on the simulated scenario, which primarily focuses on the impact of the Broker.

Furthermore, since the evaluation of parameters such as latency and throughput in
steady-state operation conditions does not depend on IOTA Cache, we omitted this module.
Lastly, all MQTT subscriptions were defined before the simulation campaign. As a result,
the simulated network functional blocks and the path of each packet correspond to the
configuration depicted in Figure 14.

Figure 14. Functional blocks and packet path in the simulated network.

In order to improve the performance, as explained in the following, we implemented
the Local Broker as a set of load-balanced devices with a weighted fair queueing (WFQ)
scheduling discipline.

For the sake of generality, we did not refer to specific lower-level networking tech-
nologies and protocols, but we modeled this aspect by introducing a set of parameters and
specific reasonable values ranges, as detailed in Table 5.



J. Sens. Actuator Netw. 2023, 12, 57 19 of 24

Firstly, two rounds of simulations were performed, each lasting 7200 s. In the first
round, the IoT source publishing period was assumed to be equal to 1 s, while, in the
second one, this value was reduced to 100 ms to focus on the worst-case scenario.

Table 5. Parameters adopted in simulation campaign.

Name Value(s) Meaning

channelDelay 0.5 ms

Time necessary to transmit a
message between a couple of
nodes over a link: it includes

the channel delay and the
delay introduced by a specific
Data-link Layer technology.

iotaNode.powTime 100 ms

Time required by the IOTA
Node to perform the

lightweight Proof of Work
(PoW).

* .elaborationDelay 2 ms

Time required by each node to
process a message and

perform the necessary actions
upon its reception.

numSources [1, 2, . . . , 100] Number of IoT sources.

numBrokers [1, 2, 4] Number of load-balanced
Brokers.

brokers[*].serviceTime [5 ms, 6 ms, 7 ms] Message service time for each
Broker FIFO queue.

4.1.2. End-to-End Publishing Latency and Throughput

The results presented in this subsection were obtained by conducting multiple simula-
tions, each with (i) a different number of IoT sources, (ii) a different number of load-balanced
Brokers, and (iii) different service times of their queues, as pointed out in the last three
rows of Table 5. The outcomes were analyzed as a function of the number of IoT sources.

First, we discuss the E2E Average Publishing Latency, which is the average time
elapsed from the message transmission by an IoT source to its publishing on the Tangle by
the IOTA Node.

In Figure 15, the latency performance, plotted on a logarithmic scale, is investigated
for a publishing period equal to 1 s. It is evident that the initial linear growth is followed by
a sudden queue saturation, which causes the system to become unstable. For example, if
only one Broker is utilized with service times of 6 ms and 7 ms, the latency experiences an
exponential increase, rapidly approaching infinity. This congestion-related drawback can
be mitigated by possibly adopting shorter service times and/or an increased number of
Brokers. However, it is important to note that, in practice, the message service time cannot
be varied, while the converse is true for the number of Brokers and their balancing scheme,
as they are usually virtualized processes. It is worth noticing that this approach is also able
to enhance the system scalability.

We focused on the worst-case scenario by further considering a publishing period of
0.1 s, as shown in Figure 16. In this case, messages enter the Broker(s) queues at a higher
frequency, leading to earlier congestion. Therefore, when addressing a real system design,
it is essential to consider the overall publishing rate and to proportionally and dynamically
adjust the number of Brokers and their load-balancing scheme.



J. Sens. Actuator Netw. 2023, 12, 57 20 of 24

Figure 15. E2E Average Publishing Latency with a publishing period of 1 s.

Figure 16. E2E Average Publishing Latency with a publishing period of 0.1 s.

To conclude the performance analysis, the On Tangle Throughput, which represents
the average number of messages eventually published by the IOTA Node per second, is
depicted in Figure 17 for a publishing period of 1 s. It can be pointed out that, in the
absence of bottlenecks caused by Brokers, the throughput directly corresponds to the
number of messages generated per second by all IoT sources. Moreover, a couple of curves
(in blue) correspond to the worst-case situation, i.e., one Broker with a higher service time
(as already identified in Figure 15), where the throughput decreases due to the congestion
effect. Once again, the load-balanced solution provides a remarkable advantage in terms of
achievable performance.



J. Sens. Actuator Netw. 2023, 12, 57 21 of 24

Figure 17. On Tangle Throughput with a publishing period of 1 s.

As a final consideration, it is important to note that the Fog PU and the IOTA Node can
also potentially become bottlenecks if they are unable to handle the traffic generated by the
IoT sources. Hence, a load-balancing architecture can be applied to these network elements.
However, the message arrival rate and, consequently, the processing rate for these devices
are typically lower than those for the Brokers. As a result, their design requirements are
expected to be less demanding, and for this reason, we adopted a conservative approach in
the proposed system.

4.2. Qualitative Evaluation

In the following subsections, aspects like scalability, security, availability, interoper-
ability, and mobility support are qualitatively evaluated in order point out the possible
achievable advantages and future developments.

4.2.1. Scalability

The purpose of the fog computing paradigm is to simplify the central network com-
ponents and shift the complexity to peripheral ones. When adopted in a modular system
like the proposed one, where a hierarchical network of Brokers represents the central com-
ponent, it offers significant scalability advantages. Additionally, each site independently
manages data storage within the IOTA Tangle, eliminating the traffic flows that would arise
with a centralized database.

Moreover, we use the public Mainnet because of its higher efficiency and reliability,
particularly in light of the growing number of network users and activity, in contrast to a
private solution.

4.2.2. Security

IOTA, like most DLTs, depends on cryptography-based security mechanisms to ensure
the integrity and confidentiality of its data. In version 2.0, these mechanisms will be
integrated into a module of the protocol stack called Sybil Protection, which uses a reputation-
based mechanism implemented through a tokenized resource that is difficult to obtain
and stack. This resource regulates the selection of neighboring nodes in the P2P network,
as well as the congestion control and consensus mechanisms, preventing attacks such as
eclipsing, flooding, or consensus manipulation.



J. Sens. Actuator Netw. 2023, 12, 57 22 of 24

The data in the proposed system are publicly stored on the Mainnet, making them
traceable, but their confidentiality is maintained through the access control provided by
the encryption of the Channels protocol.

The system’s security can be further enhanced by taking measures to secure the
connections relying on the IP Layer functions in addition to the mechanisms provided by
the Data-link Layer communication protocols. In addition, it is worth noticing that MQTT
supports the secure version of both TCP, called Transport Layer Security (TLS), and UDP,
called Datagram Transport Layer Security (DTLS).

Another countermeasure that could be taken is to use firewalls and Intrusion Detection
and Protection Systems (IDPSs) to secure the connections of individual sites to the outer
networks occurring through the Local Broker and the IOTA Node.

4.2.3. Availability

The proposed framework adopts IOTA technology to ensure that data are always
retrievable once confirmed on the Tangle, which in turn is securely and immutably stored
in almost all participating nodes belonging to the P2P network. For this purpose, the use
of the public Mainnet ensures that confirmations are relatively quick, making the data
readily available.

The only exceptions to this would be (i) in the case of Distributed Denial of Service
(DDoS) attacks, which are nearly impossible to achieve on the public Mainnet due to its
large number of nodes, or (ii) in the case of eclipsing attacks that aim to control all the P2P
neighbors of an IOTA Node, with the intent of blocking all of its message publications.

4.2.4. Interoperability

Generally speaking, WoT-oriented communication protocols are specifically designed
to bridge the gap between IoT platforms and application domains that are fundamentally
incompatible. By selecting MQTT and MQTT-SN, all devices within the proposed system
can independently contribute to the network functions and provided services, regardless
of their connectivity and location. This approach also enables the connection of IoT and
DLT functional areas, effectively linking their respective domains.

4.2.5. Mobility Support

There are several additional use cases related to the domain of mobile IoT, where the
wireless interface could involve 5G cellular technology. In this case, the devices would pub-
lish and receive MQTT-SN messages via gNodeBs, which connect them to other elements
at a site level through an MQTT-SN Gateway. In addition, the networking, processing,
and storage resources available in a zone can be virtualized and properly managed with
Software-Defined Networking (SDN) and Network Function Virtualization (NFV) ap-
proaches [34]; for instance, in order to ensure the necessary speed and latency requirements,
a dedicated network slice must be allocated to the offered service [35,36].

5. Conclusions

This paper deals with the design of an intelligent IoT environment by focusing on
the context awareness achieved by a distributed event storage system. For this purpose,
the primary challenges facing autonomous IoT networks, which include the necessity
for lightweight communication technologies for M2M traffic and the absence of trust in
third-party companies providing cloud-based data storage services, are first outlined.

In addition, a brief overview of the current approaches proposed in the WoT paradigm
is provided, while blockchain-based alternatives are dismissed due to the limitations
pointed out. Based on these considerations, we adopted MQTT and MQTT-SN protocols
for communication and IOTA as an immutable distributed ledger.

We further characterized a novel integrated framework, describing its architectural
components, interfaces, and communication protocol. Additionally, we highlighted a wide
range of potential use cases where the utilization of IOTA Channels enables the on-demand



J. Sens. Actuator Netw. 2023, 12, 57 23 of 24

development of applications by providing appropriately categorized data generated by the
IoT domain itself.

Finally, we provide both (i) a numerical simulation and (ii) a qualitative-by-design per-
formance analysis of the proposed framework in terms of the most relevant metrics, which
are latency, throughput, scalability, security, availability, interoperability, and mobility
support, in order point out the achievable advantages and future developments.

Though the performance achieved by the proposed approach pointed out its capability
of supporting a DLTaaS distributed platform, an open issue is still represented by the
management and control of the Broker subnetworks, so it could be beneficial in a future
investigation to focus on the joint application of NFV and SDN approaches in order to
properly address this aspect.

Possible further developments of the proposed approach could be focused on (i) a sys-
tem redesign in light of the next expected release of the IOTA standard in order to overcome
the current limitations or (ii) the investigation of 5G/6G technologies’ impact by means of
the proper management of virtualized communications/storage/computing resources.

Author Contributions: Conceptualization, F.C. and G.G.; methodology, F.C. and G.G.; software, G.G.;
validation, F.C. and G.G.; formal analysis, F.C. and G.G.; investigation, F.C. and G.G.; resources, F.C.;
writing—original draft preparation, G.G.; writing—review and editing, F.C. and G.G.; supervision,
F.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Project FABuLOuS—Florence Area Blockchain Laboratory
Observatory Studies, Bando “Ricercatori a Firenze”, Fondazione Cassa di Risparmio di Firenze (2021).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express their gratitude to Alessio Chen for his support
and fruitful discussion.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Evans, D. The Internet of Things: How the Next Evolution of the Internet Is Changing Everything; CISCO White paper; CISCO: San Jose,

CA, USA, 2011.
2. Higginbotham, S.; Pesce, M. Internet of Everything: Macro & Micro. IEEE Spectr. 2021, 58, 22–23.
3. Web of Things (WoT) Architecture 1.1. Available online: https://www.w3.org/TR/wot-architecture (accessed on 17 May 2023).
4. Heuer, J.; Hund, J.; Pfaff, O. Toward the Web of Things: Applying Web Technologies to the Physical World. Computer 2015, 48,

34–42. [CrossRef]
5. HTTP Documentation. Available online: https://httpwg.org/specs (accessed on 17 May 2023).
6. The Constrained Application Protocol (CoAP). Available online: https://datatracker.ietf.org/doc/html/rfc7252 (accessed on 17

May 2023).
7. Bormann, C.; Castellani, A.P.; Shelby, Z. CoAP: An Application Protocol for Billions of Tiny Internet Nodes. IEEE Internet Comput.

2012, 16, 62–67. [CrossRef]
8. Naik, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the IEEE

International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13 October 2017; pp. 1–7.
9. Vinoski, S. Advanced Message Queuing Protocol. IEEE Internet Comput. 2006, 10, 87–89. [CrossRef]
10. The Simple Text Oriented Messaging Protocol. Available online: http://stomp.github.io/stomp-specification-1.2.html (accessed

on 8 July 2023).
11. MQTT Specification. Available online: https://mqtt.org/mqtt-specification (accessed on 17 May 2023).
12. Gomez, C.; Arcia-Moret, A.; Crowcroft, J. TCP in the Internet of Things: From Ostracism to Prominence. IEEE Internet Comput.

2018, 22, 29–41. [CrossRef]
13. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]
14. Uy, N.Q.; Nam, V.H. A comparison of AMQP and MQTT protocols for Internet of Things. In Proceedings of the 6th NAFOSTED

Conference on Information and Computer Science (NICS), Hanoi, Vietnam, 12–13 December 2019; pp. 292–297.
15. Sadawi, A.A.; Hassan, M.S.; Ndiaye, M. A Survey on the Integration of Blockchain With IoT to Enhance Performance and

Eliminate Challenges. IEEE Access 2021, 9, 54478–54497. [CrossRef]
16. Shammar, E.A.; Zahary, A.T.; Al-Shargabi, A.A. A Survey of IoT and Blockchain Integration: Security Perspective. IEEE Access

2021, 9, 156114–156150. [CrossRef]

https://www.w3.org/TR/wot-architecture
http://doi.org/10.1109/MC.2015.152
https://httpwg.org/specs
https://datatracker.ietf.org/doc/html/rfc7252
http://dx.doi.org/10.1109/MIC.2012.29
http://dx.doi.org/10.1109/MIC.2006.116
http://stomp.github.io/stomp-specification-1.2.html
https://mqtt.org/mqtt-specification
http://dx.doi.org/10.1109/MIC.2018.112102200
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1109/ACCESS.2021.3070555
http://dx.doi.org/10.1109/ACCESS.2021.3129697


J. Sens. Actuator Netw. 2023, 12, 57 24 of 24

17. Ullah, Z.; Raza, B.; Shah, H.; Khan, S.; Waheed, A. Towards Blockchain-Based Secure Storage and Trusted Data Sharing Scheme
for IoT Environment. IEEE Access 2022, 9, 36978–36994. [CrossRef]

18. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; Bitcoin Whitepaper; United States Sentencing Commission: Washing-
ton, DC, USA, 2008.

19. Alrubei, S.; Ball, E.; Rigelsford, J. Securing IoT-Blockchain Applications through Honesty-Based Distributed Proof of Authority
Consensus Algorithm. In Proceedings of the 2021 International Conference on Cyber Situational Awareness, Data Analytics and
Assessment (CyberSA), Online Event, 17 June 2021.

20. Bonadio, A.; Chiti, F.; Fantacci, R.; Vespri, V. An integrated framework for blockchain inspired fog communications and computing
in internet of vehicles. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 755–762. [CrossRef]

21. Ferrag, M.A.; Shu, L. The Performance Evaluation of Blockchain-Based Security and Privacy Systems for the Internet of Things: A
Tutorial. IEEE Internet Things J. 2021, 8, 17236–17260. [CrossRef]

22. Number of Blockchain Wallet Users 2022/2023: Breakdowns, Timelines, and Predictions. Available online: https://www.
financesonline.com/number-of-blockchain-wallet-users (accessed on 17 May 2023).

23. Hello Future|Hedera. Available online: https://hedera.com (accessed on 17 May 2023).
24. Home|IOTA. Available online: https://www.iota.org (accessed on 17 May 2023).
25. IOTA 2.0 Research Specifications. Available online: https://wiki.iota.org/IOTA-2.0-Research-Specifications/Preface (accessed on

17 May 2023).
26. GoShimmer Protocol Specification. Available online: https://wiki.iota.org/goshimmer/protocol_specification/components/

overview (accessed on 17 May 2023).
27. Final Alpha Release for IOTA Streams. Available online: https://blog.iota.org/final-alpha-release-for-iota-streams-5a4cfeca506c

(accessed on 17 May 2023).
28. Streams Software Documentation. Available online: https://wiki.iota.org/streams/welcome (accessed on 17 May 2023).
29. Kurdi, H.; Thayananthan, V. A Multi-Tier MQTT Architecture with Multiple Brokers Based on Fog Computing for Securing

Industrial IoT. Appl. Sci. 2022, 12, 7173. [CrossRef]
30. IOTA 2022: Year of the Ecosystem. Available online: https://blog.iota.org/2022-a-year-in-review-a-year-in-preview (accessed

on 17 May 2023).
31. OMNeT++ Discrete Event Simulator. Available online: https://omnetpp.org (accessed on 17 May 2023).
32. Varga, A. Using the OMNeT++ discrete event simulation system in education. IEEE Trans. Educ. 1999, 42, 11. [CrossRef]
33. TangleSim. Available online: https://github.com/richardg93/TangleSim (accessed on 17 May 2023).
34. Yousaf, F.Z.; Bredel, M.; Schaller, S.; Schneider, F. NFV and SDN - Key Technology Enablers for 5G Networks. IEEE J. Sel. Areas

Commun. 2017, 35, 2468–2478. [CrossRef]
35. Rost, P.; Mannweiler, C.; Michalopoulos, D.S.; Sartori, C.; Sciancalepore, V.; Sastry, N.; Holland, O.; Tayade, S.; Han, B.; Bega, D.; et

al. Network Slicing to Enable Scalability and Flexibility in 5G Mobile Networks. IEEE Commun. Mag. 2017, 55, 72–79. [CrossRef]
36. Ordonez-Lucena, J.; Ameigeiras, P.; Lopez, D.; Ramos-Munoz, J.J.; Lorca, J.; Folgueira, J. Network Slicing for 5G with SDN/NFV:

Concepts, Architectures, and Challenges. IEEE Commun. Mag. 2017, 55, 80–87. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2022.3164081
http://dx.doi.org/10.1007/s12652-019-01476-y
http://dx.doi.org/10.1109/JIOT.2021.3078072
https://www.financesonline.com/number-of-blockchain-wallet-users
https://www.financesonline.com/number-of-blockchain-wallet-users
https://hedera.com
https://www.iota.org
https://wiki.iota.org/IOTA-2.0-Research-Specifications/Preface
https://wiki.iota.org/goshimmer/protocol_specification/components/overview
https://wiki.iota.org/goshimmer/protocol_specification/components/overview
https://blog.iota.org/final-alpha-release-for-iota-streams-5a4cfeca506c
https://wiki.iota.org/streams/welcome
http://dx.doi.org/10.3390/app12147173
https://blog.iota.org/2022-a-year-in-review-a-year-in-preview
https://omnetpp.org
http://dx.doi.org/10.1109/13.804564
https://github.com/richardg93/TangleSim
http://dx.doi.org/10.1109/JSAC.2017.2760418
http://dx.doi.org/10.1109/MCOM.2017.1600920
http://dx.doi.org/10.1109/MCOM.2017.1600935

	Introduction
	Overview of Adopted Technologies
	MQTT
	Publish/Subscribe Model
	Pseudo-Primitives
	MQTT-SN

	IOTA
	Tangle
	Fee-Less Consensus and Coordinator
	IOTA 2.0
	Channels


	Proposed System Characterization
	Architecture
	IoT Area
	DLT Area

	Communication Protocol
	Multi-Tier Broker
	Overall Communication Protocol Design
	Sensed Data Publishing Phase
	Actuator Response Phase
	IOTA Node Unavailability Management Phase


	Performance Evaluation
	System-Level Simulation
	Scenario Characterization
	End-to-End Publishing Latency and Throughput

	Qualitative Evaluation
	Scalability
	Security
	Availability
	Interoperability
	Mobility Support


	Conclusions
	References

