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Abstract: Autonomous systems developed with the Belief-Desire-Intention (BDI) architecture tend to
be mostly implemented in simulated environments. In this project we sought to build a BDI agent for
use in the real world for campus mail delivery in the tunnel system at Carleton University. Ideally,
the robot should receive a delivery order via a mobile application, pick up the mail at a station,
navigate the tunnels to the destination station, and notify the recipient. In this paper, we discuss
how we linked the Robot Operating System (ROS) with a BDI reasoning system to achieve a subset
of the required use casesand demonstrated the system performance in an analogue environment.
ROS handles the connections to the low-level sensors and actuators, while the BDI reasoning system
handles the high-level reasoning and decision making. Sensory data is sent to the reasoning system
as perceptions using ROS. These perceptions are then deliberated upon, and an action string is sent
back to ROS for interpretation and driving of the necessary actuator for the action to be performed.
In this paper we present our current implementation, which closes the loop on the hardware-software
integration and implements a subset of the use cases required for the full system. We demonstrated
the performance of the system in an analogue environment.

Keywords: belief-desire-intention (BDI); jason; robot operating system (ROS); robotic agents

1. Introduction

An autonomous agent can be defined as a system that pursues its own agenda, affecting what it
senses in the future, by sensing the environment and acting on it over time [1]. Autonomous systems
should be designed in such a manner that they can intelligently react to ever-changing environments
and operational conditions. Given such flexibility, they can accept goals and set a path to achieve these
goals in a self-responsible manner while displaying some form of intelligence.

The Belief-Desire-Intention (BDI) framework is meant for developing autonomous agents,
in that it defines how to select, execute and monitor the execution of user-defined plans (Intentions)
in the context of current perceptions and internal knowledge of the agent (Beliefs) in order to satisfy
the long-term goals of the agent (Desires). However, so far, very few applications of BDI have been
observed outside of simulated or virtual environments. In this paper, we describe how we built our
autonomous robot that uses BDI (and specifically, the Jason implementation of the BDI AgentSpeak
language) and Robot Operating System (ROS) to eventually deliver interoffice mail in the Carleton
University campus tunnels. The Carleton tunnel system allows people to go from one campus building
to another without having to face Ottawa’s harsh winters and makes for a more controlled environment
for our robot to navigate. However, being underground also means that access to Global Navigation
Satellite System (GNSS) signals, such as Global Positioning System (GPS), is not possible, and internet
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access is limited to certain areas. In this context, ultimately the robot will have to know where it is and
where to deliver mail, but there are also some sub-goals, like obstacle avoidance and battery recharge,
which it might have to achieve in order to get to its main goal.

Our use of BDI for this work is two fold. First, BDI provides a good goal-oriented agent
architecture that is resilient to plan failure and changes to context. It also supports the notion of
shorter-term and longer-term plans that can be organized so as not to conflict with each other. Granted,
BDI may not necessarily be the perfect ad hoc solution for agent-based robotics, but there is just not
enough literature to demonstrate the appropriateness of BDI (or lack thereof) in robotics.

There are alternative agent architectures to BDI that are available, for example the subsumption
architecture [2,3]. Although it is possible that the robotic behaviours implemented in this paper could
have implemented the same robot using subsumption, our longer-term goals for this project would
likely make the use of other architectures more difficult. BDI is goal-directed whereas in the case of the
subsumption architecture, the agent behaviour emerges from the various layers built into the agent [4].

In the remainder of the paper, we first provide some background on BDI and ROS (Section 2),
and related work on known implementations of agent-based robots (Section 3). We then describe our
overall hardware and software architecture (Section 4). Next, we describe in more detail the hardware
and software implementation (Section 5) followed by an evaluation of the architecture (Section 6) and a
discussion of the lessons learned using our method for agent-based robotics (Section 7). Our conclusion
(Section 8) provides a summary of the key accomplishments presented in this paper as well as our plans
for future work. Additional details with respect to the hardware implementation, specifically related
to our connections between our computer and the robot’s power system and our line sensor circuit,
used for path following, are provided (Appendix A).

2. Background

We provide background on BDI and the AgentSpeak language in Section 2.1. We then introduce
ROS in Section 2.2.

2.1. Belief-Desire-Intention Architecture

The principles that underpin BDI originated in the 1980s cognitive science theory as a means of
modelling agency in humans [5]. Since that time, this model has been applied in the development
of software agents as well as the field of Multi Agent System (MAS). An example of a popular
implementation of applying BDI to agent reasoning is Jason [1,6]. In Jason, an agent’s initial belief
base, goals and plans are specified using AgentSpeak.

In BDI systems, a software agent performs reasoning based upon internally held beliefs, stored in
a belief base, about itself and the task environment. The agent also has objectives, or desires, that are
provided to it, as well as a plan base, which contains various means for achieving goals depending on
the agent’s context. The agent’s reasoning cycle consists of first perceiving the task environment and
receiving any messages. From this information, the agent can then decide on a course of action suitable
to the context provided by those perceptions, the agent’s own beliefs, messages received, and desires.
Once this course of action has been selected, we can say that the agent has set an intention for itself.
These plans can include updating the belief base, sending messages to other agents, and taking some
action. As the agent continues to repeat its reasoning cycle, it can reassess the applicability of its
intentions as it perceives the environment, dropping intentions that are no longer applicable [1,6].

Agents developed for BDI systems using Jason are programmed using a language called
AgentSpeak. This is a logic-based programming language that bears similarities to Prolog. The syntax
provides a means for specifying initial beliefs for the agent to have, rules that can be applied for
reasoning as well as plans that can be executed. The Extended Backus–Naur form (EBNF) description
of AgentSpeak can be found in Appendix A.1 of [1]. Here, we provide a brief overview of AgentSpeak.

In general, AgentSpeak plans have the form of:

triggeringEvent : context <- body.
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A triggering event is the addition or deletion of a belief, achievement goal, or a test goal.
The syntax of these triggers takes the form of predicates. To differentiate goals from beliefs, achievement
goals begin with an exclamation mark (!) and test goals begin with a question mark (?). Triggers that
are based on the addition or deletion of a belief or goal begin with a positive (+) or negative (−) sign
respectively. An achievement goal is used for providing the agent with an objective with respect
to the state of the environment whereas a test goal is generally used for querying the state of the
environment. The context is a set of conditions that must be satisfied for the plan to be applicable
based on the state of the agent’s belief base. This is a logical sentence that can use both beliefs as well
as previously defined rules. The body includes the instructions for the agent to follow for executing
the plan. The plan body can include the addition or deletion of beliefs and/or goals as well as actions
for the agent to perform [1].

Listing 1 provides an example of an AgentSpeak plan. Here, we have a simple plan for the
achievement goal of !goTo(LOCATION). The variable LOCATION, interpreted as a variable due to the
capitalization of the first letter, specifies the agent’s destination. This specific plan is meant for the
context where the agent has arrived at the destination. Therefore, the plan context requires the agent
have direction(LOCATION,arrived) be a logical consequence of its belief base. This can either be
the result of this predicate being perceived, the belief being communicated to the agent, or adopted
through plan execution. This context is applicable when LOCATION unifies the goal with the agent’s
belief. For example, during execution, the agent could adopt the goal of !goTo(post1). In this case,
post1 specifies the specific location that the agent needs to travel to. This plan would become applicable
if the predicate direction(post1,arrived) is a logical consequence of the belief base. The body of
the plan is for the agent to execute the stop action, specified using the drive(stop) predicate.

Listing 1. Example AgentSpeak program.

+!goTo(LOCATION)
: direction(LOCATION,arrived)
<- drive(stop).

BDI enables agent-based systems to perform reasoning based upon beliefs in order to enable the
agent to achieve its goals, making it an attractive way for the implementation of autonomous systems.
However, for the application in this paper, this language needs a means to communicate to its sensors
and actuators. ROS, described in the next section, provides the middleware necessary to connect Jason
to hardware.

2.2. Robot Operating System (ROS)

ROS is a package for developing software for robotic applications [7]. ROS has an active
community supporting a variety of robotic platforms, sensors, and actuators. By building robotic
applications that are compatible with ROS, developers enable their applications to be compatible with
other devices and software nodes supported by the community. This allows developers to focus on the
implementation of individual nodes and enables flexibility to use one of many available nodes that are
compatible with ROS. For example, various hardware component developers have made ROS nodes
available, allowing systems developers to use those modules without concern as to how those nodes
are implemented in detail.

ROS operates using a tuple-space architecture. Various software nodes publish and subscribe
to various topics using socket-based communications instead of communicating with other nodes
directly. This removes the need for developers of individual nodes to concern themselves with which
nodes they are interacting with, they need only concern themselves with the topics that they use.
This is managed using a central master node which has the role of brokering peer-to-peer connections
between nodes that publish and subscribe to the same topics. ROS also provides functionality for
recording run-time data, which can be used for diagnostics.
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3. Related Work

Although there are many examples of research on software agents and the use of BDI, this review
of related work focuses on the application of BDI to robotics where the development was targeted
toward real-world applications. We will also discuss work that sought to use BDI agents with ROS.
This work is discussed in Section 3.1. Next, in Section 3.2, we discuss how our approach in the context
of the related work.

3.1. BDI for Robotic Applcations

The Australian military conducted research into the use of BDI for controlling a fixed-wing
Unmanned Aerial Vehicle (UAV) called a Codarra Avatar. As part of this project, they developed
both the “Automated Wingman”, a graphical programming environment where pilots could provide
mission-specific programming for a UAV, as well as a BDI-based flight controller for the UAV itself.
The intent of this research was to enable pilots, who may not have programming skills, to provide
mission parameters in a way more natural to them using the military’s Observe Orient Decide
Act (OODA) loop. The authors proposed that the OODA loop could be approximated using BDI.
Successful flight tests were performed using these systems in the mid 2000s, although it is unclear if
any follow-on research was conducted [8,9].

A more recent example of BDI being used for controlling a drone was provided by Menegol [10,11].
Their implementation used the JaCaMo framework [12], which includes Jason. A video of their UAV
flying is available online [13]. This work is currently being extended to use the ROS as the core of
the architecture [14,15]. Their approach is to build a linkage between ROS and Jason, where Jason
agents can run actions by passing messages to modules in ROS and receive perceptions by receiving
messages from other modules. The perceptions and actions are defined using manifest files that specify
the properties and parameters of the messages. A more generalized version of this project called
jason_ros, for other types of integration between Jason and ROS for other applications has evolved out
of the work with UAVs [16]. This is similar to other efforts to link ROS to Jason, such as rason [17],
and JROS [18], although it is unclear if these efforts are related to this project.

Taking another approach using Python, the Python RObotic Framework for dEsigning sTrAtegies
(PROFETA) library implements BDI and the AgentSpeak language for use with autonomous robots [19].
They are interested in determining if Agent Oriented Programming (AOP) can be implemented
with Python for simpler robotic implementations. In their paper, the authors used the Eurobot
challenge as well as a simulated warehouse logistics robot scenario as case studies. In the Eurobot
challenge, the robot must sort objects in the environment while also working in the presence of other,
uncooperative, robots [20].

The ARGO project [21] has interfaced Jason agents with an Arduino using a library called
Javino [22]. Javino is a Java library for controlling Arduino computers from Java programs that was
specifically designed with the intention of using it to control a robot using Jason programs. The authors
of the ARGO paper claim to not be tied to specific hardware or a specific AOP language, such as
AgentSpeak [21,22].

Alzetta and Giorgini contributed work toward a real-time BDI system connected to ROS 2 [23,24].
Their implementation uses a custom built BDI engine, implemented in C++, which supports soft
real-time constraints. The agent’s desires are encoded with soft real-time deadlines for when they need
to be achieved. The plans in the agent’s plan library include the execution time for that plan. The agent
reasoning system can then reason about the priority of desires, time constraints and execution time
when performing plan selection.

Dennis et al. explored the use of rational agents implemented with GWENDOLEN and several
robotic applications [25]. A key feature of their implementation was the use of an “abstraction
engine” for performing the translation between the agent, the “physical engine” and the “continuous
engine”, which were responsible for the interface with the real world (or simulated) sensors and
actuators of the robot. They used this method to address the challenge of using an agent reasoning
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system, which operates using “discrete first order logic predicates”, to control a robot in the real-world
which can include continuous sensor signals. Their concern was that such continuous signals could
overwhelm the BDI reasoner.

Cardoso et al. interfaced BDI agents, implemented in GWENDOLEN, with ROS as described
in [26]. Their implementation uses the rosbridge protocol to connect their agent reasoner with ROS.
They also experimented with connecting Jason to ROS using the protocol approach. Their choice of
GWENDOLEN was motivated by their desire to make use of the Agent Java PathFinder (AJPF) model
checking tool. They also highlight two interesting issues related to linking agents with robots. First,
the concern that the sensors may overwhelm the reasoner, as the sensors may generate data faster than
the agent can handle it. They address this issue by proposing the use of filters to the sensor data to
prevent the agent from being overwhelmed. They also mention an issue with implementing actions
using synchronous service routines in ROS, which would cause the agent to wait for the action to
be completed before continuing the reasoning cycle. Their proposed approach is to use an external
handler for executing longer term actions. This handler provides updates to the agent, which can in
turn command the handler to stop or continue the longer-term action, as necessary.

The authors’ own related work includes the Simulated Autonomous Vehicle Infrastructure (SAVI)
project, which aimed to develop an architecture for simulating autonomous agents implemented using
a Jason BDI [27,28]. Among its key features is the decoupling of the agent reasoning cycle from the
simulation time cycle, enabling the simulated agents to run in their own time. The agent’s perceptions
and actions passed between the simulated agent body running in a separate thread and decoupled
from the agent’s reasoning cycle. Although this system was targeted toward a simulated environment,
the design was intended to be useful for application to robotic agents, not only simulated agents.

3.2. Comparison to Related Work

Our goal is to use an established BDI system, namely Jason, in an ecosystem for various robotic
platforms (ROS) and enable the use of agent systems to solve real-world problems using robotics,
taking advantage of ROS’ ecosystem of publishers and subscribers. As mentioned in Section 3.1,
while there are some projects that have sought to control real-world robotics using BDI reasoning
systems, there are a limited number of works in this area. Here, we will discuss the difference in our
approach to those discussed in the related work.

In the case of the Codarra avatar agent, although it is very interesting, it does not seem to be
openly available. Other work, such as PROFETA, uses a Python based BDI, as opposed to the more
commonly used Jason. Our work is more similar in motivation to the efforts to link Jason and ROS,
although our implementation of the connection between ROS and Jason is quite different. In our
case, the BDI reasoning system is built as a stand-alone program with rosjava using Jason as a library,
without the use of an external middleware.

Our approach does have similarities with the approach taken by Dennis et al. with respect to the
use of abstraction engines. The perception and action translators that we use could also be thought of as
abstraction engines. A key difference in our approach is that we do not have a single abstraction engine
for the agent to interact with but several translators for various sensors and actuators, although they
could also be implemented as a single node. The idea here is that a developer could add or remove such
translators (as well as the underlying sensors and actuators) as necessary, without necessarily needing
to rework the unaffected nodes. This allows for more flexibility in reconfiguring the system to support
new sensors and actuators. The challenge, however, is that we need to handle issues with asynchronous
sensor data becoming asynchronous perceptions. This challenge was mentioned by Dennis et al. as
well as by Cardoso et al. They also highlighted the challenges of potentially overwhelming the
reasoner with frequent sensor updates and the issue of the agent waiting synchronously while actions
are completed, possibly stalling the reasoning cycle while an action that takes a long time is executed.
As mentioned in the related work, they proposed an external handler for executing these longer-term
actions. This handler provides updates to the agent, which can in turn command the handler to stop
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or continue the longer-term action, as necessary. This bears some similarity with the our approach,
which uses the action translator in this service handler capacity, however our reasoning system does
not wait for the action to be completed, only for the action to be passed to the state synchronization
module within SAVI ROS BDI. The trade-off of this design difference is discussed in greater detail in
Section 7.

4. Architecture

This section outlines the architecture of the mail delivery robot. The robot is intended to function
on an on-demand basis, where a mail-sending user would summon the robot to collect mail, like how
users request rides using ride-sharing apps. The robot would then autonomously navigate to a nearby
mail collection and delivery location to collect the item from the user. Once the mail has been collected,
the robot would then autonomously navigate to the mail delivery location and alert the receiver that
there is mail for them to receive. The receiver would then meet the robot at another mail collection
and delivery location. For the purposes of this early stage prototype, the mail delivery locations,
and any other points of interest are indicated using a Quick Response (QR) code, and the robot paths
are marked using a line for the robot to follow. Removing the need for instrumenting the environment
will be discussed in the future work, in Section 8.2.

First, in Section 4.1, we examine the task environment that the robot will operate in. We then
discuss the hardware configuration in Section 4.2. The software architecture is discussed in Section 4.3.

4.1. Environment

The eventual task environment for the robot is the tunnel system that connects the buildings of
Carleton University. This provides our robot with an indoor space which connects to almost every
building on campus with no weather to deal with and smooth floors to drive on. Although these
are attractive features of the tunnel system, there are some drawbacks. First, the tunnels do not have
consistent wireless internet coverage, although there are locations where there is reliable network
access. The tunnels also have lower lighting levels than typical office environments, providing a
potential challenge to the design. Finally, in the tunnel there is no access to GNSS signals, such as
GPS, meaning that the robot will need to determine its location another way. At our current stage
of development, we have focused our development and testing efforts in an analogue environment
where we have focused our testing on the performance of the agent reasoning system in preparation
for our planned work with the actual tunnels.

4.2. Hardware

The hardware configuration of the mail delivery robot is shown in Figure 1. The mail delivery
robot is primarily implemented using an iRobot Create2, which is the development version of the
Roomba vacuum cleaning robot, without the vacuum-cleaning components. This robot can be
controlled using a command protocol over a serial interface [29] and can also be used to provide
power to other connected devices. A Raspberry Pi 4 computer was attached to the robot and connected
via a serial cable and powered from the robot’s battery using a power adapter. Furthermore, connected
via a serial connection are a camera and a line sensor used for detecting a line on the floor of the tunnels.
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Figure 1. Mail delivery robot hardware.

4.3. Software

The control software is implemented using a set of modules connected via ROS, as shown in
Figure 2. The reasoning system for this robot, inspired by the SAVI project [27,28], decouples the
reasoning cycle from the interface to the sensors and actuators using a state synchronization module.
The internal reasoning system for this project, called SAVI ROS BDI, and shown in Figure 3, is inspired
by the original SAVI configuration. Implemented in Java, using the rosJava package [30] and the Jason
BDI engine, this module connects to ROS directly, subscribing to perceptions and inbox messages
and publishing actions and outbox messages as required. Again, the state synchronization module is
important as perceptions and messages can arrive at any time, decoupled from the reasoning cycle of
the agent. This is set up in three main components: The ROS connectors, the state synchronization
module, and the agent core. The ROS connectors are responsible for subscribing to either perceptions
or inbox messages, or publishing actions or outbox messages, each in their own thread of execution.
These are connected to the state synchronization module, which manages queues or messages in and
out of the agent as well as perceptions and actions in and out of the agent. The agent core, which runs
the agent reasoning cycle in a separate thread of execution, checks for perceptions and inbox messages
at the beginning of the reasoning cycle. Then, the agent decides on an appropriate course of action
and then updates the agent state with new outbox messages and actions which need to be executed.
The agent behaviour is defined by an AgentSpeak file which is parsed by the reasoning system at
start-up, making this module fully platform agnostic: there are no assumptions about the underlying
hardware, capabilities, or mission of the agent in the implementation of this system. This agent
reasoning system is available at [31].

The Create2 robot platform can use the create_autonomy package available in ROS,
which connects to an underlying C++ library called libcreate to ROS, publishing the data from
various sensors as ROS topics and subscribing to topics related to the various commands available
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to the robot [32]. Furthermore, connected in this way are drivers for the QR camera and photodiode
line sensor, which each publish their data as ROS topics. SAVI ROS BDI is similarly connected to ROS.
Lastly, as required by SAVI ROS BDI, are the application node translators, which translate sensor data
into AgentSpeak perceptions and conversely translate action commands in AgentSpeak to the relevant
topics being subscribed to by the create_autonomy package. A user interface, which publishes to the
inbox and subscribes to the outbox is included for the user to be able to communicate with the agent
using Jason’s agent communication mechanism. Lastly, an AgentSpeak program is provided to the
reasoning system, which defines the behaviour of the agent. The implementation of the perception
and action translators, the drivers for the QR camera and the line sensor, and the AgentSpeak program
are discussed in Section 5. The implementation of these programs is available at [33].

Figure 2. Mail delivery robot software architecture (robot image credit [29], camera image credit: [34]).

Figure 3. SAVI ROS BDI internal architecture.

5. Implementation

This section discusses the implementation of the various aspects of the system, shown in Figure 4.
The source code for this project can be found on GitHub [33,35]. First, we discuss how the agent
perceives the battery’s state of charge in Section 5.1. Next, we discuss the means of maneuvering the
robot using line sensing in Section 5.2. As the robot is expected to operate in an environment without
access to GNSS signals, the robot uses a system based on QR floor markers for determining its position.
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This is discussed in Section 5.3. The user interface is discussed in Section 5.5. The action translator,
which handles the implementation of the robot’s actuators is explained in Section 5.6. The details of
the implementation of the agent behaviour, in AgentSpeak are provided in Section 5.7.

(a) (b)

Figure 4. Assembled robot prototype (side view: (a), top view: (b)).

5.1. System Power

The robot and control computer (a Raspberry Pi 4) were both powered using the iRobot
Create2’s power system. The method of connecting these components is described in Appendix A.1.
With the robot and computer successfully powered by the robot’s power supply, it is necessary
for the reasoning system to have awareness of the battery charge state so that it can report to a
charging station if necessary. The create_autonomy package regularly publishes a ROS topic called
battery/chargeratio which indicates the percentage of charge left on the battery based on its capacity.
The perception translator node, implemented in Python, subscribes to this topic and publishes a
battery(full), battery(ok), or battery(low) string to the perceptions ROS topic. If the battery has
greater than 99 % charge remaining, the battery(full) and battery(ok) perceptions are published.
If the battery has less than 25 % charge, the battery(low) perceptions is published. If the battery has
between 25 % and 99 % charge, the battery(ok) perception is issued. These perceptions enable the
robot to drop its intentions and seek a charging station when needed as well as resume its mission
when charging is complete. These robot behaviours are explained in more detail in Section 5.7.

5.2. Maneuvering with Line Sensing

As our robot operates in an indoor environment without the support of GNSS systems for
navigation, a simple means of moving through the tunnels and navigation was required. As an
initial implementation, a line sensor was used for the robot to follow lines on the tunnel floor.
The implementation of this line sensor is discussed in Appendix A.2.

With the line sensor hardware implemented, we needed to consider how the signals would
be sent to the BDI reasoning system. A ROS node was implemented for measuring the line sensor
signal and publishing it for the reasoner. This node ran in a 10 Hz loop, implemented using ROS’s
rospy.Rate() and rospy.sleep() functions, and interfaces with the hardware via the Raspberry Pi’s
General-Purpose Input/Output (GPIO) library. The software monitors if the signals from the GPIO pins
are HIGH or LOW, indicating if the diodes of the line sensor are detecting the line under them. The line
sensor driver interprets the signals from the sensor to estimate if the line was centered under the sensor,
to the left or right side of the sensor, lost, or visible across the whole sensor. This information was
published to the perceptions topic. The content of these messages was formatted as logical predicates
which are useful for the reasoning system. These include line(center), line(left), line(right),
line(across), and line(lost). These perceptions were then received by the BDI reasoner and
interpreted as part of the agent reasoning cycle, discussed in Section 5.7. The line sensor software node
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was implemented together with the QR node in order to ensure that the perceptions for the line were
generated together with any position data. Location sensing with QR codes is discussed in Section 5.3.

5.3. Location Sensing with QR Codes

As the tunnel system in which the robot is expected to operate has no access to external navigation
systems, such as GNSS, it was necessary for the robot to have another means of identifying its location.
This was accomplished by posting QR codes along the path of the robot but without obstructing
the line track that the robot would be following. The camera used for scanning the codes was also
positioned on the left side of the robot and ten inches from the floor because of its focal length; this was
to enable the camera to capture the code properly.

The QR code is scanned using software responsible for managing the camera. Implemented in
Python, the camera driver scans for QR codes at a rate of 10 Hz. When a code is detected, the location
code included in the image is logged. A perception is prepared and published to the perceptions topic
as well as to the postPoint topic. The format of this perception is: postPoint(CURRENT, PREVIOUS)
where CURRENT is the current scanned location code, and PREVIOUS is the previously scanned location
code. This predicate is received by the BDI reasoning system and processed using the AgentSpeak
rules discussed in more detail in Section 5.7. It is also received by the navigation module, discussed in
Section 5.4. As mentioned in Section 5.2, this node was implemented together with the line sensor
node to ensure that the perceptions associated with the line sensor and location sensor were perceived
together by the reasoning system.

5.4. Navigation Module

The navigation module uses an A* search to find the best path to the destination from the
current location. Implemented in Python, this module subscribes to the location sensing module,
reading the postPoint data. This module also subscribes to setDestination, monitoring for a
command specifying the agent’s desired destination. The map of the environment, shown in Figure 5,
is loaded from configuration files which define the coordinate locations of all the QR code post
points on the map and the available paths between those locations. With the location data provided
by the connection to ROS, the navigation module receives the current and previously observed
locations for the robot. Using this location knowledge, and the coordinate locations of these locations,
an approximate direction vector for the robot can be calculated. Next, with the current location of the
robot, A* search, implemented using the python-astar package [36], is used to find the best path to
the destination. Using the generated path, the location of the current and next locations that the robot
needs to visit are used to generate a direction vector that the robot needs to follow in order to move
toward the next post point on the journey. By comparing these two direction vectors, the navigation
module can prepare a perception with the direction to the destination. The perception is generated
and published to the perceptions topic, telling the robot if the destination is to the left, right, ahead,
or behind. This perception is of the format direction(DESTINATION,DIRECTION), where DESTINATION
is the destination that the navigator is searching for and DIRECTION is either left, right, forward,
or behind, or arrived. In the event that the destination has not been specified, both DESTINATION and
DIRECTION are specified as unknown. This direction is finally published to perceptions for the agent
to use in decision making.
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Figure 5. Map of the test environment.

5.5. User Interface

The user interface currently consists of Python script that resides on the robot, responsible for
relaying messages from the user to the inbox topic and subscribing to the outbox topic. We plan
to develop this into an application where a user would be able to specify specific commands
for the robot using either a web browser or an Android application. On start-up, the script
queries the user to specify the location of the mail sender, the mail receiver, and the docking
station. The agent is informed of the docking station location using a tell message containing
dockStation(LOCATION), where LOCATION is the user specified location code for the docking station.
The mission parameters, the sender and receiver location, are passed to the agent using an achieve
message of the form collectAndDeliverMail(SENDER,RECEIVER). This tells the agent to adopt the
goal of !collectAndDeliverMail(SENDER,RECEIVER) with the sender location being specified by
SENDER and the receiver location specified by RECEIVER [1]. Once these messages have been sent to
the robot, the user interface prints messages received from the agent via the outbox, which provides
updates of the robot’s progress on its mission.

5.6. Action Translator

When the robot reasoning system requests that an action be performed by the robot, the action is
published to the actions ROS topic. These messages are interpreted by the action translator, a Python
script which subscribes to the actions topic and then publishes messages to the appropriate topics for
the create_autonomy node to control the lower level hardware of the robot and to the setDestination
topic, for setting the robot’s destination in the navigation module. The action messages that are
currently supported include actions for maneuvering the robot, docking and undocking the robot from
a charging station, and setting the destination for the navigation module.

The maneuvering actions include drive(DIRECTION) and turn(DIRECTION), where DIRECTION
can be either forward, left, right, stop, or spiral (where the robot will drive in a widening spiral
pattern). The drive(DIRECTION) action commands the robot to drive a short distance using the
predefined motor settings for the specified direction whereas turn(DIRECTION) performs the drive
action repeatedly until the line sensor detects that the line is centered under the line sensor. This is
useful for turning at intersections, or for searching for the line if it has been lost using the spiral.

For setting the destination of the robot, the action translator sends a specified DESTINATION to
the navigation module when setDestination(DESTINATION) is received. The action translator also
supports actions for docking and undocking the robot from the charging station using the internal
programming of the robot: station(dock) and station(undock).
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As the agent reasoning system continues the reasoning cycle once actions are sent to ROS, it is
important for the action translator to ignore any conflicting actions while the action is completed.
Trade-offs with respect to how actions are handled are presented in the Discussion, in Section 7.

5.7. Agent Behaviour

The reasoning system receives inputs via perceptions and a message inbox and actuates via
actions and outbox messages based upon the results of its reasoning cycle. The agent behaviour is
defined for the Jason BDI reasoner in AgentSpeak. The agent implementation for this project uses a
hierarchy of behavioural goals, each of which have supporting plans providing the agent with a means
of achieving the goals in a given context. At the top of the hierarchy are the battery charging and mail
mission related goals and plans. The plans that are triggered are used to adopt sub-goals for navigating
the robot to the destinations that the robot needs to visit in order to accomplish these objectives. Next in
the plan hierarchy are the plans that implement the navigation behaviours. These plans are responsible
for ensuring that the robotic agent travels to the required locations in the environment. Next in the
hierarchy are the plans for implementing the line following behaviour, which is how the robot moves
between the post points. Lastly, we have default plans for all of the goals that the agent can adopt.

We first discuss the goals associated with sending and delivering mail in Section 5.7.1. We next
discuss the plans for achieving the goal of charging the battery in Section 5.7.2. Both the battery
charging and mail delivery plans depend on lower level plans for navigation, discussed in Section 5.7.3.
The navigation plans use the path following goals for movement between post points on the map.
These goals are achieved using the path following plans discussed in Section 5.7.4. Lastly, a set of
default plans are discussed in Section 5.7.5.

5.7.1. Collecting and Delivering Mail

The !collectAndDeliverMail(SENDER,RECEIVER) mission is the main mission of this agent.
This mission is adopted by an achieve command from the user interface. For this plan, provided in
Listing 2, to be applicable, the robot must not have the belief of charging, which would preclude the
robot from being available to perform this mission. From here, the plan is very simple. First, the agent
makes a mental note of the mail mission parameters, in case the intention to complete this goal, or any
other goals associated with it, needs to be suspended and readopted later. Next, the agent adopts
the goal of !collectMail(SENDER) and !deliverMail(RECEIVER) before finally dropping the mental
note that of the mail mission parameters.

The plans for achieving the goal of !collectMail(SENDER) and !deliverMail(RECEIVER),
also provided in Listing 2, are similarly simple. First, the plan for collecting the mail for the context
where the agent has not yet collected it is provided. To accomplish this, the robotic agent must first
go to the sender’s location and then adopt the belief that it has the mail. There is a second plan for
!collectMail(SENDER) for the context where the mail has already been collected. This is necessary in
case the agent needs to restart the mail delivery mission after being interrupted. In this case, the mail
has already been collected, so no further action is necessary. The plans for !deliverMail(RECEIVER)
are similarly implemented, instead sending the robotic agent to the receiver’s location if the mail has
already been collected. Otherwise, there is nothing to deliver, so no action is required.
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Listing 2. Collect and deliver mail plans [33].

+!collectAndDeliverMail(SENDER,RECEIVER)
: (not charging)
<- +mailMission(SENDER,RECEIVER);

!collectMail(SENDER);
!deliverMail(RECEIVER);
-mailMission(SENDER,RECEIVER).

+!collectMail(SENDER)
: not haveMail
<- !goTo(SENDER,1);

+haveMail.

+!collectMail(SENDER)
: haveMail.

+!deliverMail(RECEIVER)
: haveMail
<- !goTo(RECEIVER,1);

-haveMail.

+!deliverMail(RECEIVER)
: not haveMail.

5.7.2. Charging Battery

The plans which implement the battery charging behaviour are provided in Listing 3. The agent
perceives the battery using three specific predicates, which are generated by the battery translator:
battery(full), battery(ok), and battery(low). Rather than having the agent adopt the goal of
monitoring the battery, we instead have two plans that trigger on the addition of the predicate
battery(low) to the agent’s beliefs. For either of these plans to be applicable, the agent needs to not
already be charging the battery and have knowledge of the dock station location. The first of the plans
is for the context where the agent’s belief base contains mailMission(SENDER,RECEIVER), a predicate
added to the belief base by the plans that achieve the !collectAndDeliverMail(SENDER,RECEIVER)
goal. In this case, the agent needs to add the belief of charging to the belief base and drop any other
intentions that the agent may have had. Next, the agent must charge the robot’s battery by adopting the
goal of !chargeBattery. Once this has been achieved, the agent can then drop the charging belief and
adopt the goal of !collectAndDeliverMail(SENDER,RECEIVER) in order to finish the mail mission that
was interrupted. The second plan provided for the addition of the belief battery(low) is applicable for
the context where the agent does not have mailMission(SENDER,RECEIVER) in its belief base. The only
difference between the body of these plans is that the agent does not need to drop intentions, nor does
it need to end by adopting the goal of !collectAndDeliverMail(SENDER,RECEIVER), as there was no
mail mission when the battery charging plan was triggered.

There are two plans triggered by the addition of the !chargeBattery goal, shown in Listing 3.
The first is for the context where the battery is not yet full, and the robot is not docked with the charging
station. Here, we adopt the goal of !goTo(DOCK,1), followed by taking the action of station(dock)
and adopting the belief of being docked, to prevent this plan from executing more than once. Lastly,
we readopt the goal of !chargeBattery for the agent to maintain the goal of !chargeBattery while
the battery charges. The last plan in this listing is applicable for the context where the battery is
fully charged, and the robot is still docked with the charging station. The plan body here is to first
undock the robot and then drop the belief that the robot is docked, having successfully charged the
robot’s battery.
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Listing 3. Battery charging plans [33].

+battery(low)
: (not charging) and

dockStation(_) and
mailMission(SENDER,RECEIVER)

<- +charging;
.drop_all_intentions;
!chargeBattery;
-charging;
!collectAndDeliverMail(SENDER,RECEIVER).

+battery(low)
: (not charging) and

dockStation(_) and
not mailMission(SENDER,RECEIVER)

<- +charging;
!chargeBattery;
-charging.

+!chargeBattery
: (not battery(full)) and

dockStation(DOCK) and
(not docked)

<- !goTo(DOCK,1);
station(dock);
+docked;
!chargeBattery.

+!chargeBattery
: battery(full) and docked
<- station(undock);

-docked.

5.7.3. Navigation Plans

The plans triggered by the addition of the goal of !goTo(LOCATION,WATCHDOG) are presented in
Listing 4. These plans are responsible for navigating the robot to locations, called post points, on the
map. These plans further adopt the goal of !followPath for moving between post points. This goal
predicate has two parameters: the location where the robot needs to move, and a watchdog parameter.
As the robot is navigating in an environment where the only means of position knowledge comes
from QR codes, which are not always visible, there is a possibility that the robot may need to make a
navigation decision without a visible post point code. As the navigation decisions require position
knowledge, we have added a watchdog counter to help the robot assess if it is stuck in such a state.
When adopting the plan to go to a new location, the watchdog parameter should be set to one.

The first plan for this goal is applicable in when the robot has not yet set a destination to navigate
to. In this case, the agent needs to specify the destination for the navigation module to generate
appropriate turn by turn directions. The plan body readopts this goal recursively as the robotic agent
has not yet arrived at the destination. The second plan is applicable when an old destination needs
to be updated to a new destination. Here, the agent has received directions from the navigation
module, however the destination parameter in the associated belief is for a previously requested
destination. In this case, the navigation module is updated to the new destination and the goal is
readopted recursively. The third plan is for the context where the robot has arrived at the destination.
Here, the robot is commanded to stop. The fourth, fifth, and sixth plans are all recursive navigation
plans associated with either turning the robot around, driving forward, turning left, or turning right
depending on the navigation recommendation that has been generated by the navigation module
and perceived by the agent. In all of these cases, once the agent executes the necessary maneuver,
the !followPath goal is adopted to drive the robot between post points. The last plan in this listing
relates to the watchdog. If the watchdog parameter has grown past 20, meaning that the agent has
tried to address this goal over 20 times, it is probable that the robot is stuck without a visible post point.
In this scenario, the !followPath goal is adopted as well as the !goTo() goal, resetting the watchdog.



J. Sens. Actuator Netw. 2020, 9, 56 15 of 30

The effect of adopting the goal of !followPath is to move the robot to a location where it can see a post
point. Keen readers will note that none of these plans address incrementing the watchdog. That role is
completed by a default plan, discussed in Section 5.7.5.

Listing 4. Navigation plans [33].

+!goTo(LOCATION,_)
: direction(unknown,_)
<- setDestination(LOCATION);

!goTo(LOCATION,1).

+!goTo(LOCATION,_)
: direction(OLD,_) and

(not (OLD = LOCATION))
<- setDestination(LOCATION);

!goTo(LOCATION,1).

+!goTo(LOCATION,_)
: direction(LOCATION,arrived)
<- drive(stop).

+!goTo(LOCATION,_)
: direction(LOCATION,behind)
<- turn(left);

!followPath;
!goTo(LOCATION,1).

+!goTo(LOCATION,_)
: direction(LOCATION,forward)
<- drive(forward);

!followPath;
!goTo(LOCATION,1).

+!goTo(LOCATION,_)
: direction(LOCATION,DIRECTION) and

((DIRECTION = left) | (DIRECTION = right))
<- turn(DIRECTION);

!followPath;
!goTo(LOCATION,1).

+!goTo(LOCATION,WATCHDOG)
: (WATCHDOG > 20)
<- !followPath;

!goTo(LOCATION,1).

5.7.4. Path Following Plans

The plans triggered by the addition of the !followPath goal are responsible for the line following
behaviour. The intent of this behaviour is to have the robot follow the line taped to the floor,
adjusting course as needed, until a post point is visible and then stop. If the line is not visible,
the agent needs to search for the line. The plans that implement this behaviour are provided in
Listing 5.

First, the applicable plan for the context where there is a post point visible. In this case, there is no
need to follow the path any further, so the agent stops the robot. Next, the applicable plan used for the
context where the agent perceives line(center) and no post point is visible. Here, the robot should
drive forward and readopt the !followPath goal. For the context where the line is lost, the agent
drives in a spiral pattern in the direction that the line was last seen in an effort to search for the line,
again recursively readopting the goal of !followPath. For the context where the line is perceived to be
across, the agent uses the command to drive to the left to recenter itself over the line. Lastly, we have a
plan for turning the robot to the left or to the right in order to readjust the robot over the line.
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Listing 5. Path following plans [33].

+!followPath
: postPoint(A,B)
<- drive(stop).

+!followPath
: line(center) and

(not postPoint(_,_))
<- drive(forward);

!followPath.

+!followPath
: line(lost) and

(not postPoint(_,_))
<- drive(spiral);

!followPath.

+!followPath
: line(across) and (not postPoint(_,_))
<- drive(left);

!followPath.

+!followPath
: line(DIRECTION) and

((DIRECTION = left) | (DIRECTION = right)) and
(not postPoint(_,_))

<- drive(DIRECTION);
!followPath.

5.7.5. Default Plans

It is important to have default plans for the agent if there are no other applicable plans available
to achieve its goals. These may run when perceptions for sensors unrelated to the goal are received,
for example when a battery perception is received on its own when the agent is working through its
navigation goal. In this situation, we need to ensure that these goals are not inadvertently dropped,
using recursion to readopt the goals, as necessary. The default plans used by this agent are provided in
Listing 6.

The first plan ensures that the !collectAndDeliverMail(SENDER,RECEIVER) is not dropped in
error. Next is the plan for the !goTo(LOCATION,WATCHDOG) goal for the context where the reasoning
cycle runs on a perception other than a post point. In this scenario we readopt the goal with an
increment to the watchdog !goTo(LOCATION,WATCHDOG + 1). Next we have the default plans for the
!followPath and !chargeBattery goals which ensure that the goal is not dropped inadvertently.
Lastly, we have the default plan for !collectMail(SENDER) and !deliverMail(RECEIVER).

Listing 6. Default plans [33].

+!collectAndDeliverMail(SENDER,RECEIVER)
<- !collectAndDeliverMail(SENDER,RECEIVER).

+!goTo(LOCATION,WATCHDOG)
<- !goTo(LOCATION, (WATCHDOG + 1)).

+!followPath
<- !followPath.

+!chargeBattery
<- !chargeBattery.

+!collectMail(SENDER).

+!deliverMail(RECEIVER).
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6. Testing and Evaluation

In this section we discuss the ways that we tested at the unit level and the system level to confirm
that the agent behaviour was working properly. We also discuss our performance evaluation results.
The development of software for robotic systems comes with several practical challenges. Among those
challenges are issues related to how to isolate and debug specific segments of the software as well as
developing without necessarily having access to the actual hardware. We will discuss those issues
as well as methods used to mitigate these issues that were used as part of this project. We discuss a
simple AgentSpeak simulator that we developed and used in Section 6.1. Next, a custom simulated
environment used for testing the higher-level behaviour of the agent is discussed in Section 6.2.
System level testing of the robot in the analogue environment is presented in Section 6.3. Finally,
a performance evaluation is provided in Section 6.4.

6.1. AgentSpeak Debug Tool

In writing software, it is always prudent to perform unit level tests of the various
components. Behaviours programmed in AgentSpeak are no different in this regard. Unfortunately,
debugging agents for robotics involves additional challenges, as it may be more difficult or impractical
to isolate specific aspects of the software in the system under test. To assist in isolating specific aspects
of the AgentSpeak programs, a debugging tool was developed. This tool, although very simplistic,
was found to be a great asset for unit level testing and confirming that the agent behaviours were as
expected under very controlled circumstances.

To accomplish this, an environment was developed for a Jason agent which reads perception
inputs from a file. Each line in this file contained the perceptions meant to be sent to the agent at
the beginning of each reasoning cycle. All actions that the agent takes are simply printed to the
console window. When used with the Jason mind inspector debugging tool, this environment proved
very useful for catching errors, especially in the plan context components as well as syntax errors.
This debugging tool is available on GitHub [37].

6.2. Custom Simulator

Moving past the unit level testing discussed in the previous section, it became necessary to
perform testing of the agent behaviour, as well as the other ROS nodes developed for this system,
without necessarily having access to the robot and hardware. In practical work environments this can
happen for several reasons. For example, the hardware and software being under development in
parallel. Another possibility is that the robot is unavailable as it is in use for multiple projects, or that
team members are geographically dispersed. Another reason for using simulation based testing is that
testing on the robot itself may be time consuming; if every minor change in software required a time
consuming experimental setup in order to test it, a developer could find themself delaying testing
until there have been many new changes. The issue with such an approach is that tracing back the
cause of an issue could become more difficult. Using a simulator enables the developer to test for
minor changes often and find those issues. Lastly, it may also be more difficult to replicate the specific
scenario needed to be tested in the real world, which may be more easily controlled in simulation.

To assist with development and testing, a mock simulation environment was developed [38].
This tool was used as a substitute environment which could be used for isolating specific aspects
of the agent’s behaviour. It included a grid style map of the environment with specific points on
the map being designated as post points. The grid squares between those post points were the path
from which the robot would be able to perceive the line. The environment also included a charging
station with which the robot could dock. Based on the position and actions of the robot, the robot
was able to move about this environment while perceiving sensor data from mock sensors for the
battery state, line sensor and QR scanner. The battery was programmed to deplete at a configurable
rate, enabling testing of the agent’s battery charging behaviours.
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This tool was developed as a ROS node that published to the ROS topics for the sensor data. It also
monitored the actions topic for the agent to control it. In this setup, we were able to develop and
test the perception translators, action translators, navigation module and agent behaviours without
access to the robot. Despite the limitations of this test setup, including the lack of realism of the
environment as well as the difficulty in assessing the performance of the hardware sensors themselves
we were able to demonstrate most of the behaviours of the agent using this environment. The only
behaviour that was not tested using this method was the line following behaviour as this was more
easily accomplished with the robot itself. With any issues stemming from the implementation of
the behaviours associated with navigation, mail delivery, and battery management resolved with
the simulation, testing effort with the robot could focus on the interface with the sensors themselves
and the line following behaviour. The simulation did not need to have high fidelity in order to be
highly useful.

6.3. System Level Testing

A video of the robot operating in the analogue test environment is available [39]. Still images
from that video are shown in Figure 6. In this case, the robot has been given the task of delivering
mail collected at the top left corner of the map to a location at the bottom right corner of the map.
In this example we see the robot having already collected the mail, shown in Figure 6a. Next,
the robot begins to move toward the destination, detecting a post point along the path, as we see in
Figure 6b. Having decided to turn, the robot continues toward the destination, shown in Figure 6c.
Having received a battery(low) perception, the robot suspends the intention of delivering mail and
instead moves toward the charging station, as is shown in Figure 6d. Figure 6e shows that the robot
has docked with the charging station and is charging. Once charging is complete, the robot proceeds
to the mail delivery destination, shown in Figure 6f.

(a) (b) (c)

(d) (e) (f)

Figure 6. Demo of robot operation, video available at [39]. (a): mail collected; (b): detecting post
point; (c): turned to continue; (d): interrupt delivery to charge battery; (e): charge battery; (f): proceed
to destination.
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6.4. Performance Evaluation

We examined the performance of the agent by logging the messages passed through the various
ROS topics used by the agent. Specifically, we logged the content and time stamps of all messages
passed through the perceptions, actions, inbox, and outbox topics. We also instrumented the
reasoner to publish the length of the reasoning cycle to another ROS topic so that the reasoning
performance could be logged. By parsing the logs of over 28 test runs we have made several
observations. We will first discuss the performance of the reasoning system in Section 6.4.1 and
then the plan and action frequency in Section 6.4.2.

6.4.1. Reasoning Performance

Our assessment of the performance of the reasoning system focused on whether the reasoner
was able to keep up with the sensor updates. Using the logs of the perceptions, specifically their
timestamps, we measured the time elapsed between publications to the perceptions topic resulting
in a measurement of the perception period, shown in Figure 7. We also measured the time taken by the
agent to perform reasoning cycles, shown in Figure 8. Outliers, which tended to be artifacts of the test
start-up and shutdown process, were removed using mean absolute deviation.

Figure 7. Perception period.

Figure 8. Processing time of the agent reasoning cycle.

We observed that the bulk of the perceptions were published more frequently than every 100 ms.
By contrast we observed that the reasoning cycle generally took between 100 ms and 106 ms to complete.
This means that the perceptions were usually being published at a rate that was faster than the



J. Sens. Actuator Netw. 2020, 9, 56 20 of 30

reasoning rate meaning that the reasoning system would need to queue the perceptions as they were
received. This was confirmed to be occurring by inspection of the reasoning system’s perception
queue. In the rare instances where the reasoning system performed faster than perceptions were
received, the reasoner would wait for the next perception. What is interesting to note, however,
is that the reasoning period was very reliably within a 6 ms range; the performance was consistent.
Most importantly, despite this difference between the reasoning rate and the perception rate, the agent
was able to properly perform its mission.

6.4.2. Plan and Action Frequency

Using logs from the actions and the outbox topic, we assessed the decision making of the
agent during standard mail delivery missions. Each plan in the agent’s plan base contained agent
communication messages that were used for debugging purposes. These messages identified the goal
that the agent was working to achieve and well as identifying information about which plan was
being used. Therefore, using the outbox logs, we measured the proportion of time that the agent spent
performing different types of plans, and for what goal it was attempting to achieve, shown in Figure 9.
We also measured the proportion of the various actions that the agent performed. This is shown in
Figure 10.

In examining the plan usage we see that the bulk of the time was spent achieving the !followPath
goal, used for performing the line following task. We also see that there was usage of the default plans,
specifically for the !goTo(LOCATION,WATCHDOG) goal as well as for !followPath, highlighting the
importance of the default plans. Had these default plans not been provided, the agent would
not have had a way of continuing the mission. We also see that, although infrequently used,
the overflow plan associated with the watchdog counter for the !goTo(LOCATION,WATCHDOG) goal
was used, validating this design choice. The !goTo(LOCATION,WATCHDOG) goal, and associated plans,
were generally used infrequently. This was to be expected, as those plans were only to be used when
navigation decisions were needed, at intersections on the map or when the robot was establishing
its mission. We see that the !collectAndDeliverMail(SENDER,RECEIVER), !collectMail(SENDER),
and !deliverMail(RECEIVER) goal plans were seemingly infrequently used. This was expected as the
plans associated with these goals are rather short and adopt the goals of !goTo(LOCATION,WATCHDOG),
which in turn adopts the goal of !followPath. Lastly, it is important to note that, even though a
plan may be infrequently used, its presence in the plan base remains essential. Without, for example,
the rarely used default plans, which ensured recursion by readopting the goals, those goals would
have been dropped by the reasoner and the agent would not have completed the mission.

Figure 9. Plan frequency.
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Figure 10. Action frequency.

In alignment with the plan frequencies discussed above, we see that the actions associated with
the line following behaviour were the most used. We see that the plans associated with setting the
destination were rare, which was expected since this occurs once per mission. We also see that the
actions used for turning the robot were infrequently used as well. This was also expected as the robot
only uses these actions to affect a turn at an intersection on the map. Lastly, we do see a concerning
high use of the drive(spiral) command, which was used whenever the line sensor lost sight of the
line and needed to search for the line in order to reacquire the path. This confirms our qualitative
observations during testing: the line sensor was less effective than we had hoped, resulting in the
robot losing the path more frequently than desired. This was especially problematic when the robot
performed turns at intersections on the map.

7. Discussion

In developing agents for embedded applications, several lessons have been learned about
designing such agents and the practical issues that arise in setting up such systems. Here we will
discuss practical advice for developing these agents. First, we discuss plan design in Section 7.1. Next,
the management of the belief base is discussed in Section 7.2. We then discuss practical issues around
perceptions and actions in Sections 7.3 and 7.4, respectively.

7.1. Plan Design

In developing the behaviours for the agent discussed in this paper, various design iterations
were used to find a working solution. Ultimately, we settled on a solution which uses abstraction of
lower level behaviours using a hierarchy of goals and sub goals. We also defined our goals to use
predicates to manage parameters. For example, for navigation we used the goal of !goTo(LOCATION),
where the location that the agent needs to get to is defined in the predicate. This was instead of
using a belief and a generic goal, such as destination(LOCATION) and the goal of !goToDestination.
Although it is possible to implement a working behaviour with both methods, the second requires that
the developer manage the beliefs associated with the destination manually, whereas the first option
allows the reasoning system to handle that, reducing the complexity of the plan base and ultimately
reducing the likelihood of syntax errors.

Another phenomenon we encountered was that of tangled plans, where the implementation of
plans for achieving a goal required intimate knowledge of the implementation of plans for other goals.
We found that this was more likely to occur when revising the belief base with beliefs that were used
for multiple goals. In this scenario, any updates to the plans for one goal required refactoring of the
plans for the other goals as well. The goal of the developer should be that the plan implementations
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should be as self contained as possible, with the exception of the use of adopting goals for achieving
lower level behaviour.

In planning behaviours, it is also important to consider how goals are achieved. An earlier version
of the implementation of the agent used in this project used recursive plans for a goal that could not be
achieved as a means of keeping the agent working on missions. Although it was possible to implement
working behaviours this way, the implementation was admittedly clumsy and confusing to human
readers. This can also be problematic if multiple goals that are never achieved, which are infinitely
recursive, are adopted at the same time. In this scenario, the agent behaviour can become unpredictable.

The prioritization of plans in the plan base is very important. The default behaviour in Jason
is that the first applicable plan in the plan base is selected as part of the intention selection function.
Although this worked for our purposes, when refactoring the plan base, or simply adding and
removing plans, care needs to be taken to ensure that the low priority plans are not listed too high in
the implementation. For example, we opted to group all the default plans at the end of the AgentSpeak
source file in order to ensure that a default plan, which was intended only to keep the agent from
dropping goals prematurely, were not selected in lieu of other potentially applicable plans. Jason does
allow the developer to override the event selection and intention selection functions. The authors
intend to investigate these options in future work.

Consider how plans are triggered. We found that in general it made sense to make most plans
trigger on the adoption of an achievement goal. We had one exception to this: the plans associated
with charging the battery. These plans triggered on the perception that the battery state of charge was
below a certain threshold. This was done as we needed these plans to interrupt the behaviour of the
agent when potentially working toward another goal. By doing so, the agent could reason about the
battery charge state when its goal was for an activity unrelated to the battery management. Had this
not been implemented this way, we would have had to add context checks for the battery to plans
throughout the plan base, likely tangling the plans.

Beware of death modes, situations where the agent can find itself in an unrecoverable state without
any malfunctions. In the case of the mail delivery agent, a death mode existed in that the navigation
plan contexts required position knowledge, which was only available when the post point QR codes
were visible. If a navigation goal is adopted a time when such a perception is not available, the agent
could find itself unable to execute the plan despite there being no malfunction of any components
of the robot. To recover from this death mode, a watchdog was used to enable to agent to detect
such modes. This timer was implemented by adding a predicate to the navigation goal which was
incremented by the default plan. If the watchdog incremented past a certain threshold, the agent
adopted the goal of following the path, in a hope that the robot could maneuver to a new location such
that a QR code would be visible, enabling the continuation of the navigation goals.

7.2. Managing Beliefs

As mentioned earlier, it is important to manage beliefs carefully. The authors authors adopted a
number of principles to facilitate this. First, if a belief is intrinsically tied to the achievement of a goal,
consider refactoring the goal to use a predicate for that belief. By doing this, the developer simplifies
the management of that belief in the knowledge base.

If beliefs are needed, and the option of using goal predicates is impractical, try to manage the
applicable belief in the plans related only to one goal, if possible. This way, a developer does not
require intimate knowledge of the implementation of plans for other goals in order to develop plans
for other goals. However, if mental notes are needed for plans for multiple goals, we recommend
managing these beliefs using the fewest possible number of plans in order to avoid the phenomenon
of tangled plans, discussed earlier. Furthermore, be sure to remove mental notes when they are no
longer needed.
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7.3. Practical Management of Perceptions

Our agent implementation used ROS as a means of connecting the reasoning system to the robot
hardware. A key feature of ROS is the abstraction of how nodes publish and subscribe to topics,
as opposed to publishing and subscribing to other nodes directly. This means that multiple nodes can
publish data relevant to perceptions at different rates: there is no guarantee that the agent will perceive
data from all the sensors at every reasoning cycle. Furthermore, there is no guarantee that the sensors
relevant to the goals being achieved will have been perceived at the start of every reasoning cycle.
For example, the robot may be attempting to achieve the goal of !followPath, which primarily uses
the line sensor for implementing the line following behaviour. If a reasoning cycle were to begin with
the agent having only received perception data from the battery, the plan contexts associated with the
line sensor would not be applicable. Therefore, it is important that a default plan be available to the
agent to prevent this goal from being dropped prematurely.

Another way that this issue can manifest itself is if plan contexts use perceptions generated by
different sensors. It is possible for these perceptions to be perceived in separate reasoning cycles,
meaning that the desired plan context might not be applicable. If possible, the developer could
avoid having plan contexts which depend on perceptions generated from multiple unrelated sensors,
especially if they publish at different frequencies. Another approach could be to consider having
perceptions feed into the update of the agent’s beliefs about the environment. The agent’s decision
making could then focus on the use of these beliefs instead of the perceptions themselves. This will be
explored as part of our future work.

We also found that there are scenarios where the agent works toward its goals but also receives
perceptions related to the health and status of the robot. In the case of this project, the battery updates
were largely irrelevant to the execution of the mail delivery mission unless the state of charge was
getting too low. In this case instead of having context checks on almost all of the plans confirming that
the battery state of charge was acceptable to continue, we used a high priority plan triggering on the
perception of battery(low) which was used to adopt the goal of recharging the battery.

7.4. Practical Use of Actions

In working with our agent, we came to appreciate that there are several different types of actions.
There are actions which take a short time to perform. There are actions which take a longer time
to perform where the agent should wait for that action to finish. Finally, there are actions that may
be more about setting a parameter that is used by some other module which performs some other
required function. With this agent, all three types of actions were used.

In implementing the connection between the reasoning system and ROS, we set up the action
implementation to be a publisher to the actions topic. Jason, however, implements actions as a
function which returns a Boolean. The intention is that the action function should return true if
the action was successful and false if the action was not. In our case, the function returned true if
the action was successfully published to the actions topic. For the first type of actions, where they
take a very short time to execute, for example for commanding the robot to drive a short distance,
this method worked well.

For actions of the second type, which took longer to execute, for example turning at intersections,
an action that took several seconds to complete, this was more problematic. With a reasoning system
that executes a reasoning cycle every 100 ms or so, the agent would continue to perform reasoning
before the robot had completed that action. This resulted in other actions being published, causing the
robot behaviour to become erratic in these situations. A practical solution we found was to have the
node which implements the actions simply ignore any conflicting actions that were published before
the longer duration action was complete. Another solution would be to implement the actions topic
with a service handler, where the service handler would return a Boolean resulting from the success or
failure of the actions. This would force the agent to wait for actions to be completed prior to moving on.
This would also cause the reasoning cycle period to increase, as the execution of the action would now
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be part of the reasoning cycle. This can also be used to ensure that action failure is more appropriately
handled by the agent, which may not be able to achieve its mission if an actuator has stopped working,
for example.

The third type of action was where an action sets some parameter used by another module.
In the case of the mail delivery system, the action associated with setting the destination was such an
action. In this case the agent needed a means of knowing that the correct destination was set, if the
agent needed to change its destination. In this case, the perceptions that were generated by that node
included the destination, so that the agent could confirm that the correct destination was set.

7.5. Code Readability and Troubleshooting

From a practical perspective, the authors found several useful practices which facilitated easier
development and troubleshooting. Firstly, the authors found that it was prudent to avoid similarities
between perceptions, knowledge, goal names, actions, etc. If these were too similar, we found that
simply missing a character such as a ‘+’ sign or an ‘!’ would dramatically change the execution
of the plans. The authors recommend adopting a naming convention when implementing their
AgentSpeak programs. Secondly, it is recommended that the context guards be kept as simple as
possible. Complex context guards can become difficult to read and understand and can easily become
a source of error. Finally, the authors found that using agent communication could significantly help
with troubleshooting and debugging. We used agent communication messages in all plans for both
performance measurement and debugging purposes. These messages made it much easier to trace
back what had occurred when troubleshooting.

8. Conclusions

In this paper, we presented the work to date on the development of a robotic agent for eventually
performing autonomous mail delivery in a campus environment. We conclude with a description of
our key accomplishments and a view toward our future work.

8.1. Key Accomplishments

We demonstrated the feasibility of using BDI in an embedded system. We accomplished this using
the SAVI ROS BDI framework, linking Jason’s BDI reasoning system to ROS. We also implemented our
initial robot behaviours in BDI, navigating through an analogue development and testing environment
using line following and QR codes while also monitoring the battery state, seeking a charging station
as needed. Through performance evaluation, we observed that Jason is able to keep up with the
frequency of perception updates in order to accomplish its missions, and seems therefore (at least
based on this experiment) a viable language and framework for developing robot control programs
that deal with multiple short-term and long-term missions.

We integrated the reasoning system onto a Raspberry Pi computer and connected it to the iRobot
Create2, powering it from the robot’s internal power. We integrated a line sensor and camera and
developed the necessary nodes for providing their data to the BDI reasoner as perceptions via ROS.
We provided a translator for the create_autonomy package, passing sensor data from the robot to the
reasoning system, and actions back to the actuators.

8.2. Future Work

Our implementation uses line sensing and QR codes for localization in an analogue testing
environment. This method was used as a first iteration for early development of our prototype
system, but it has drawbacks, notably requiring the environment to have line tracks and QR codes.
Additionally, the line following was more difficult that anticipated, with the robot frequently losing
track of the line. One approach could be to add radio beacons to the environment and to use these
as an indoor positioning system for navigation and path following. We could also add additional
charging stations, which include infrared transmitters on them, for the robot to track. The robot could



J. Sens. Actuator Netw. 2020, 9, 56 25 of 30

use these for more than just as a charging station but also as guiding beacons (make each station
emit a different code to make it distinguishable by the robot), and more generally turning them into
full-blown stations for mail drop-off and pick-up. These spots could be placed where wi-fi is accessible
so that the robot can receive its missions and notify the recipient that the delivery is ready. We also
intend to move beyond the analogue testing environment to the real world tunnel environment as our
development progresses.

Another desire is to have multiple robots handling mail delivery together. The robots could work
as a team, possibly handing off mail from robot to robot, and managing their battery levels. A user
would not summon a specific robot to collect their mail, but would instead request the mail service,
which would dispatch a robot to collect mail. From there, the robots could hand off the mail item
amongst themselves while working together to deliver all mail that they have within their network.
Individual robots may also carry multiple mail items. The user interface could be developed into a
mobile app which can be improved to have maps of segments of the tunnel and estimates for when
the mail will be delivered.

With an eye to the implementation of SAVI ROS BDI, the authors intend to investigate various
design trade offs as part of their future work. This includes revisiting how actions are implemented,
using ROS service handlers for implementing the actions, forcing the agent to block and wait for actions
to complete, or possibly fail. The authors also intend to explore the event and intention selection
functions with respect to the prioritization of plans so that the order that plans are listed in the source
code is not a main factor in plan selection. Lastly, there is a need to explore knowledge and perception
management for these agents. This is especially important in considering that perceptions can be
generated at different rates and by different nodes, resulting in relevant perceptions not always being
available at the start of applicable reasoning cycles.
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The following abbreviations are used in this manuscript:

AJPF Agent Java PathFinder
AOP Agent Oriented Programming
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EBNF Extended Backus–Naur form
GNSS Global Navigation Satellite System
GPIO General-Purpose Input/Output
GPS Global Positioning System
MAS Multi Agent System
OODA Observe Orient Decide Act
PROFETA Python RObotic Framework for dEsigning sTrAtegies
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QR Quick Response
ROS Robot Operating System
SAVI Simulated Autonomous Vehicle Infrastructure
UAV Unmanned Aerial Vehicle

Appendix A. Additional Implementation Details

In this appendix we provide additional implementation details with respect to the robot hardware.
These details are provided so that an interested reader can recreate our implementation if they so
desired. First, our method of powering the computer from the robot is discussed in Appendix A.1.
Appendix A.2 details the line sensor implementation.

Appendix A.1. System Power Connections

In order to power the robot’s computer (a Raspberry Pi 4) without having it tethered to a socket
in a wall, we utilized the iRobot Create 2’s power system. This was possible as the serial connection
between the computer and the robot also provides access to the robot’s internal rechargeable battery.
Conveniently, the serial cable used to connect the Create 2 to the Raspberry Pi exposes the robot’s
power bus through its RS232 pinout, as seen in Figure A1 and Table A1 [29,40].

(a) (b)

Figure A1. Serial connection pinout. (a): robot’s RS232 pinout; (b): Create cable pinout.

Table A1. Create 2 external serial port RS232 connector pinout.

Pin Name Description

1 Vpower Battery + (unregulated) 16 V to 20 V
2 Vpower Battery + (unregulated) 16 V to 20 V
3 RXD 0 V to 5 V Serial input to robot
4 TXD 0 V to 5 V Serial output from robot
5 BRC Baud rate change
6 GND Battery ground
7 GND Battery ground

Although this pinout provides access to the robot’s power supply, it must be converted from
16 V to 20 V to the regulated 5 V required by the Raspberry Pi computer via its USB-C connector or its
GPIO pin. To get a stable 5 V for our Raspberry Pi, we used a Tobsun 15 W DC to DC power converter
by feeding power to its input (12 V/24 V positive and negative) terminal from pin 4 and pin 3 of the
Serial to USB header described in Figure A1b respectively. We connected the exposed wires of an
improvised USB type C cable to the converter and then we plugged in the cable to the Raspberry Pi;
when the RS232 end of the Serial-to-USB cable is plugged into the Create2 robot, the entire system is
powered successfully.
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Appendix A.2. Line Sensor Implementation

As our robot operates in an indoor environment without the support of GNSS systems for
navigation, a simple means of moving through the tunnels and navigation was required. As an initial
implementation, a line sensor was used for the robot to follow lines on the tunnel floor. This sensor
is implemented using three Photointerrupter LTH 1550-01 diodes, shown in Figure A2. Each sensor
detects if the line is on the left, center or right of the robot’s center. Two resistors were used per
Photointerrupter, a 220 Ω and a 33 kΩ. The 220 Ω was used as a limiting resistor for the LED within
the sensor and the 33 kΩ as a voltage divider to enable us to measure the voltage across the resistor
when light falls on the phototransistor.

Figure A2. Line sensor circuit.

The sensors were connected to three different GPIO pins on the Raspberry Pi. The right sensor is
connected to GPIO14 (pin8), the center sensor to GPIO15 (pin10) and the left sensor to GPIO18 (pin12).
The sensor is powered from the Raspberry Pi; the VCC pins are connected together and then to the 5 V
pin of the Raspberry Pi, while the ground (GND) pins are connected together and then to the ground
(GND) pin of the Raspberry Pi. When light falls on each of these sensors, their GPIO pins are set to
HIGH, and when the sensors are covered or faced with a non-reflective material or has no light falling
on them, their GPIO pins are set to LOW.

The navigation track was designed using a reflective tape, so that when it is faced by any of the
sensors, the respective GPIO pin is set to HIGH, and then it is known if the line is on the right, center or
left depending on the pin that was set to HIGH or LOW. The sensors are mounted under the center of
the Create2, in line with the right and left wheels, as seen in Figure A3a. An image of the underside
of the robot itself is provided in Figure A3b. This is to ensure more navigation accuracy, because if
the sensors are mounted in front, or behind the wheels, the line would be detected before or after the
robot needs to make a navigation decision. For example, if the sensors are mounted in front of the
wheels, and while the robot is in motion (following the line) the line changes direction; the change in
direction is detected first by the sensors making the robot to turn and change its direction before it
needs to, thereby making it go out of track.
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(a) (b)

Figure A3. Layout of the underside of the robot. (a): robot base layout; (b): under the robot.

The robot has a broad surface area and when on the floor, has little or no light underneath it.
Since our sensors are mounted under the robot, they cannot function effectively because they need a
certain amount of light in order to detect the line. A light source under the robot using four LEDs was
added. These LEDs were mounted perpendicular to the sensors with their light directed at the sensor.
With this in place, when the robot is on the floor, the light bounces off any reflective object or material
placed on the floor and is absorbed by non-reflective materials or objects.

The line tracks are created using tapes. To ensure enough contrast between the line to follow
and the floor regardless of the environment, we had to create a track with two different types of tape,
reflective and non-reflective, with the non-reflective tape in the center. This type of line track would
work irrespective of location flooring. The robot is kept on the track, with the center sensor on the
non-reflective tape, so when any of the sensors is faced with the non-reflective tape, we know the line
track is in that direction.
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