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Abstract: In this research, new modeling strategy based hierarchical growing neural gas network
(HGNG)-semicooperative for feature classifier of intrusion detection system (IDS) in a vehicular
ad hoc network (VANET). The novel IDS mainly presents a new design feature for an extraction
mechanism and a HGNG-based classifier. Firstly, the traffic flow features and vehicle location
features were extracted in the VANET model. In order to effectively extract location features,
a semicooperative feature extraction is used for collecting the current location information for the
neighboring vehicles through a cooperative manner and the location features of the historical location
information. Secondly, the HGNG-based classifier was designed for evaluating the IDS by using a
hierarchy learning process without the limitation of the fix lattice topology. Finally, an additional
two-step confirmation mechanism is used to accurately determine the abnormal vehicle messages.
In the experiment, the proposed IDS system was evaluated, observed, and compared with the existing
IDS. The proposed system performed a remarkable detection accuracy, stability, processing efficiency,
and message load.

Keywords: intrusion detection system; vehicular ad hoc network; hierarchical growing neural gas
network; traffic flow

1. Introduction

Vehicle ad hoc network (VANET) is considered one of the new technologies that can dramatically
change our way of life. It will significantly improve the quality of human lives and will become a
reality in the near future [1,2]. Over the past three years, many vehicle designers began to incorporate
wireless access in vehicular environment (WAVE) in their vehicles [3]. WAVE is a technology based
on the IEEE 802.11p protocol standards which provides the basic broadcast standard for dedicated
short-range communications technology (DSRC) [4]. VANET enables wireless communication among
moving vehicles through the DSRC, which includes vehicle-to-vehicle communication (V2V) and
vehicle infrastructure communication (V2I) [5]. With allowing vehicles to communicate with each
other and helping drivers make easier decisions, VANET significantly improves the driving safety
and comfort. Since VANET manages critical traffic information and its information is closely linked to
human safety, it is of paramount importance to the security of VANET. To address the security issues in
VANET, IDS is deployed inside each vehicle to detect internal and external security threats. Analyzing
the VANET information is one of the effective ways to protect VANET and detecting unusual activities
in the VANET then alerting it [6].
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For addressing VANET security issues, there are many different solutions. This includes
creditworthiness mechanisms [7] and data-centric trusty mechanisms [8]. The creditworthiness
mechanism gives the vehicle scores according to their historical behaviors and current behaviors, so that
a vehicle has a higher level of safety with higher scores and a vehicle is regarded as a suspected vehicle
with lower scores. The creditworthiness mechanism refers to assigning the trust scores to other vehicles
based on historical or current interaction, where the trust score indicates the creditworthiness of the
vehicle in VANET [9]. According to scores, the vehicle behaviors are restricted with varying degrees.
It works well in wired networks or in online systems where the vehicle has a fixed physical identity.
There are various creditworthiness schemes which were proposed by [10,11]. A centralized infrastructure
was proposed to deploy a reputation mechanism [10]. A decentralized infrastructure adopted to deploy a
creditworthiness mechanism [11]. However, although a creditworthiness-based scheme is useful, a fatal
disadvantage of this mechanism is that it is difficult to prevent a sudden attack by a trusted vehicle. It is
difficult to implement in a fast-moving and rapidly changing network such as VANET because it takes a
certain amount of time to establish the creditworthiness. If the fake information comes from a trusted
vehicle, the creditworthiness mechanism will have no way of limiting that information.

The data-centric trusty mechanism is applied to establish a message processing center,
which evaluates and broadcasts all the messages [8]. The data-centric trusty mechanism was used
to discriminate abnormal behaviors by only considering shared data [12]. Another study conducted to
propose a VANET model to detect and correct errors for the data which was sent by the vehicle (the
model-conforming message is accepted, otherwise the message is rejected) [10]. An emergency message is
relayed and the fake information is identified based on the message type and the subsequent behaviors of
the vehicle sender in a study conducted by [13]. This technique is not available for emergency messages
because the emergency message requires the vehicle to react quickly. However, when the number of
vehicles achieves an order of magnitude, data retention and congestion, it will result in the excessive
delay of message propagation. In addition, the computational complicity is costly. Raya et al. proposed
an anomaly detection system and eviction mechanism [14]. The vehicle was considered as an abnormal
behavior if the message sent by the vehicle did not accord with the general situation. Once the vehicle
is classified as an attacking vehicle, the neighbor’s vehicle can temporarily deport it by sharing the
warning message. Subsequently, its certificate was sent to a certificate authority (CA), which revoked
the fraudulent vehicle by adding it to the revocation list (RL). Unfortunately, it is difficult to manage RL
in VANET.

In IDS, unlike the previous two technologies, offers a solution to VANET security issues by
effectively detects attacks by analyzing and classifying the messages in the VANET. IDS accurately
detects known attacks and attempts to predict new types of attacks and protect the system from
unknown attacks as well [15]. However, in this intrusion prediction system, the probability threshold
needs to be set sensitively to obtain accurate results.

There are some very serious security issues that need to be resolved before using IDS to prevent
attacks in VANET including:

i. It is not possible to use IDS in a wired network because of its wireless and mobile nature and
its dynamic topology.

ii. Unlike wired networks (some of these known databases, such as NSL-KDD and KDD 99),
there is no universally accepted database available for VANET. Which means IDS can only
work with locally monitored data in VANET.

iii. Because VANET is a highly dynamic network and the attacked time will be very short,
the receiving information of the vehicle must be verified and responded quickly. In other
words, the veracity and reliability of vehicle messages must be able to be determined quickly
and accurately in VANET [16].

iv. Although IDS is a reliable way to protect VANET, it is difficult to solve extra inspection time
and loads with the increasing number of vehicles.
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A number of studies have been conducted in the IDS area of VANET. A framework that combines
creditworthiness scores with rule-based detection is used for IDS in VANET [15,17]. However, there is a
particularly serious disadvantage of false alarms, detection times and load problems when the number
of vehicles increases. A statistical-based approach was used for IDS [18]. Several studies established on
the proposition of a system to detect attacks on vehicles based on matching IDS [19–21]. Although it
has high detection accuracy and efficiency, it can only detect attacks that match their rules and ignore
other unknown attacks. However, when using these types of methods, the distribution of the detected
data must be known in advance, which is often difficult. In [22], a new mechanism is provided in
IDS that uses Bayesian theory to switch IDS status (active or idle) to reduce overhead and detection
time. Unfortunately, it is difficult to detect attacks that occur during the IDS’s idle state, which can
compromise the accuracy of IDS detection.

2. Vehicle Ad Hoc Network (VANET) Model

A generic VANET structure can be obtained according to the previous VANET [22–24], as shown
in Figure 1. In this VANET structure, each vehicle will be installed several devices, such as: GPS, Radar,
IDS and so on. Among them, GPS can get the current position of the vehicle. Radar is used to measure
the communication signals among vehicles. IDS are used to detect attacks from inside and outside
the vehicle. By sending a message, the vehicle can communicate with each other vehicles within its
communication domain. At the moment of vehicle communication, vehicles can be divided into three
different roles (current vehicle, neighbor vehicle and target vehicle). The current vehicle is defined for
each vehicle itself, and the neighbor vehicle is the vehicle in the communication domain of the current
vehicle, and the target vehicle is a special neighbor vehicle whose message is being processed by the
current vehicle. In addition, each vehicle contains three data tables, namely: the historical neighbor
message table, the current neighbor message table and the vehicle location information table. The data
in these tables will be used in driving decisions to enhance the driving experience.
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2.1. VANET Model. Measurements

On a freeway, the vehicle can calculate the density of vehicles by counting the number of different
vehicles in the historical neighbor’s message table. In addition, each vehicle gets location coordinates
(Xposown and Yposown) by GPS. It is important to note that the vehicle does not have direct access to
the flow of traffic (Flowown) and the distance between two vehicles (Do&n). The Flowown needs to
be calculated from the model of Greenshield [25], and (Do&n) can be calculated from the free space
model [26].

The Greenshield model is considered as a fairly accurate model for describing the relationships
among speed (v) (Km/hr), density (k) (veh/Km) and traffic flow (q) [25]. The parameter vf can be
defined as the free mean speed at which the vehicle density is zero. With the density increasing,
the speed will decrease, until the maximum kj (congestion density) (veh/Km) is achieved. This is the
case of vehicle congestion. The relationship between speed and density is expressed as follows:

v = v f −
v f

k j
k (1)

The traffic flow is represented as:
q = k× v (2)

Hence,

q = (v f −
v f

k j
k) ∗ k (3)

The Greenshield model shows that the relationship between traffic flow and the density is
parabolic curve. When flow is very low, speed is higher. The drivers are able to travel at a desired
speed. As the flow increases, speed gradually decreases. The highest flow shows the transition of
noncongested to congested condition. Greenshield’s model shows the relationship between speed and
density as follows:

qm = vmkm (4)

where km and vm parameters can be defined by the optimal vehicle density and the optimal speed
value, respectively. In this point, the vehicle flow achieves the maximum qm allowed.

MaxSpeed and MaxDensity can be defined by free flow speed and congestion density, respectively
in Equations (5) and (6):

Speedown = MaxSpeed− Densityown
MaxDensity

MaxSpeed (5)

Flowown = Densityown× Speedown (6)

The linking between Equations (3), (5) and (6) can produce the following formulas:

Speedown = MaxSpeed− MaxSpeed
MaxDensity

Densityown = v f −
v f

k j
k (7)

Flowown = Densityown× Speedown = k ∗ (v f −
v f

k j
k) (8)

Figure 2 explains the graphical relation between the density, speed, and flow.
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The free space model was adopted in order to define Do&n model, where Pr(d) is the transmit
power, d which is the distance between sender and receiver. Pt is the transmit signal strength, and τ is
the wave length. In this model. At this point, the parameter d is the only variable. If the value of d is
determined, then the model can be uniquely identified.

Pr (d) =
τPt

(4π)2(d)2 (9)

Since each vehicle is equipped with radar, when it receives a message from a neighbor’s vehicle,
it receives the signal strength of neighbor’s vehicle (RSSleng), the wavelength (WLneg) and transmits
power (SPneg). Based on the free space model, the vehicle can calculate Do&n according (10).

Do&n =

(
SPneg×WLneg2

(4π)2RSSlneg

) 1
2

(10)
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2.2. VANET Message Format

In order to communicate with the neighboring vehicles in the current vehicle’s communication
domain, each vehicle broadcasts a beacon message (BeaconMsg) for a fixed time period (BeaconT) in the
format shown in (11). Where IDoW is the current vehicle ID.

BeaconMsg
(

IDown, Flowown, Xposown, Yposown

)
(11)

When the current vehicle needs to get the information of the target vehicle from its neighbor
vehicle, it will broadcast request message in the format of request message (IDown, IDtag), where IDtag
is the ID of the target vehicle. Once the neighbor’s vehicle receives request message, it will broadcast
their location coordinates Xposown, Yposown and their distance from the target vehicle (Dn&t) through
ResponseMsg. ResponseMsg format which can be defined by ResponseMsg(IDneg, IDtag, Xposown, Yposown,
Dn&t). The duration of this process is called response waiting time (WaitingT).

2.3. VANET Information

In order to store the information in VANET (Table 1), each vehicle has three tables. Those tables are
the current neighbor message table, the historical neighbor message table and the location information
table respectively. The current neighbor message table and the historical neighbor message table are
used to store BeaconMsg from a neighbor’s vehicle. The location information table is used to store
ResponseMsg. Each of these three tables has an update cycle, which is the same as for BeaconT. When the
update time is up, all the contents in the location information table and the historical neighbor message
table are deleted, and the content of the current neighbor message table is transferred to the historical
neighbor message table.

Table 1. VANET Information Table.

Current Neighbor Message Table Store BeaconMsg
Historical Neighbor Message Table Store BeaconMsg

Location Information Table Store ResponseMsg

3. Intrusion Detection System Based on HGNG Neural Network

The IDS can be used to detect VANET attacks, and then take appropriate countermeasures to
prevent and reduce the conducted risks. However, when IDS are introduced to VANET some challenges
should be overcome:

i. In wired networks, the VANET of IDS cannot be used due to the wireless and mobile features
and their dynamic topology features.

ii. Because VANET is a highly dynamic network and the attacked time of vehicles will be very
short, the receiving information of vehicles should be quickly verified and responded. In other
words, the veracity and reliability of vehicle messages in a VANET should be determined
quickly and accurately.

In order to solve the above problems, the new architecture of IDS based on VANET. Model is
proposed, which includes the training model without attack and the prediction model with attacks.
Then, the two main modules of IDS, namely the feature extraction module and the classifier module,
are described in detail. Unlike preprocessing mechanisms in IDS used in wired networks (preprocessing
mechanisms only normalization and feature selection for known databases), the feature extraction
module is used to quickly convert the measured values of messages from neighboring vehicles to those
that can reflect characteristics of vehicle safety features. The classifier module uses clustering neural
network algorithm (HGNG) to quickly and accurately detect anomalies in VANET messages.
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3.1. HGNG-Based IDS

In order to train the IDS presented in this paper, the training process needs to be performed in a
nonattack vehicle situation (under normal conditions), so that the IDS can detect the biased VANET
message according to the normal model (as shown in Figure 3).
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Figure 3. Vehicle receives beacon messages from neighbor vehicles.

In VANET, each vehicle calculates measurements, including average traffic and location
information, into BeaconMsg and sends it to the neighboring vehicles. In addition, each vehicle
receives BeaconMsg from its neighbor’s vehicle within its communications domain. Therefore, the IDS
training process is as follows:

First, the vehicle in the VANET extracts the measured value of the BeaconMsg received from the
neighboring vehicle through the feature extraction module to form the feature vector. If the vehicle
needs the information of the neighbor’s vehicle to assist in extracting the vector of the detected feature,
it broadcasts request message and collects the ResponseMsg from the neighbor’s vehicle in WaitingT.
Then, the vehicle sends a vector of detection features to the signature table. Finally, when enough
detection feature vectors are collected in the trace file of the feature recording module, a DetFeaSet is
formed for training the IDS classifier. After the IDS have been trained, it will be placed in the attack
vehicle attack detection, as shown in Figure 4.
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Once the vehicle receives BeaconMsg from the neighbor vehicle, the same eigenvector extraction
strategy is performed as normal. After receiving ResponseMsg, the vehicle filters the ResponseMsg from
its neighbor’s vehicle through the filtering mechanism of the feature extraction module. The vehicle
then sends the detected feature vector to the classifier to check if there is an attack in the BeaconMsg.
Finally, if the classifier determines that there is no deviation of the feature vector, the feature vector is
accepted, and the feature is added to the neighbor information table. Otherwise, the feature vector is
rejected. If the feature vector is rejected, the neighbor vehicle is highlighted as an attacker vehicle and
its ID is put in a blacklist.

3.2. Preprocessing Feature Extraction

As shown in Figure 5, the algorithm has two main parts. One part is the calculation of traffic
flow characteristics FlowR. It is based on the principle that the traffic volume of each vehicle should be
very similar to the traffic volume of its neighboring vehicles under the same traffic conditions. If an
attacking vehicle wants to create a nonexistent incident by sending its reduced fake traffic to other
vehicles, its FlowR will be different from normal. Therefore, false information attacks can be detected
by FlowR. The other part is to calculate the vehicle position feature, PositionR. PositionR is the deviation
between the position coordinate of the neighboring vehicle declaration and the measurement position.
When a neighboring vehicle sends a fake location message, it is declaring the location coordinates will
go beyond the normal deviation range. Therefore, with PositonR, not only can false message attacks
be detected, but also what attacks as well.
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Although vehicle location can be verified by any VANET observation model such as accepted
signal strength (RSS), and time of arrival. Taking into account the relatively easy access to RSS,
this program uses RSS measurement. In the semicooperative detection method, the vehicle position
feature can be calculated by either of the following two cases.
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If IDtag does not exist in the historical neighbor table (cooperation case), each vehicle first
broadcasts request message to its neighbor’s vehicle. When its neighbor’s vehicle receives the
RequestMsg, they will broadcast ResponseMsg if they did not receive the IDtag for the RequestMsg
in WaitingT. When the time reaches WaitingT, the current vehicle populates ResponseMsg of each
neighboring vehicle in its position information table. Then, each vehicle calculates Biaso & t and Biaso
& t. The former is the position deviation between itself and the target vehicle, as shown in formula
(12). The latter is the deviation between the neighbor’s vehicle and the target vehicle, as shown in
Equation (13) (there may be more than one BiaSn & t). Next, each vehicle checks |Biaso & t − BiaSn & t
< MaxGap| for ResponseMsg from the attacker vehicle, where MaxGap was determined during training,
which is the largest difference between Biaso & t and BiaSn & t.

Biaso&t =

∣∣∣∣Do&t −
√(

Xposown − Xpostag
)2

+
(
Yposown −Ypostag

)2
∣∣∣∣ (12)

Biasn&t =

∣∣∣∣Dn&t −
√(

Xposneg − Xpostag
)2

+
(
Yposneg −Ypostag

)2
∣∣∣∣ (13)

Finally, if Bias≥ 3, PositionR is obtained from Equation (14). Otherwise, the characteristic PositionR
can not be obtained.

PositionR =
1
n
(
∑ Biaso&t + Biasn&t

)
(14)

If there is an IDtag (noncooperation) in the neighbor table, the PositionR of the current vehicle can
be directly obtained without the help of a neighbor’s vehicle as shown in Equation (19). This means
that the current vehicle does not need to send RequestMsg and wait for ResponseMsg. In Equation (19),
Biast t∗ is the position deviation between the current target vehicle and its previous moment, which can
be obtained from Equation (16). Biaso ∗&t is the position deviation between itself and the previous
phase of the current target vehicle, as can be seen from Equation (18). Which shows a method of
calculating the distance (Dt&t∗) between the historical position of the target vehicle and the current
position of the target vehicle and the distance (Do*&t) between the current position of the current
vehicle and the current position of the target vehicle. Because IDtags exist in the historical neighbor
table, each vehicle has both historical and current information of its own vehicle and the target vehicle.
Therefore, Dt&t∗ can be obtained from Equation (15), where (Dt&t∗ is closest to the value of Do&o∗).
Do ∗ & t can be obtained from Equation (17) according whether Dt&t∗ and Do&o∗ already obtained.

Dt&t′ =

(
MaxSpeed

2
±
√

MaxSpeed
2

− MaxSpeed
2

AvgFlowtag

)
× Beacont (15)

Biast&t =

∣∣∣∣∣Dt&t′ −
√(

Xpostag − Xpostag′
)2

+
(

Ypostag −Ypostag′
)2
∣∣∣∣∣ (16)

Do′&t =
√

D2
o&t + D2

o&o′ − 2Do&tDo&o′cos < TOO′ (17)

Biaso ∗&t = |Do&t−
√
(Xposown ∗ −Xpostag)2 + (Yposown ∗ −Ypostag)2| (18)

PositionR =
Biaso&t + Biast&t ∗ + Biaso ∗&t

3
(19)

3.3. Based on HGNG Neural Network Outlier Detection

Due to the need for a classifier that can detect attacks in VANET quickly and accurately,
HGNG, a neural network with high detection accuracy and low computational complexity, is a
good choice. In addition, the paper also presents an improved HGNG on HGNG that enables it to
detect abnormalities in IDS more accurately.
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The growth-type neural gas (GNG) algorithm, proposed by Fritzke [27], is an extension of the
traditional SOM network and Neural Gas algorithm. GNG overcomes the limitations of standard
self-organizing map neural networks. The algorithm combines the growth mechanism of GCS neural
network with the competitive Hebbian learning rule [28,29]. Moreover, this model does not have
the dynamic structure of fixed dimension and adaptively learns the dimension of input sample and
the input data in the process of training density. In VANET applications, the GNG network can
automatically extract the feature vector PositionR (D(FlowR, PositionR)) and hence the data because
there is no topological relationship displayed between Vehicles.

GNG is a dynamic growth self-organizing network based on competitive connection mechanism.
It consists of a set of node units A = {c1, c2, . . . , ck} and the connection C = {(i,j)} between units,
i and j ∈ A, (i, j) = (j, i). For each cell, save its two properties: the cell reference vector. ωc ∈ Rn and
accumulation error εc ∈ R. For the VANET problem, since the two-dimensional planar contour needs
to be constructed, the dimension of the reference vector is 2, which is equal to the dimension of the two
components of the input sample point [X, Y]. The mechanism of accumulating errors is introduced
to determine where to insert new cells in the network learning process so that the network can grow
dynamically. Each pair of links (i, j) has an age attribute of age (i, j), which is used to dynamically delete
invalid connections during the learning process. The set of elements connected to a particular cell is
Nc = {i|∀i ∈ A, (c, i) ∈ C} constitute its topology neighborhood. The initial GNG network contains
a small number of cells and empty connections, as the network learning, and gradually increase the
number of units and change the connection, in order to achieve input space topology and spatial
geometric approximation.

Taking the feature vector D(FlowR, PositionR) as input sample, the learning process of GNG
network is as follows:

i. Initialization A consists of two elements A = {c1, c2, c3}. The coordinates of three randomly
selected points in the input sample D(FlowR, PositionR) are used as the reference vectors of
c1, c2 and c3. Initialization Unit Connection Set C = {(c1, c2), (c2, c3), (c1, c3)}. Set the current
learning step = 0.

ii. Learning times, step = step + 1, select a point ε randomly from the input eigenvector as the input
sample and find the nearest-neighbor and next-nearest neighbor units of ε in A:

n1 = arg minn∈A‖ε−ωn‖ (20)

n2 = arg minn∈A\n1
‖ε−ωn‖ (21)

where ‖·‖ represents the norm of the Euclidean space vector.
iii. If there is no connection between n1 and n2, add the connection between the two cells:

C = C ∪ {(n1, n2)}. i f (n1, n2)∈C (22)

Set age (n1, n2) = 0 for connection (n1, n2). And increase the age of all connections for cell n1:

{n1, ∗} = {(n1, i)|∀i ∈ Nn1} (23)

age(n1, i) = age(n1, i) + 1, ∀(n1, i) ∈ (n1, ∗) (24)

iv. Update the error of n1 by the square of the Euclidean distance between σ and the reference
vector of the nearest neighbor cell n1:

∆εn1 = ‖σ−ωn1‖
2 (25)



J. Sens. Actuator Netw. 2018, 7, 41 11 of 19

v. Update the reference vectors of n1 and its topological neighbors with the following rules:

∆ωn1 = γb(σ−ωn1) (26)

∆ωi = γn(σ−ωi), ∀i ∈ Nn1 (27)

where γb and γn represent the learning rate of winning unit n1 and its topology
neighborhood, respectively.

vi. If the learning frequency is an integral multiple of the unit insertion frequency ϕ, insert the
new unit as follows: Find the unit p with the largest accumulation error and the maximum
error unit in the topology neighborhood of p q

p = arg maxi∈Aεi (28)

q = arg maxi∈Np εi (29)

Add a new node element K whose reference vector and error are the mean of p and q:

A = A ∪ {k}ωk =
ωp + ωq

2
and εk =

εp + εq

2
(30)

Delete the connection (p, q), add new connections (p, k) and (q, k) and reduce the accumulation
error of units p, q, k by a percentage:

C = C/(p, q) ∪ {(p, k), (q, k)} (31)

∆εi = −αεi, i ∈ (p, q, k) (32)

vii. Reduce the cumulative error of all units by a fixed percentage ∆εi = −βεi, ∀i ∈ A.
viii. Delete all {n1, ∗} all connections whose age is greater than the parameter αmax, and delete if

the number of connections to a cell is 0 at the time of deletion:

C = C{({n1, i )|age(n1, j)〉αmax, ∀i ∈ Nn1} (33)

C = C/
{

j
∣∣ Nj = ∅, ∀j ∈ A

}
(34)

ix. If the set termination condition is reached, for example, the number of learning step > stepmax,
then terminate; otherwise, skip to step (ii) to continue learning.

The essence of GNG algorithm is to transform the network in the neuron’s reference vector space
by the competitive Hebbian learning rules so that the network composed of neurons gradually
converge to the geometric distribution and topological structure of the input sample space in
a probabilistic manner. The transformation includes two types: Geometric transformations and
topological transformations Geometrical transformations are simpler, and the local neuron reference
vectors are moved by Step (v) to continuously change the receptive field of neurons in the signal space
and converge them into a local cluster center. Clustering forms the sample space A vector quantization,
in order to reduce the quantization error, need to insert a new cluster center by Step 6 to assign a
local error, and Step (ix) to delete the cluster center which contributes little to the error reduction.
Meanwhile, the topology transformation in the learning process is performed by Step (iii), Step (iv),
Step (viii). The specific method is to insert and delete inter-neuronal connections, detect the wrong
connections that should be deleted through neuronal age-aging and update mechanisms, and if a
connection has a high response frequency under the influence of the input signal Retain, delete if
inactive for a long time.
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In the process of GNG learning, the coordination between geometric transformation and
topological transformation should be kept in place [30]. The change of neuron position may lead to
the failure of topological connection. If the two parameters γb and γn are set too large, will be larger,
and the topology transformation too late to delete the resulting error connection. Which will lead
to grid self-intersection and a large number of wrong connections. GNG algorithm Step 6, the new
neurons inserted at a fixed frequency may produce outdated nerves. If the number of neurons grows
too fast, not only does it increase the burden of finding the winning neuron, but also the topology
transformation cannot establish an effective connection near the new cell, resulting in a large number
of holes in the network. In addition, Step 8 is deleted by a fixed age threshold. However, the age-based
deletion mechanism does not guarantee the constraint (1) and constraint (2) of the triangular mesh
reconstruction problem. If the edge of the deletion is not invalid edge, it will produce holes in the
triangle mesh; and if the follow-up learning process repeatedly inserts and delete the edge, this will
lead to the structural instability of the neural network and cannot converge. Based on the above
analysis, it is necessary to improve the neuronal insertion and deletion mechanism of the GNG
algorithm for the constraint of the triangular mesh reconstruction.

Because the outline of hierarchical data is composed of one ring, the node on the ring can only be
connected with two nodes, that is, the predecessor and successor of the node. However, with GNG
algorithm, it is easy to form a node connection because there is no limit of number of nodes connected
More than two bifurcated structures or insufficient node connections lead to ring breakage. In order to
limit the scope of the solution space, a constraint mechanism needs to be introduced in the GNG so that
the GNG network will try its best to satisfy the constraint of only two immediate topological neighbors.

In the GNG algorithm, step (iii) is modified as:
If there is no connection between n1 and n2, first add the connection between the two cells:

C = C ∪ {(n1, n2)} if (n1, n2)∈C (35)

Set age (n1, n2) = 0 for connection (n1, n2). And increase the age of all connections for cell n1:

{n1, ∗} = {(n1, i)|∀i ∈ Nn1} (36)

age(n1, i) = age(n1, i) + 1 ∀(n1, i) ∈ {n1, ∗} (37)

At this point, if the number of connections for a cell is greater than 2, a bifurcated structure is
formed, removing the oldest connections from {n1, ∗} and {n2, ∗}. When a new connection is inserted,
the oldest connections are detected and deleted, ensuring that each node unit is directly connected to
the two surrounding units.

In the process of hierarchical contour reconstruction of point cloud data by GNG algorithm,
the data involved in the outline of each layer take values within the range of δ near the layering plane.
In order to ensure the accuracy of the reconstructed contour, a weighting mechanism is introduced
into the learning rule. During the neural network learning, the points far away from the plane of
stratification have less influence on the neurons, while point cloud from the plane is more affected,
so step (v) is modified as:

Update the reference vectors of n1 and its topological neighbors with the following rules:

∆ωn1 = γb(σ−ωn1)F(|σz − Pos|) (38)

∆ωi = γn(σ−ωi)F(|σz − Pos|), ∀i ∈ Nn1 (39)

where δz represents the (x, y) coordinates of the sample point, and F(x) is a weight function inversely
proportional to x, indicating that the farther the point is from the layered plane, the smaller the
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contribution to the unit weight vector. In the actual calculation of the total weight function take
Gaussian function:

F(x) = e−x2/e(t)2
(40)

Among them, the center of Gaussian function is 0, c(t) is Gaussian radius, decay with time. It can be
seen from the equation that the farther away from the layering plane, the smaller the weight adjustment
range, so as to ensure that the network finally converges to a stable state. In addition, when using
GNG network to reconstruct the outline data of each layer, if each layer initializes three neurons by
adopting the initial step of GNG, each layer needs to be rebuilt from the initial GNG network during
the reconstruction and finally reconstructed the complete outline of the data. In this paper, based on
the principle of geometric continuity of solid parts, that is, the principle that the contour of adjacent
layers of solid parts does not change much, the GNG network structure studied in the previous layer
contour reconstruction is taken as the initial structure of the next layer. When the change is small,
the learning process converges quickly. When the topology of the interlayer ring structure changes
suddenly, the topological structure can be automatically changed during the GNG learning process.

HGNG, defined as a tree of graphs, is a clustering neural network that overcomes the original
space constraints of GNG [31]. It has a hierarchical, nonfixed structure [32]. It consists of multiple
layers, consisting of several independent GNGs, the number and size of which are determined during
the training phase. The procedure to learn such hierarchy is detailed in the following. The process
starts by training the root graph with the overall set of training samples. Each time that a graph must
be trained with training set S, this is done according to the algorithm specified in Section 1. If the
resulting number of units is H = 2, then the graph is pruned, because it is too small to represent any
important features of the input distribution. Otherwise, a new graph is created for each unit i and the
training process is invoked recursively with the receptive field of unit i as the training set:

Vi = {ε ∈ V|i = arg mini∈A‖ε−ωi‖} (41)

This recursive process continues until a prespecified number of levels are reached. The elimination
of the graphs is with fewer than three units and the split of the training set together in order to attain a
parsimonious hierarchy, i.e., one with a reduced number of graphs and units. This is because lower
graphs in the tree cannot have many units because their training sets are smaller. It is worth noting
that many of the created graphs will eventually be pruned right after their training, so that the fact
that a graph is created for each unit does not lead to uncontrolled growth.

4. Performance Evaluations

4.1. Experimental Environment

Simulation experiments are based on NS [33], and urban traffic simulation tools (SUMO) [34].
NS2 provides a relatively complete low-level protocol and a simple programming interface. SUMO is
a software tool used to generate vehicle traffic by specifying the speed, type, behavior, and number of
vehicles. SUMO can also set the road type and conditions. While simulating the IDS in this article,
SUMO is used to generate the move trace file, and NS2 is used to load these trace files and run the IDS.

4.2. Experimental Parameters

In the experimental simulation, the experimental parameters are shown in Table 2. The vehicle
can run on a 5-km-long highway with two lanes and can communicate with other vehicles within
500 m of the transmission range according to the communication protocol 802.11p. To avoid generating
too much data in a simulation, we set the simulation time to 165 s, the vehicle arrival interval to 1 s
and the transmission interval (BeaconT) to 0.5. In order to ensure that ResponseMsg has enough time
to arrive, this article sets the response latency (WaitingT) to 0.2 s. Taul and Taut (HGNG-related two
parameters) were set to 0.1 and 0. 01.
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Table 2. Parameter setting.

Parameter Value

Experimental scene 2 lane of 5 km highway
Maximum vehicle speed 100 km/h

Wireless communication protocol 802.11p
Transmission range 500 m

Simulation time 165 s
Vehicle arrival interval 1 s
Transmission interval 0.5 s

The corresponding waiting times 0.2 s
Tau1, Tau2 0.1, 0.01

4.3. Experimental Results

In order to collect data to detect attacks, this experiment uses different simulation scenarios.
In this experiment we collect data in the absence of a vehicle attack (normal conditions) to train IDS.
In addition, IDS is tested in the presence of an attacking vehicle (unusual situation) to understand the
IDS work in this article. In the following, this experiment verifies the validity of this system IDS in two
aspects (traffic flow detection and vehicle location detection).

In order to verify the validity of IDS proposed in this paper, the experiment collect the average
flow rate (Flowown) of vehicles randomly selected under different conditions and the flow of its
reception (Floweng), as shown in Figures 6–8. Figure 7 shows the data under normal conditions.
It can be observed (Flowown and (Floweng) values are fairly close with very slight variation. Then,
50% of the vehicles attacked are inserted and they send a fake traffic flow (close to the blue dot at the
bottom of the Figures 7 and 8) after t = 50 s. In the absence of IDS (Figure 7), (Floweng) decreases
with acceptance of all messages (including normal and abnormal messages) and decreases from the
legitimate vehicle (Floweng) (the blue dot near the red curve) as it also Affected vehicles. In the case
of IDS, as shown in Figure 8, it can be observed that the IDS proposed in this paper can detect Flowneg
and then reject the abnormal message, so that the (Flowown) value is similar to normal. This means
that the IDS proposed in this paper is effective in traffic flow detection.
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In verifying the validity of the IDS proposed in this paper for vehicle position detection,
the experiment collects the PositionR values of vehicles randomly selected in different situations
and displayed in Figure 9. First run the simulation under normal conditions. Figure 9a presents the
values of the PositionR at a relatively low level. The coordinates of the PositionR here are caused by
some unavoidable errors, for example device errors, transmission errors, and so on. Hence, a noticeable
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variation was attained. On the other hand, assuming that there is 50 percentage of attack vehicles
in an abnormal situation, the attacking vehicle changes their position information in BeaconMsg and
ResponseMsg, as exhibited in Figure 9b,c. In the absence of IDS (Figure 9b), many PositionR values
appear to deviate significantly from normal at this point. Finally, IDS in each vehicle is activated
(Figure 9c), it can be notice here almost all PositionR values are close to normal, which indicates the
efficiency of the adopted IDS in the vehicle position detection. Therfore and based on those two-step
verification mechanism, it is approved the feasibility of the applied modeling strategy.J. Sens. Actuator Netw. 2018, 7, x FOR PEER REVIEW  16 of 19 
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5. Conclusions

In the current research, a new modeling strategy is proposed called HGNG-based IDS to detect
possible attacks in the VANET. The IDS mainly contains a new feature extraction mechanism and
classifier based on a HGNG neural network. The proposed feature extraction mechanism is used
to extract two main features: traffic flow features and vehicle position features. To extract the
location features more effectively, it adopted a semicooperative procedure to extract the location
features in the feature extraction mechanism. It not only collects the location feature by cooperatively
collecting the current location information of the neighboring vehicles, it also can extract the location
features according to the historical location information. Further, in the HGNG-based classifier,
a two-step verification mechanism was used for more accurate judgment of vehicle message anomalies.
In addition, we conducted an experiment where the proposed IDS was evaluated and observed.
The findings of the current study evidenced the capacity of the proposed modeling strategy to the
other IDS in terms of accuracy, stability, processing efficiency, and message size.
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