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Abstract:



This paper focuses on the diagnostic checking of vector ARMA (VARMA) models with multivariate GARCH errors. For a fitted VARMA-GARCH model with Gaussian or Student-t innovations, we derive the asymptotic distributions of autocorrelation matrices of the cross-product vector of standardized residuals. This is different from the traditional approach that employs only the squared series of standardized residuals. We then study two portmanteau statistics, called [image: there is no content] and [image: there is no content], for model checking. A residual-based bootstrap method is provided and demonstrated as an effective way to approximate the diagnostic checking statistics. Simulations are used to compare the performance of the proposed statistics with other methods available in the literature. In addition, we also investigate the effect of GARCH shocks on checking a fitted VARMA model. Empirical sizes and powers of the proposed statistics are investigated and the results suggest a procedure of using jointly [image: there is no content] and [image: there is no content] in diagnostic checking. The bivariate time series of FTSE 100 and DAX index returns is used to illustrate the performance of the proposed portmanteau statistics. The results show that it is important to consider the cross-product series of standardized residuals and GARCH effects in model checking.
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1. Introduction


Model checking, or diagnostic checking, is an important step in statistical modeling, especially in the iterative model-building process of Box and Jenkins [1]. Like other statistical analysis, standardized residuals are often used to check the adequacy of a fitted time series model. Basically, one examines the standardized residual plots for outliers and violations of randomness and performs statistical tests to detect serial dependence in the residual series. In the univariate case, residuals of the fitted model are used to obtain the portmanteau test for autoregressive moving-average (ARMA) processes. See Box and Pierce [2] and Ljung and Box [3] for the commonly used Ljung–Box [image: there is no content] statistic. The test has been extended to multivariate autoregressive processes by Chitturi [4] and multivariate ARMA processes by Hosking [5] and Li and McLeod [6].



Most of the previous studies in time-series model checking assume that the innovations are independent and identically distributed (iid) random variables. This assumption is known to be questionable for the data in economics and finance, especially after the introduction of the generalized autoregressive conditional heteroscedastic (GARCH) models of Engle [7] and Bollerslev [8]. In fact, conditional heteroscedasticity exists not only in time series of asset returns and foreign exchange rates, but also in series of traffic volume of a big city or on the internet. For univariate time series with conditional heteroscedasticity, Diebold examines the impact of GARCH effects on the Bartlett standard errors and the Ljung–Box statistic, and proposes a robust Ljung–Box statistic [9,10]. Ling and Li derive the asymptotic properties of maximum likelihood estimators and the [image: there is no content] statistic for univariate fractionally integrated ARMA-GARCH models [11]. Ling and Li use the sum of squared series of standardized residuals to define a multivariate [image: there is no content] statistic and derive its asymptotic distribution when the time series has ARCH errors [12]. Tse examined the residual-based diagnostics for univariate and multivariate conditional heteroscedasticity models [13].



In this paper, we study the portmanteau statistics for the cross-product vector of the standardized residuals of a vector ARMA model with multivariate GARCH errors. Specifically, we employ the process [image: there is no content] in model checking, where [image: there is no content] is the standardized residuals of a fitted vector ARMA-GARCH model and [image: there is no content] denotes the half-stacking operator of a symmetric matrix. The innovations of the GARCH errors follow either a multivariate Gaussian or a multivariate Student-t distribution. Under the commonly used assumption of multivariate GARCH processes, the cross-product vector of the standardized residuals should be serially independent. The proposed portmanteau statistics are aimed at verifying this independence condition. They are more general than the traditional multivariate [image: there is no content] statistics because the latter statistics only employ the squared series [image: there is no content] of the standardized residuals. For instance, Ling and Li use [image: there is no content] = [image: there is no content] to detect conditional heteroscedasticity [12]. The improved performance of the proposed test statistics over the traditional ones is demonstrated by simulation and a real example. Another contribution of the paper is to consider the limiting distribution of the proposed test statistics when the innovations follow a multivariate Student-t distribution. This is highly relevant as most financial time series exhibit certain heavy-tail phenomenon. Furthermore, considering the difficulty in computing the proposed test statistics in real application, we provide a bootstrap approach based on the re-sampled standardized residuals to approximate the (asymptotic) distributions of the sample cross-covariance matrices of the standardized residuals. It is demonstrated by simulated data and the real example that the bootstrap method gives an effective way to obtain the proposed model checking statistics.



The paper is organized as follows. In Section 2, we define the model considered in the paper and state the assumptions used. In Section 3, we consider the maximum likelihood estimation of a vector ARMA-GARCH model with Gaussian innovations and derive the asymptotic distributions of the sample cross-covariance matrices of the standardized residuals and the proposed test statistics. We investigate estimation and model checking for a vector ARMA-GARCH model with multivariate Student-t innovations in Section 4. In Section 5, we introduce the residual-based bootstrap method and justify its validity. We use simulation studies in Section 6 to study the performance of the proposed test statistics in finite samples. An empirical example is analyzed in Section 7 and Section 8 concludes. Finally, complicated proofs are in the Appendix.




2. The Model


Let [image: there is no content] be a k-dimensional time series. In this paper, we assume that [image: there is no content] follows a stationary and invertible vector autoregressive moving-average, VARMA([image: there is no content]), model with shock [image: there is no content] being a multivariate GARCH([image: there is no content]) process with innovation [image: there is no content]. Specifically, we have


[image: there is no content]=∑i=1p[image: there is no content]Yt-i+[image: there is no content]+∑j=1q[image: there is no content]at-j,[image: there is no content]=Σt1/2[image: there is no content],



(1)






[image: there is no content]=[image: there is no content]+∑i=1r[image: there is no content]at-iat-i′Ai′+∑i=1sBiΣt-iBi′,t=0,1,…



(2)




where [image: there is no content] and s are non-negative integers, {[image: there is no content]} are independent and identically distributed random vectors with mean zero and identity covariance matrix. Let [image: there is no content] denote the information available at time j, i.e., [image: there is no content]=σ{εj,εj-1,⋯} then we have [image: there is no content] satisfies E([image: there is no content]|[image: there is no content])=0 and cov([image: there is no content]|[image: there is no content]) = [image: there is no content], with [image: there is no content] being the positive-definite square-root matrix of the conditional covariance matrix [image: there is no content], and [image: there is no content] follows either a multivariate Gaussian or Student-t distribution. Define [image: there is no content], [image: there is no content], and [image: there is no content]. Denote the true parameter vector by [image: there is no content]. Here we assume that E([image: there is no content]) = 0 for simplicity. The multivariate GARCH model in Equation (2) is a special case of the BEKK model of Engle and Kroner [14]. We use it instead of the general BEKK model purely for simplicity. For more details about multivariate time series models, see Tsay [15] and Lütkepohl [16].



Let [image: there is no content]=vec([image: there is no content]) be the column-stacking vector of the matrix [image: there is no content] and denote the Kronecker product of matrices A and B by [image: there is no content]. The volatility model in Equation (2) can be written as


[image: there is no content]



(3)







For the model considered, we make the following assumptions:



Assumption 1. [image: there is no content]. The parameter space Λ is a compact subset of [image: there is no content]. [image: there is no content]. The true parameter [image: there is no content] is an interior point of the compact set Λ. [image: there is no content]. [image: there is no content] is identifiably unique with respect to the log-likelihood function.



Assumption 2. Let [image: there is no content] be the matrix polynomial of the autoregressive part of the model, where L is the lag operator such that L[image: there is no content]=Yt-1. All zeros of the polynomial [image: there is no content] are outside the unit circle, i.e., they are greater than 1 in modules.



Assumption 3. Let [image: there is no content] be the matrix polynomial of the moving-average part of the model. All zeros of the polynomial [image: there is no content] are outside the unit circle.



Assumption 4. [image: there is no content] and [image: there is no content] are left coprime and the matrices [image: there is no content] and [image: there is no content] satisfy the condition that Rank[[image: there is no content],[image: there is no content]]=dim([image: there is no content]).



Assumption 5. [image: there is no content] is a [image: there is no content] positive definite matrix.



Assumption 6. [image: there is no content] and [image: there is no content] are arbitrary [image: there is no content] matrices such that ρ(∑i=1r[image: there is no content]⊗[image: there is no content]+∑j=1s[image: there is no content]⊗[image: there is no content])<1, where [image: there is no content] denotes the modulus of the matrix A, i.e., the largest eigenvalue of A in modulus.



Assumption 7. [image: there is no content]-∑i=1r([image: there is no content]⊗[image: there is no content])Li and ∑j=1s([image: there is no content]⊗[image: there is no content])Lj are left coprime and satisfy the conditions that Rank[Ar,Bs]=dim([image: there is no content]).



Assumption 8. Let [image: there is no content]. All eigenvalues of the matrix [image: there is no content] have modulus smaller than one, where [image: there is no content] are [image: there is no content] matrices defined recursively by:


[image: there is no content]










[image: there is no content]=-[image: there is no content](Bi⊗Bi)[image: there is no content]+∑j=1i[image: there is no content](Aj⊗Aj+[image: there is no content]⊗[image: there is no content])[image: there is no content]Ψi-j,i=1,2,...



(4)




[image: there is no content], and [image: there is no content], where [image: there is no content], and [image: there is no content] are the elimination, duplication, and commutation matrices, respectively. Specifically, the dimensions of [image: there is no content], [image: there is no content] and [image: there is no content] are [image: there is no content], [image: there is no content] and [image: there is no content], respectively. These matrices are useful in dealing with the [image: there is no content] operator, and they satisfy


vech([image: there is no content])=[image: there is no content]vec([image: there is no content]),vec([image: there is no content])=[image: there is no content]vech([image: there is no content]),vec(A′)=[image: there is no content]vec(A),








where A is a [image: there is no content] matrix.



Assumption 1 is standard. Assumptions 2 and 3 ensure that the VARMA model is stationary and invertible. Assumption 4, which is referred to as the block identifiability condition, is sufficient for the VARMA model to be identifiable. Under Assumption 5 and using properties of the BEKK representation of Engle and Kroner [14], we are guaranteed to have positive definite covariance matrices [image: there is no content], and [image: there is no content] can be written by its Cholesky decomposition [image: there is no content]=CC′. Furthermore, it can be shown that, under Assumption 6, [image: there is no content] is strictly stationary and ergodic with E∥[image: there is no content]∥2<∞. Similar as Assumption 4, Assumption 7 is sufficient for the identifiability of the GARCH process. Based on Theorem 2 of Hafner [17], Assumption 8 is a sufficient and necessary condition for E∥[image: there is no content]∥4<∞.




3. Diagnostic Checking for VARMA-GARCH Models with Gaussian Innovations


In this section, we assume that the innovations {[image: there is no content]} of the GARCH model follow a multivariate Gaussian distribution with mean zero and cov([image: there is no content]) = [image: there is no content], the [image: there is no content] identity matrix.



3.1. Estimation


Suppose that [image: there is no content] are a realization of the vector ARMA-GARCH model in Equations (1)-(2). Given [image: there is no content], the approximate maximum likelihood estimate (MLE) [image: there is no content] of λ maximizes the conditional log-likelihood function,


Ln(λ)=1n∑t=1nlt(λ),lt(λ)=-12lndet([image: there is no content])-12at′Σt-1[image: there is no content].



(5)




where


[image: there is no content]=Θ(L)-1Φ(L)[image: there is no content]



(6)




and [image: there is no content] follows Equation (2).



To obtain [image: there is no content], we consider the first-order derivatives and the information matrix of the log likelihood function. They can be calculated as follows:


∂lt∂φ=12(∂[image: there is no content]∂φ′)′vec(Σt-1[image: there is no content]at′Σt-1-Σt-1)-(∂[image: there is no content]∂φ′)′Σt-1[image: there is no content],



(7)






∂lt∂δ=12(∂[image: there is no content]∂δ′)′vec(Σt-1[image: there is no content]at′Σt-1-Σt-1),



(8)




where


∂[image: there is no content]∂φ′=Θ-1(L)[Xt-1⊗[image: there is no content]],Xt-1=(Yt-1′,...,Yt-p′,at-1′,...,at-q′),










∂[image: there is no content]∂φ′=[image: there is no content]-∑i=1s(Bi⊗Bi)Li-1∑i=1r([image: there is no content]⊗[image: there is no content])Li(([image: there is no content]⊗[image: there is no content]+[image: there is no content]⊗[image: there is no content])∂[image: there is no content]∂φ′),










∂[image: there is no content]∂δ′=[image: there is no content]-∑i=1s(Bi⊗Bi)Li-1[[image: there is no content],H˜t-1(1),...,H˜t-r(1),H˜t-1(2),...,H˜t-s(2)],










H˜t-i(1)=([image: there is no content]⊗[image: there is no content])·[[image: there is no content]⊗(at-iat-i′e1),...,[image: there is no content]⊗(at-iat-i′ek)]+([image: there is no content]⊗[image: there is no content])·((at-iat-i′)⊗[image: there is no content]),










H˜t-i(2)=([image: there is no content]⊗[image: there is no content])·[[image: there is no content]⊗(Σt-ie1),...,[image: there is no content]⊗(Σt-iek)]+([image: there is no content]⊗[image: there is no content])·(Σt-i⊗[image: there is no content]),








and [image: there is no content] is the j-th unit vector with 1 in the j-th element and 0 elsewhere.



Differentiating Equations (7) and (8) conditional on [image: there is no content] and taking expectation, we have that at λ=[image: there is no content],


E∂2lt∂φ∂φ′|[image: there is no content]=-12(∂[image: there is no content]∂φ′)′(Σt-1⊗Σt-1)(∂[image: there is no content]∂φ′)-(∂[image: there is no content]∂φ′)′Σt-1(∂[image: there is no content]∂φ′),



(9)






E∂2lt∂δ∂δ′|[image: there is no content]=-12(∂[image: there is no content]∂δ′)′(Σt-1⊗Σt-1)(∂[image: there is no content]∂δ′),



(10)






E∂2lt∂φ∂δ′|[image: there is no content]=O.



(11)







The following theorems provide the asymptotic properties of the information matrix and MLE [image: there is no content] of the model.



Theorem 3.1. Suppose {[image: there is no content]} and {[image: there is no content]} are generated by (1) and (2) with [image: there is no content] being multivariate Gaussian with mean zero and identity covariance matrix. Assume that Assumptions 1–6 hold, then at λ=[image: there is no content],


[image: there is no content]








as [image: there is no content], where [image: there is no content] denotes convergence with probability 1, and [image: there is no content] and [image: there is no content] are positive definite matrices given by


[image: there is no content]=E[12(∂[image: there is no content]∂φ′)′(Σt-1⊗Σt-1)(∂[image: there is no content]∂φ′)+(∂[image: there is no content]∂φ′)′Σt-1(∂[image: there is no content]∂φ′)],










[image: there is no content]=E[12(∂[image: there is no content]∂δ′)′(Σt-1⊗Σt-1)(∂[image: there is no content]∂δ′)].











Theorem 3.2. Under the assumptions of Theorem 3.1, the following results hold:



(a). There exists a MLE [image: there is no content] satisfying the equation [image: there is no content] and [image: there is no content]→p[image: there is no content] as [image: there is no content].



(b). n([image: there is no content]-[image: there is no content])[image: there is no content]N(0,Ω0-1) as [image: there is no content], where [image: there is no content] denotes convergence in distribution, [image: there is no content], and [image: there is no content] and [image: there is no content] are values of [image: there is no content] and [image: there is no content] at λ=[image: there is no content]. Further, the information matrices [image: there is no content] and [image: there is no content] can be estimated consistently and separately by


[image: there is no content]=1n∑t=1n12(∂[image: there is no content]∂φ′)′(Σt-1⊗Σt-1)(∂[image: there is no content]∂φ′)+(∂[image: there is no content]∂φ′)′Σt-1(∂[image: there is no content]∂φ′),



(12)






[image: there is no content]=1n∑t=1n12(∂[image: there is no content]∂δ′)′(Σt-1⊗Σt-1)(∂[image: there is no content]∂δ′),



(13)




where the terms are evaluated at λ=[image: there is no content].



The proofs of Theorems 3.1 and 3.2 are similar to those of Theorems 3.1 and 3.2 in Ling and Li [11] and are omitted.




3.2. Asymptotic Distributions of Sample Matrices and Diagnostic Checking


In this subsection, we investigate the asymptotic distributions of sample autocovariance matrices of the standardized residuals and propose two portmanteau statistics, namely [image: there is no content] and [image: there is no content], for checking a fitted VARMA-GARCH model when the innovations are Gaussian, where M is a pre-specified positive integer. We start with the [image: there is no content] statistic.



For the innovation [image: there is no content]=Σt-1/2[image: there is no content], define its lag-m sample autocorrelation matrix by ρm=1n∑t=1n[image: there is no content]εt-m′, where we make use of the condition E([image: there is no content])=0 and cov([image: there is no content]) = [image: there is no content]. Let [image: there is no content]. We have the following lemma concerning the distribution of [image: there is no content].



Lemma 3.1. If the time series [image: there is no content] is generated by the VARMA-GARCH model in Equations (1)-(2) with standard multivariate Gaussian innovations, then under Assumptions 1–6,


nvec(ρm)[image: there is no content]N(0,[image: there is no content]).











Proof. Since n·vec(ρm)=∑t=m+1nvec([image: there is no content]εt-m′)≡∑t=m+1nvec(Wtm), and noting that, for [image: there is no content], {Wtm,[image: there is no content]} is a martingale difference, it can be shown by Central Limit Theorem for martingale difference and the Cramer–Wold device that the asymptotic distribution of [image: there is no content] is [image: there is no content]. The covariance matrix can be obtained as [image: there is no content] = E{[(εt-mεt-m′)⊗([image: there is no content]εt′)]} and E[[image: there is no content]εt′|[image: there is no content]] = cov([image: there is no content])=[image: there is no content]. Therefore, [image: there is no content] = [image: there is no content]. ☐



Let [image: there is no content] be the residual of a fitted model, where [image: there is no content] and [image: there is no content] are MLE of [image: there is no content] and [image: there is no content], respectively. Also, let [image: there is no content] and [image: there is no content] be the MLE of the mean vector of [image: there is no content] and the conditional covariance matrix of [image: there is no content]. Denote by [image: there is no content] the positive definite square-root matrix of [image: there is no content]. We estimate the innovation [image: there is no content] by [image: there is no content]. The lag-m autocorrelation matrix of standardized residuals is defined as [image: there is no content], where [image: there is no content].



To find the asymptotic distribution of [image: there is no content], we need Lemma 2 below that provides some properties of [image: there is no content].



Lemma 3.2. Under the assumptions of Lemma 3.1, we have that at λ=[image: there is no content],


E[∂Ln∂φvec′(ρm)]=-E[(∂[image: there is no content]∂φ′)′(εt-m′⊗Σt-1/2)],E[∂Ln∂δvec′(ρm)]=O,








and


[image: there is no content]











Define [image: there is no content], where [image: there is no content] = [-E{(εt-m⊗Σt-1/2)(∂[image: there is no content]∂φ′)},O′]. Since [image: there is no content]-[image: there is no content]=(nΩ0)-1(∂l/∂λ)+op(n-1/2), and by Lemma 2, the asymptotic covariance between n1/2([image: there is no content]-[image: there is no content]) and [image: there is no content] is given by [image: there is no content]. Using a standard Taylor’s expansion, we have


[image: there is no content]








It is then straightforward to obtain the following theorem given the asymptotic distribution of [image: there is no content].



Theorem 3.3. Suppose the time series [image: there is no content] is generated by (1)-(2) with standard multivariate Gaussian innovations. Then, under Assumptions 1–6, [image: there is no content] is asymptotically normal with mean 0 and covariance matrix


[image: there is no content]=IM⊗[image: there is no content]-ΥΩ0-1Υ′.








Note that when [image: there is no content], Theorem 3 reduces to Theorem 4.1 of Ling and Li [11].



For conditional heteroscedastic data, it is important to explore the asymptotic properties of autocovariance matrices of the cross-product vector of standardized residuals. To this end, we consider the [image: there is no content] statistic below. For the innovation [image: there is no content] and the standardized residual [image: there is no content], define the mean-corrected matrix processes ct=[image: there is no content]εt′-[image: there is no content] and c^t=[image: there is no content]ε^t′-c˜, where c˜=1n∑t=1n[image: there is no content]ε^t′ is the sample covariance matrix of the standardized residuals. Next, define the lag-m autocovariance matrices of the cross-product vectors of [image: there is no content] and [image: there is no content] as follows:


r˜m=1n∑t=m+1nvec(ct)vec′(ct-m),r˜^m=1n∑t=m+1nvec(c^t)vec′(c^t-m)rm=1n∑t=m+1nvech(ct)vech′(ct-m),[image: there is no content]=1n∑t=m+1nvech(c^t)vech′(c^t-m).








Let [image: there is no content], then we have the following lemma.



Lemma 3.3. If the time series [image: there is no content] is generated by the VARMA-GARCH model (1)–(2) with standard multivariate Gaussian innovation [image: there is no content]. Then, under Assumptions 1–6,


nvec(r˜m)[image: there is no content]N[0,([image: there is no content]+Kk,k)⊗([image: there is no content]+Kk,k)].











Proof. From the definition, [image: there is no content], where [image: there is no content]. For [image: there is no content], it can be shown, similar to Lemma 1, that the asymptotic distribution of [image: there is no content] is [image: there is no content]. The covariance matrix can be calculated via [image: there is no content] = [image: there is no content], and E[vec(ct)⊗vec′(ct)|[image: there is no content]]=cov[vec([image: there is no content]εt′)]=[image: there is no content]+Kk,k. Therefore, [image: there is no content] = ([image: there is no content]+Kk,k)⊗([image: there is no content]+Kk,k). ☐



Using [image: there is no content] and [image: there is no content], we obtain the following corollary for [image: there is no content].



Corollary 3.1. If the time series [image: there is no content] is generated by the VARMA-GARCH model (1)–(2) with the standard multivariate Gaussian innovation. Then, under Assumptions 1–6,


nvec(rm)[image: there is no content]N[0,4(Dk+Dk+′)⊗(Dk+Dk+′)].











To find the asymptotic distribution of [image: there is no content], we also need the following lemma for [image: there is no content] and [image: there is no content].



Lemma 3.4. Under the assumptions of Lemma 3.3, we have that at λ=[image: there is no content],


E[image: there is no content]vec′(rm)=1n∑t=m+1nE∂vec(Σt1/2)∂λ′′(Σt-1/2⊗[image: there is no content]+[image: there is no content]⊗Σt-1/2)[vech′(ct-m)⊗Dk+′]










≡Xm′,



(14)




and


[image: there is no content]











Similar as Theorem 3.3, the following theorem provides the asymptotic distribution of [image: there is no content].



Theorem 3.4. Suppose the time series [image: there is no content] is generated by (1)-(2) with the standard multivariate Gaussian innovation [image: there is no content]. Then, under Assumptions 1–6, [image: there is no content] is asymptotically normal with mean 0 and covariance matrix


[image: there is no content]








where [image: there is no content] with [image: there is no content] being defined in (14).



Again when [image: there is no content], Theorem 3.4 is a generalization of Theorem 4.2 of Ling and Li [11]. By Theorems 3.3 and 3.4, we have


[image: there is no content]=T·vec′([image: there is no content])·V^1-1·vec([image: there is no content])∼[image: there is no content](Mk2)



(15)






[image: there is no content]=T·vec′(r^)·V^2-1·vec(r^)∼[image: there is no content](M[k(k+1)2]2)



(16)




where V^1=IM⊗[image: there is no content]-Υ^Ω^0-1Υ^′, [image: there is no content], [image: there is no content] = [image: there is no content]. [image: there is no content], where Υ^m=1n∑t=m+1n(ε^t-m⊗Σt-1/2(∂[image: there is no content]/∂λ′)) is estimated at λ=[image: there is no content]. The same applies to [image: there is no content], where


X^m=1n∑t=m+1n(vec(c^t-m)⊗[image: there is no content])([image: there is no content]⊗Σt-1/2[image: there is no content]at′+Σt-1/2[image: there is no content]at′⊗[image: there is no content])∂vec(Σt-1/2)∂λ′.








The statistics [image: there is no content] and [image: there is no content] can be used jointly to test the simultaneous significance of [image: there is no content] and [image: there is no content], [image: there is no content]. In addition, the statistic [image: there is no content] can be used to test whether a fitted VARMA model has GARCH innovations.





4. Diagnostic Checking for VARMA-GARCH Models with Multivariate Student-t Innovations


The heavy-tail phenomenon is commonly seen in financial data. To properly describe this phenomenon, multivariate Student-t distributions are often employed in volatility modeling of multiple asset returns. It is, then, desirable to investigate model checking of a fitted vector ARMA-GARCH model with (standardized) multivariate Student-t innovations. Specifically, in this section, we assume that the probability density function of [image: there is no content] is


f([image: there is no content])=Γ((ν+k)/2)[π(ν-2)]k/2Γ(ν/2)[1+[image: there is no content]εt′ν-2]-(ν+k)/2,



(17)




where ν is a positive number denoting the degrees of freedom. Note that E([image: there is no content])=0 and cov([image: there is no content]) = [image: there is no content]. We further assume that [image: there is no content] so that components of the Student-t distribution have a finite fourth moment.



The standardized multivariate Student-t distribution can also be written as


[image: there is no content]=(v-2)[image: there is no content][image: there is no content][image: there is no content],








where [image: there is no content] is uniformly distributed on the unit sphere surface in [image: there is no content], [image: there is no content] is a chi-square random variable with k degrees of freedom, [image: there is no content] is a gamma variate with mean ν and variance [image: there is no content], and [image: there is no content], [image: there is no content] and [image: there is no content] are mutually independent, see Fiorentini et al. [19] for more details. We use this expression in some of the derivations below.



4.1. Estimation


We begin with estimation. Let [image: there is no content] be a realization of the VARMA-GARCH model (1)-(2) with innovations following the standardized multivariate Student-t distribution of (17). Similarly as the case of Gaussian innovations, we denote the parameter vector of the model by [image: there is no content], where [image: there is no content]. Ignoring the constant, the log-likelihood function of the data is


Ln(θ)=1n∑t=1nlt(θ),lt(θ)=c(η)+dt(λ)+gt(λ,η)



(18)




where


c(η)=ln[Γ(kη+12η)]-ln[Γ(12η)]-k2ln(1-2ηη),dt(λ)=-12ln(det([image: there is no content](λ))),gt(λ,η)=-(kη+12η)ln[1+η1-2η(εt′[image: there is no content])].








The first-order derivatives and the information matrix are calculated as


∂dt(λ)∂λ=-12vec′(Σt-1)∂[image: there is no content]∂λ′,∂dt∂η=0,∂gt(λ,η)∂φ=kη+12(1-2η+η(εt′[image: there is no content]))[2at′Σt-1(∂[image: there is no content]∂φ′)+vec′(Σt-1[image: there is no content]at′Σt-1)∂[image: there is no content]∂φ′]∂gt(λ,η)∂δ=kη+12(1-2η+η(εt′[image: there is no content]))[vec′(Σt-1[image: there is no content]at′Σt-1)∂[image: there is no content]∂δ′]∂gt(λ,η)∂η=-kη+12η(1-2η)εt′[image: there is no content]1-2η+η(εt′[image: there is no content])+12ηln[1+η1-2η(εt′[image: there is no content])]∂c(η)∂η=k2η(1-2η)-12η2[Ξ(kη+12η)-Ξ(12η)],∂c(η)∂λ=0,








where [image: there is no content] is the Gauss-ψ function, or di-gamma function. Then we can find the information matrix by


E∂2dt∂λ∂λ′=-k+ν2(k+ν+2)E[(∂[image: there is no content]∂λ′)′(Σt-1⊗Σt-1)(∂[image: there is no content]∂λ′)],E∂2gt∂φ∂φ′=-ν(k+ν)(ν-2)(k+ν+2)E[(∂[image: there is no content]∂φ′)′Σt-1(∂[image: there is no content]∂φ′)]+12(k+ν+2)E{[(∂[image: there is no content]∂φ′)′vec(Σt-1)][vec′(Σt-1)(∂[image: there is no content]∂φ′)]},E∂2gt∂δ∂δ′=12(k+ν+2)E{[(∂[image: there is no content]∂δ′)′vec(Σt-1)][vec′(Σt-1)(∂[image: there is no content]∂δ′)]},E∂2gt∂η∂λ′=(k+2)ν2(ν-2)(k+ν)(k+ν+2)E[vec′(Σt-1)(∂[image: there is no content]∂λ′)],E∂2∂η∂η′(gt+c(η))=-ν44[Ξ′(ν2)-Ξ′(k+ν2)]+kν4[ν2+k(ν-4)-8]2(ν-2)2(k+ν)(k+ν+2).











The following theorems, corresponding to Theorems 3.1 and 3.2, provide the asymptotic properties of the information matrix and MLE [image: there is no content] for a GARCH Student-t model.



Theorem 4.1. Suppose the k-dimensional time series {[image: there is no content]} and {[image: there is no content]} are generated by (1)–(2) with innovations [image: there is no content] following the distribution in (17). Assume Assumptions 1–6 hold, then at λ=[image: there is no content]


-1n∑t=1n∂2lt/(∂φ∂φ′)∂2lt/(∂δ∂φ′)∂2lt/(∂η∂φ′)∂2lt/(∂φ∂δ′)∂2lt/(∂δ∂δ′)∂2lt/(∂η∂δ′)∂2lt/(∂φ∂η)∂2lt/(∂δ∂η)∂2lt/(∂η∂η)[image: there is no content]ΩφφOΩφηOΩδδΩδηΩφη′Ωδη′[image: there is no content]≡[image: there is no content]








as [image: there is no content] and [image: there is no content] is positive definite, where


Ωφφ=k+ν2(k+ν+2)E[(∂[image: there is no content]∂φ′)′(Σt-1⊗Σt-1)(∂[image: there is no content]∂φ′)]+ν(k+ν)(ν-2)(k+ν+2)E[(∂[image: there is no content]∂φ′)′Σt-1(∂[image: there is no content]∂φ′)]-12(k+ν+2)E{[(∂[image: there is no content]∂φ′)′vec(Σt-1)][vec′(Σt-1)(∂[image: there is no content]∂φ′)]},Ωφη=-(k+2)ν2(ν-2)(k+ν)(k+ν+2)E[vec′(Σt-1)(∂[image: there is no content]∂φ′)],Ωδη=-(k+2)ν2(ν-2)(k+ν)(k+ν+2)E[vec′(Σt-1)(∂[image: there is no content]∂δ′)],Ωδδ=k+ν2(k+ν+2)E[(∂[image: there is no content]∂δ′)′(Σt-1⊗Σt-1)(∂[image: there is no content]∂δ′)]-12(k+ν+2)E{[(∂[image: there is no content]∂δ′)′vec(Σt-1)][vec′(Σt-1)(∂[image: there is no content]∂δ′)]},[image: there is no content]=ν44[Ξ′(ν2)-Ξ′(k+ν2)]-kν4[ν2+k(ν-4)-8]2(ν-2)2(k+ν)(k+ν+2).











Theorem 4.2. Under the assumptions of Theorem 4.1, the following results hold:



(a). There exists a MLE [image: there is no content] satisfying the equation [image: there is no content] and [image: there is no content]→pθ0 as [image: there is no content].



(b). n([image: there is no content]-θ0)[image: there is no content]N(0,Ω0*-1) as [image: there is no content], where


[image: there is no content]








and [image: there is no content] and [image: there is no content] are values of [image: there is no content] and [image: there is no content] at [image: there is no content]. Further, the information matrices [image: there is no content] and [image: there is no content] can be estimated consistently by


Ωφφ0=k+ν2(m+ν+2)∑t=1n[(∂[image: there is no content]∂φ′)′(Σt-1⊗Σt-1)(∂[image: there is no content]∂φ′)]+ν(k+ν)(ν-2)(k+ν+2)∑t=1n[(∂[image: there is no content]∂φ′)′Σt-1(∂[image: there is no content]∂φ′)]-12(k+ν+2)∑t=1n{[(∂[image: there is no content]∂φ′)′vec(Σt-1)][vec′(Σt-1)(∂[image: there is no content]∂φ′)]}Ωφη0=-(k+2)ν2(ν-2)(k+ν)(k+ν+2)∑t=1n[vec′(Σt-1)(∂[image: there is no content]∂φ′)],Ωδη0=-(k+2)ν2(ν-2)(k+ν)(k+ν+2)∑t=1n[vec′(Σt-1)(∂[image: there is no content]∂δ′)],Ωδδ0=k+ν2(k+ν+2)∑t=1n[(∂[image: there is no content]∂δ′)′(Σt-1⊗Σt-1)(∂[image: there is no content]∂δ′)]-12(k+ν+2)∑t=1n{[(∂[image: there is no content]∂δ′)′vec(Σt-1)][vec′(Σt-1)(∂[image: there is no content]∂δ′)]},[image: there is no content]=ν44[Ξ′(ν2)-Ξ′(k+ν2)]-kν4[ν2+k(ν-4)-8]2(ν-2)2(k+ν)(k+ν+2).












4.2. Diagnostic Checking


Turn to model checking for a fitted VARMA-GARCH model with Student-t innovations. We derive in this subsection the asymptotic distributions of autocovariance matrices of constructed processes of the standardized residuals and the portmanteau statistics. The derivations are similar to those in the Gaussian case, and ρ and r are defined in the same way as those of subsection 3.2. First, we study the asymptotic distribution of [image: there is no content] and obtain the corresponding portmanteau statistic. It can be shown that Lemma 3.1 continues to hold when the innovations are Student-t. Also, using calculation similar to that of Lemma 3.2, we obtain the following lemma concerning [image: there is no content] and [image: there is no content].



Lemma 4.1. Under the assumptions of Lemma 3.5, we have that at [image: there is no content],


E∂Ln∂φvec′(ρm)=-νν-2E(∂[image: there is no content]∂φ′)′(εt-m′⊗Σt′-1/2),E(∂l∂δ′)′vec′(ρm)=E∂l∂ηvec′(ρm)=O,E(∂l∂θ′)′vec′(ρm)=-νν-2E(∂vec(ρm)∂θ′)′.








Furthermore, define [image: there is no content], Υk*=[-E[(εt-m⊗Σt-1/2)(∂[image: there is no content]∂φ′)],O′]. Since [image: there is no content], we can derive the distribution of [image: there is no content].



Theorem 4.3. Suppose the time series [image: there is no content] is generated under the assumptions of Theorem 4.1, then [image: there is no content] is asymptotically normal with mean 0 and covariance matrix


V1*=IM⊗[image: there is no content]-ν+2ν-2Υ*Ω0*-1Υ*′.











The asymptotic distribution of lag-m autocovariance matrix of the product vector of squared standardized residuals is derived in the following lemma.



Lemma 4.2. Under the assumptions of Theorem 4.1, we have


nvec(r˜m)[image: there is no content]N(0,W⊗W),








where W = ν-2ν-4([image: there is no content]+Kk,k)-2ν-4vec([image: there is no content])vec′([image: there is no content]).



Proof. The proof of Lemma 4.2 is similar to that of Lemma 3.3. Here we have


var(vec([image: there is no content]εt′))=E[vec(ν-2[image: there is no content][image: there is no content][image: there is no content]ut′-[image: there is no content])vec′(ν-2[image: there is no content][image: there is no content][image: there is no content]ut′-[image: there is no content])]=(ν-2)2E[([image: there is no content][image: there is no content])2]E[vec([image: there is no content]ut′)vec′([image: there is no content]ut′)]-vec([image: there is no content])vec′([image: there is no content])=k(k+2)(ν-2)ν-41k(k+2)[[image: there is no content]+Kk,k+vec([image: there is no content])vec′([image: there is no content])]-vec([image: there is no content])vec′([image: there is no content])=ν-2ν-4([image: there is no content]+Kk,k)-2ν-4vec([image: there is no content])vec′([image: there is no content]).☐.











Notice that as [image: there is no content], var(vec([image: there is no content]εt′))→[image: there is no content]+Kk,k, which is the covariance matrix for the Gaussian case of Section 3. It is straightforward to find the distribution of [image: there is no content].



Corollary 4.1. If the time series [image: there is no content] is generated by the VARMA-GARCH model (1)–(2) with standardized multivariate Student-t innovation, then under Assumptions 1–6,


nvec(rm)[image: there is no content]N(0,Δ⊗Δ),








where Δ=(2ν-4)2((ν-2)(Dk+Dk+′)-vech([image: there is no content])vech′([image: there is no content])).



Next, similar to Lemma 3.4, we study the relation between [image: there is no content] and [image: there is no content].



Lemma 4.3. Under the assumptions of Lemma 3.5, we have that at [image: there is no content],


E(∂Ln∂λ′)′vec′(rm)=1n∑t=m+1nE∂vec(Σt1/2)∂λ′′(Σt-1/2⊗[image: there is no content]+[image: there is no content]⊗Σt-1/2)[vech′(ct-m)⊗Dk+′]+1n1ν-2∑t=m+1nE{∂vec(Σt1/2)∂λ′′(Σt-1/2⊗[image: there is no content]+[image: there is no content]⊗Σt-1/2)·[vech′(ct-m)⊗(vec([image: there is no content])vech′([image: there is no content]))]}≡X˜m*′+Z˜m*′.








Next, define [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].



Proof. From the calculation of [image: there is no content], we have


E[[image: there is no content]vec′(rm)]=1n∑t=m+1nEkη+12(1-2η+η(εt′[image: there is no content]))(∂[image: there is no content]∂λ′)′(Σt-1/2⊗Σt-1/2)










·vec(ct)(vech′(ct-m)⊗vech′(ct))]










=1n∑t=m+1nE∂vec(Σt1/2)∂λ′′(Σt-1/2⊗[image: there is no content]+[image: there is no content]⊗Σt-1/2)










·[vech′(ct-m)⊗kη+12(1-2η+η(εt′[image: there is no content]))(vec(ct)vech′(ct))]










=1n∑t=m+1nE{∂vec(Σt1/2)∂λ′′(Σt-1/2⊗[image: there is no content]+[image: there is no content]⊗Σt-1/2)










·[vech′(ct-m)⊗(Dk+′+1ν-2vec([image: there is no content])vech′([image: there is no content]))]}=X˜m*′+Z˜m*′.☐








We can also find that [image: there is no content] and obtain the following portmanteau statistic for diagnostic checking.



Theorem 4.4. Suppose the time series [image: there is no content] is generated under the assumptions of Theorem 4.1, then [image: there is no content] is asymptotically normal with mean 0 and covariance matrix


[image: there is no content]








where Ψ=(ν-2)(Dk+Dk+′)-vech([image: there is no content])vech′([image: there is no content]).



By Theorems 4.3 and 4.4, we know that


Q1(M)=n·vec′([image: there is no content])V^1*-1vec([image: there is no content])∼[image: there is no content](Mk2),



(19)




and


[image: there is no content]



(20)




where V^1*=IM⊗[image: there is no content]-ν+2ν-2Υ^*Ω^0*-1Υ^*′, [image: there is no content],


[image: there is no content]








where [image: there is no content], Υ^m*=1n∑t=m+1n(εt-m⊗Σt-1/2(∂[image: there is no content]/∂λ′),O) is estimated at λ=[image: there is no content]. [image: there is no content], X^m*=1n∑t=m+1n(vech(ct-m)⊗Dk+′)[([image: there is no content]⊗Σt-1/2[image: there is no content]at′+Σt-1/2[image: there is no content]at′⊗[image: there is no content])∂vec(Σt-1/2)∂λ′,O]′, [image: there is no content], Z^m*=1n∑t=m+1n1ν^-2[vech(ct-m)⊗(vec([image: there is no content])vech′([image: there is no content]))][([image: there is no content]⊗Σt-1/2[image: there is no content]at′+Σt-1/2[image: there is no content]at′⊗[image: there is no content])∂vec(Σt-1/2)∂λ′,O]′ are also estimated at λ=[image: there is no content].





5. Residual-based Bootstrap Approximation for Model Checking Statistics


As discussed in previous sections, the model checking statistics [image: there is no content] and [image: there is no content] depend on the estimation of covariance matrices [image: there is no content] and [image: there is no content], which are obtained by the first and second order derivatives of log-likelihood function, while it is complicated to implement the procedure in real application. Alternatively, in this section we approximate the test statistics under both the null and alternative hypothesis by bootstrap. To be specific, we consider constructing pseudo time series based on i.i.d. random draws from the fitted standardized residuals with a discrete distribution. For simplicity, our bootstrap procedure and asymptotic properties are based on the case of Gaussian innovations in this section, and the approach could be easily extended for the Student-t error GARCH model.



5.1. Residual-based Bootstrap Procedure


By resampling the standardized residuals of the fitted model, we use the residual-based bootstrap to approximate the (asymptotic) distributions of sample standardized residual autocorrelation matrix and standardized residual cross-product autocovariance matrix, i.e., [image: there is no content] and [image: there is no content], and thus find the (empirical) p-values of the model checking statistics [image: there is no content] and [image: there is no content]. Particularly, the innovations [image: there is no content] are mimicked by i.i.d. random draws with replacement from the estimated errors [image: there is no content]. Define [image: there is no content] as the sample covariance matrix of [image: there is no content], i.e., [image: there is no content]≡n-1∑t=1n([image: there is no content]-[image: there is no content])([image: there is no content]-[image: there is no content])′, where [image: there is no content] is the sample mean of [image: there is no content], as defined in subsection 3.2. The fitted standardized residuals are normalized by εˇt=Σε^-1/2([image: there is no content]-[image: there is no content]). To generate each bootstrap pseudo-series, the residual sample [image: there is no content] is i.i.d. random draw from the normalized version [image: there is no content]. To construct the bootstrap sample [image: there is no content], we replace the unknown parameter λ with its estimator [image: there is no content]. The procedure allows the bootstrap residual data {[image: there is no content]}t=1-dn to satisfy the model hypothesized under the null, irrespective of whether {[image: there is no content]}t=1-dn follow the model under the null hypothesis. Hence the bootstrap statistics possess the same asymptotic distribution under the maintain hypothesis, i.e., [image: there is no content]. As the following steps, we introduce the residual-based bootstrap algorithm to approximate the test statistics.



Step 1. Define [image: there is no content], and let [image: there is no content] be some starting values. For the checked VARMA([image: there is no content])-GARCH([image: there is no content]) model, generate [image: there is no content] by


[image: there is no content]=∑i=1p[image: there is no content]Yt-i*+at*+∑i=1qΘ^iat-i*,at*=Σt*1/2εt*



(21)






Σt*=A^0+∑i=1rA^iat-i*at-i*′A^i′+∑i=1sB^iΣt-i*B^i′,t=0,1,…,n



(22)




where [image: there is no content] are i.i.d. random draw from [image: there is no content].



Step 2. Based on the bootstrap pseudo-series {[image: there is no content]}t=1n, let [image: there is no content] be the MLE of the parameters of the model under the null hypothesis, and denote by [image: there is no content] the corresponding estimated standardized residuals. The bootstrap analogues of [image: there is no content]m and [image: there is no content] are obtained by


[image: there is no content]m*=n-1∑t=m+1n([image: there is no content]-[image: there is no content]*)(ε^t-m*-[image: there is no content]*)′










r^m*=n-1∑t=m+1nvech(c^t*-c˜*)vech(c^t-m*-c˜*)′,m=1,...,M








where [image: there is no content]*=n-1∑t=1n[image: there is no content], c^t*=[image: there is no content]ε^t*′, [image: there is no content], and M is the pre-specified largest lag tested for zero autocorrelations in standardized residual and its cross-product vector. Define vec([image: there is no content]*)=(vec′([image: there is no content]1*),...,vec′([image: there is no content]M*))′ and [image: there is no content].



Step 3. Repeat Step 1 and Step 2 for B times. Denote the vec([image: there is no content]*) and [image: there is no content] obtained in the [image: there is no content] iteration by vec([image: there is no content]*(b)) and [image: there is no content], where [image: there is no content].



Step 4. Approximate [image: there is no content] by [image: there is no content], the covariance matrix of {nvec([image: there is no content]*(b))}b=1B. Calculate B bootstrap model checking statistics [image: there is no content] by {Q1*(b)(M)=n·vec([image: there is no content]*(b))′V^1*-1vec([image: there is no content]*(b))}b=1B. Similar procedures are followed to obtain the covariance matrix of [image: there is no content], denoted by [image: there is no content], and [image: there is no content].



Step 5. Let Q1(M)=n·vec([image: there is no content])′V^1*-1vec([image: there is no content]), [image: there is no content]. The model is not adequate if


Q1(M)>[image: there is no content],orQ2(M)>[image: there is no content]








where [image: there is no content] and [image: there is no content] are the [image: there is no content]th-quantiles of the distributions of [image: there is no content] and [image: there is no content], respectively.




5.2. Properties and Validity of the Residual-based Bootstrap Process


In this subsection, we introduce some basic properties of the residual-based bootstrap procedure and justify its validity. As a first step, we consider transforming the VARMA([image: there is no content])-GARCH([image: there is no content]) BEKK model to a truncated version of VAR(∞)-ARCH(∞) model. Define [image: there is no content].



For [image: there is no content] or [image: there is no content], let [image: there is no content]=[image: there is no content]=O[image: there is no content], and denote Rt=vec([image: there is no content]at′), [image: there is no content], A˜0=[O1×k2,vec([image: there is no content])′,O1×(2(η-1)k2)]′, Ji,η=[Ok2×(i-1)k2,[image: there is no content],Ok2×(2η-i)k2], [image: there is no content], where [image: there is no content]=vec([image: there is no content]).


[image: there is no content]



(23)




Consider the recursive relationship [image: there is no content], and notice that the processes {[image: there is no content]} and {[image: there is no content]} are unobserved for [image: there is no content] in practice, we have the following lemma concerning the transformation of VARMA([image: there is no content])-GARCH([image: there is no content]) BEKK model.



Lemma 5.1. Given [image: there is no content] and under Assumptions 3–7, model (1)-(3) has the following form of transformation


[image: there is no content]=[image: there is no content]+∑i=1t-1ΠiYt-i,[image: there is no content]=Σt1/2[image: there is no content],



(24)






[image: there is no content]=J2,η∑j=0∞A˜jA˜0+∑j=0∞A˜jR˜t-j=J2,η(∑j=0∞A˜jA˜0)+∑j=0t-1[J2,ηA˜jJ1,η′Rt-j]=J2,η(∑j=0∞A˜jA˜0)+∑j=1t-1[J2,ηA˜jJ1,η′Rt-j]≡C0+∑j=1t-1CjRt-j.



(25)







Based on the above transformation, we provide the bootstrap counterparts and the corresponding log-likelihood function.


at*=[image: there is no content]+∑i=1t-1ΠiYt-i*,at*=Σt*1/2εt*,



(26)






[image: there is no content]



(27)






Ln*(λ)=1n∑t=1nlt*(λ),lt*(λ)=-12lndet(Σt*)-12at*′Σt*-1at*.



(28)







Lemma 5.2. Under Assumptions 1–8, for all [image: there is no content],


E*|1n∑i=1n[lndet(Σt*)-lndet([image: there is no content])]|=op(1),



(29)






E*|1n∑i=1n[at*′Σt*-1at*-at′Σt-1[image: there is no content]]|=op(1),



(30)




where [image: there is no content] denotes the bootstrap expectation of the random variable X, i.e., [image: there is no content] and [image: there is no content].



Lemma 5.3. Under Assumptions 1–8,


E*sup[image: there is no content],[image: there is no content]∈Λ1|[image: there is no content]-[image: there is no content]||lndetΣt*([image: there is no content])-lndetΣt*([image: there is no content])|=[image: there is no content]



(31)






E*sup[image: there is no content],[image: there is no content]∈Λ1|[image: there is no content]-[image: there is no content]||at*′([image: there is no content])Σt*-1([image: there is no content])at*([image: there is no content])-[image: there is no content]([image: there is no content])′Σt-1([image: there is no content])[image: there is no content]([image: there is no content])|=[image: there is no content]



(32)




where [image: there is no content] is a sequence of [image: there is no content] random variables and [image: there is no content] is defined similarly as in Lemma 5.2.



Based on Lemmas 5.2 and 5.3, we have the following propositions, which establishes the asymptotic properties of the MLE [image: there is no content] of the bootstrap procedure (21) − (22).



Proposition 5.1. Under Assumptions 1–8 and under [image: there is no content], [image: there is no content]-[image: there is no content]=op*(1), where [image: there is no content] means that for all [image: there is no content], P{∥[image: there is no content]-[image: there is no content]∥>ϵ|Dn}→p0 with Dn=[image: there is no content]1-dn.



Proof. To show the proposition, we need first show that


E*sup[image: there is no content]|Ln*(λ)-Ln(λ)|=op(1).



(33)







It follows from Lemma 5.2 that [image: there is no content]. Since Λ is a compact set, we have the equicontinuity condition for [image: there is no content] by Lemma 5.3, which implies


E*sup[image: there is no content],[image: there is no content]∈Λ(1|[image: there is no content]-[image: there is no content]|[|lndetΣt*([image: there is no content])-lndetΣt*([image: there is no content])|










+|at*′([image: there is no content])Σt*-1([image: there is no content])at*([image: there is no content])-[image: there is no content]([image: there is no content])′Σt-1([image: there is no content])[image: there is no content]([image: there is no content])|])=[image: there is no content]








Thus, (33) holds. Therefore by standard arguments we conclude that [image: there is no content]-[image: there is no content]=op*(1). ☐.



Proposition 5.2. Under Assumptions 1–8 and under [image: there is no content], as [image: there is no content], n([image: there is no content]-[image: there is no content])→L*N(0,Ω0-1) in probability, that is for each point [image: there is no content], P{n([image: there is no content]-[image: there is no content])<x|Dn}→pΦ[image: there is no content](x,Ω0-1), where [image: there is no content] denotes the CDF of the [image: there is no content]-variate Gaussian distribution [image: there is no content].



Proof. To show the proposition, we shall show that [image: there is no content], where [image: there is no content],


Ωϕ*(λ)=E*[12(∂Ht*∂φ′)′(Σt*-1⊗Σt*-1)(∂Ht*∂φ′)+(∂[image: there is no content]∂φ′)′Σt*-1(∂[image: there is no content]∂φ′)],










[image: there is no content]











Proceeding as the proof of Proposition 5.1, we obtained that [image: there is no content] uniformly in a neighborhood of [image: there is no content], say N([image: there is no content]), which implies that [image: there is no content] is a positive definite matrix for all [image: there is no content]. Hence by Slutsky’s theorem, we have [image: there is no content], which completes the proof. ☐.



For the fitted standardized residual series {[image: there is no content]} obtained by the bootstrap time series, it follows by a Taylor’s expansion that


vec([image: there is no content]*)=vec(ρ)+∂vec(ρ)∂λ′(λ^*-λ)+op*(n-1/2)










[image: there is no content]=vec(r)+∂vec(r)∂λ′(λ^*-λ)+op*(n-1/2)











Then we have the following results for the fitted residuals of the bootstrap processes.



Proposition 5.3. Under Assumptions 1–8 and under [image: there is no content], as [image: there is no content],


n(vec([image: there is no content]*))→L*N(0,[image: there is no content]);n(vec(r^*))→L*N(0,[image: there is no content])








in probability.



Proof. Denote the covariance matrix (in the bootstrap sense) of nvec([image: there is no content]*) and [image: there is no content] as [image: there is no content] and [image: there is no content], respectively. Then we have


[image: there is no content]=n-1E*∂vec(ρ*)∂λΩ0*-1∂Ln*∂λ∂Ln*∂λ′Ω0*-1∂vec(ρ*)∂λ′










[image: there is no content]=n-1E*∂vec(r*)∂λΩ0*-1∂Ln*∂λ∂Ln*∂λ′Ω0*-1∂vec(r*)∂λ′








Using similar method in Proposition 5.1 and the result of Proposition 5.2, we could show that [image: there is no content]-[image: there is no content]=op*(1) and [image: there is no content]-[image: there is no content]=op*(1) uniformly in a neighborhood of [image: there is no content]. Therefore, the results of the proposition hold. ☐.



Based on Proposition 5.3, we have the following theorem concerning the asymptotic distributions of the bootstrap model checking statistics.



Theorem 5.1. Under Assumptions 1–8 and under [image: there is no content], as [image: there is no content],


n(vec([image: there is no content]*))′V1*-1(vec([image: there is no content]*))→L*[image: there is no content](Mk2);










n(vec(r^*))′V2*-1(vec(r^*))→L*[image: there is no content](M[k(k+1)2]2)








in probability.



The results of Theorem 5.1 allow us to implement the bootstrap procedure for model checking. In particular, define [image: there is no content], [image: there is no content] and [image: there is no content], [image: there is no content] to satisfy


P{n(vec([image: there is no content]))′V1-1(vec([image: there is no content]))>[image: there is no content]}=α;P{n(vec(r^))′V2-1(vec(r^))>[image: there is no content]}=α,










P*{n(vec([image: there is no content]*))′V1*-1(vec([image: there is no content]*))>[image: there is no content]}=α;P*{n(vec(r^*))′V2*-1(vec(r^*))>[image: there is no content]}=α











Then it follows that [image: there is no content] as [image: there is no content], whereas [image: there is no content], [image: there is no content]. In real application, we run the bootstrap algorithm for a large number of B times to estimate [image: there is no content] and [image: there is no content]. Particularly,


[image: there is no content]=1B∑b=1B[vec([image: there is no content]*(b)-ρ¯*)][vec′([image: there is no content]*(b)-ρ¯*)],










[image: there is no content]=1B∑b=1B[vec(r^*(b)-r¯*)][vec′(r^*(b)-r¯*)]








where ρ¯*=1B∑b=1B[image: there is no content]*(b), [image: there is no content]. Furthermore, define Q1*(b)(M)=n(vec([image: there is no content]*(b)))′V^1*-1·(vec([image: there is no content]*(b))), [image: there is no content], then [image: there is no content] are approximated by the values [image: there is no content] ([image: there is no content]), which satisfy


1B∑b=1B1Q1*(b)(M)>q1-α*1,B=α,1B∑b=1B1Q2*(b)(M)>q1-α*2,B=α,








where [image: there is no content] denotes the indicator function.





6. Simulation Study


In this section, we conduct some simulation studies with four objectives. First, we demonstrate the effect of conditional heteroscedasticity on the distributions of autocorrelations of standardized residuals and their cross-product series. Second, we study the empirical size and power of the proposed portmanteau statistics. Thirdly, we compare the performance of the proposed statistics with those of Ling and Li [12] to illustrate the contributions of using the cross-product vector of standardized residuals in model checking. Finally, we examine the effect of our bootstrap approximation method by constructing the distribution of the statistics via bootstrap under both the null and alternative hypotheses. In our simulations, we use bivariate time series as examples.



To study the effect of GARCH shocks on the distributions of autocorrelations of standardized residuals and their squared series, we employ a simple bivariate time series [image: there is no content]=[image: there is no content], where [image: there is no content] follows either a pure 2-dimensional Gaussian white noise or a BEKK(1,1) model with Gaussian innovations and parameters given below:


[image: there is no content]=I,A1=0.05-0.10.10.05,B1=0.9-0.30.30.9.



(34)




For the pure white noise series, we estimate the sample covariance matrix of [image: there is no content] to obtain the standardized residuals. For the GARCH series, we fit a BEKK(1,1) model to obtain the standardized residuals. Figure 1 shows the empirical densities of the (1,1) element of the lag-1 autocorrelation matrix of the standardized residuals and their cross-product series. The plots on the top panel are for the case of pure Gaussian noise whereas those in the bottom panel are for the case of GARCH shocks. Also, the plots in the left panel are for the standardized residuals and those in the right panel are for the cross-product series of the standardized residuals. The results are based on 1000 time series and the sample sizes used are 500, 1000, and 3000. In each figure, the black, blue, and red curves are for sample size 500, 1000, and 3000, respectively. These plots show clearly that (a) the conditional heteroscedasticity has substantial impact on the sample distribution of residual serial correlations, (b) the sample size also affects significantly the residual serial correlations, and (c) the conditional heteroscedasticity seems to affect the autocorrelations of the standardized residuals more than their squared series.


Figure 1. Empirical densities of the (1,1) element of the lag-1 autocorrelation matrix of the standardized residuals and their squared series. The shocks [image: there is no content] are either pure Gaussian white noises or a BEKK(1,1) process with Gaussian innovations and parameters given in Equation (34). The results are based on 1000 time series. The sample sizes are 500, 1000, and 3000.



[image: Econometrics 01 00001 g001]






To investigate the effect of excess kurtosis on the residual serial correlations, we employ a GARCH(1,1) model. The GARCH shocks follow a BEKK(1,1) model with parameters in Equation (34), but the innovations [image: there is no content] are multivariate Student-t with degrees of freedom 7, 15, 50, respectively. Again, we consider the empirical densities of the (1,1) element of the lag-1 autocorrelation matrix of the standardized residuals and their cross-product series. Figure 2 shows the results based on 1000 time series, each has 3000 observations. From the plots, we observe that (a) the tail-thickness has marked impact on the sample distributions of the serial correlations of standardized residuals and their cross-product series and (b), as expected, when the degrees of freedom ν increases the densities approach those in Figure 1 for the Gaussian innovations with 3000 observations.


Figure 2. Empirical densities of the (1,1) element of the lag-1 autocorrelation matrix of the standardized residuals and their squared series. The time series [image: there is no content] is a GARCH(1,1) process following an BEKK(1,1) model with multivariate Student-t innovations and parameters given in Equation (34). The results are based on 1000 time series with sample size 3000. The degrees of freedom are 7, 15, and 50.



[image: Econometrics 01 00001 g002]






Next, we study the empirical size and power of the proposed test statistics [image: there is no content] and [image: there is no content]. Three VAR(p)-GARCH([image: there is no content]) models are used in the simulation. Denote the parameters of a model by vec(Φ1,⋯,[image: there is no content])-vec([image: there is no content],A1,⋯,Ar,B1,⋯,Bs). The first model employed is a VAR(1)-GARCH(1,1) model with parameters (.2, .3, [image: there is no content], 1.1)-(1, 0, 0, 1, .5, 0, 0, .5, .5, 0, 0, .5). The second one is a VAR(1)-GARCH(3,1) model with parameters (.2, .3, [image: there is no content], 1.1, [image: there is no content], 0, 0, [image: there is no content])-(1, 0, 0, 1, .2, 0, 0, .2, .2, .2, 0, .2, .2, 0, .1, .2, .85, 0, 0, .85). The third model is VAR(2)-GARCH(3,1) with parameters (.2, .3, [image: there is no content], 1.1, [image: there is no content], 0, 0, [image: there is no content])-(1, 0, 0, 1, .5, 0, 0, .5, .5, .2, 0, .5, .4, 0, .1, .4, .2, 0, 0, .2). For each VAR-GARCH model, we consider Gaussian and Student-t innovations. The degrees of freedom for the multivariate Student-t innovations are 6, 7, and 7, respectively, for Model 1, 2, and 3. We choose these models to show various degrees of conditional heteroscedasticity and tail thickness.



The sample sizes used are 500 and 1000. For each (model, sample size, innovation) combination, we generate 1000 realizations. For each realization {[image: there is no content]|t=1,…,n}, we fit a VAR(1)-GARCH(1,1) to obtain the standardized residuals, assuming that the distributional type of the innovations is known. Using the standardized residuals and their cross-product series, we compute the proposed portmanteau test statistics [image: there is no content] and [image: there is no content].



For Model 1, the fitted model is properly specified so that we can obtain the empirical distributions of the proposed test statistics. We then use the asymptotic 5% critical values to tabulate the empirical sizes of the two test statistics. For Models 2 and 3, the fitted model is mis-specified and we use the results to study the power of the proposed test statistics. Note that asymptotic 5% critical values are used in the power study. The simulation results are given in Table 1. For simplicity, we only report the results for [image: there is no content].



Table 1. Empirical sizes and power of [image: there is no content] and [image: there is no content] statistics for some VAR-GARCH models and empirical power of the proposed [image: there is no content] and that of Ling and Li [12] for Model 4. The latter is denoted by LL. Both Gaussian and Student-t innovations are used. The sample sizes used are 500 and 1000, and the results are based on 1000 realizations. Only results of M = 1 are reported.







	

	

	
Model 1 (size)

	
Model 2 (power)

	
Model 3 (power)

	
Model 4 (power)






	
[image: there is no content]

	
n

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
LL




	
Gaussian

	
500

	
0.030

	
0.061

	
0.143

	
0.336

	
0.983

	
0.517

	
0.528

	
0.067




	

	
1000

	
0.022

	
0.053

	
0.231

	
0.645

	
0.999

	
0.682

	
0.686

	
0.053




	
Student-t

	
500

	
0.041

	
0.068

	
0.210

	
0.331

	
0.987

	
0.443

	
0.459

	
0.062




	

	
1000

	
0.035

	
0.059

	
0.276

	
0.593

	
0.999

	
0.628

	
0.663

	
0.051










Furthermore, to demonstrate the importance of using the cross-product vector of the standardized residuals, not simply their squared series, we consider another data generating model. Specifically, Model 4 is


[image: there is no content]=Σt1/2[image: there is no content],[image: there is no content]∼N(0,I2)or[image: there is no content]∼t(0,I2,7),










[image: there is no content]










[image: there is no content]










[image: there is no content]



(35)




where [image: there is no content] is the i-th element of [image: there is no content] and [image: there is no content] denotes the [image: there is no content] element of the covariance matrix [image: there is no content]. In this particular case, the standardized residuals follow a GARCH(1,1) model whereas the cross-product process [image: there is no content] has a lag-2 autocorrelation. Thus, the goodness of fit test of Ling and Li [12] is unlikely to reject a fitted GARCH(1,1) model. We generate data from Model 4, fit a GARCH(1,1) model to the data, and compare the power between the proposed [image: there is no content] portmanteau statistic and the corresponding test of Ling and Li [12]. The sample sizes used are 500 and 1000, and the results are also given in Table 1.



From Table 1, we make the following observations. First, the empirical sizes of the proposed test statistics [image: there is no content] and [image: there is no content] seem reasonable. Second, the proposed test statistics also have decent power and, as expected, the power of the tests increases as the sample size increases. Third, the power of [image: there is no content] is high for Model 3. This is understandable because the order of the VAR model is mis-specified. Fourth, for Model 2, the power of [image: there is no content] is higher than that of [image: there is no content] because in this case only the GARCH order is mis-specified. Finally, the results of Model 4 demonstrate clearly the contribution of using the cross-product vector of the standardized residuals in model checking. For this particular model, the test of Ling and Li [12] fails to detect the model inadequacy because the serial dependence of the conditional heteroscedasticity is in the cross-product series [image: there is no content]. The proposed [image: there is no content] statistics, on the other hand, has good power in detecting the model inadequacy. In real applications, the serial dependence in the conditional heteroscedasticity is typically unknown and it pays to use the more general test statistic [image: there is no content] proposed in the paper.



Finally, we examine the performance of the proposed residual-based bootstrap procedure by comparing the distribution of test statistics obtained by bootstrap with their asymptotic distributions, i.e., the chi-square distributions in Theorem 5.1. Based on 1000 simulated data under Models 1, 2, and 3 with Gaussian error, we fit a VAR(1)-GARCH(1,1) model and approximate the distributions of [image: there is no content] and [image: there is no content] via 1000 residual-based bootstrap. Particularly, the results of [image: there is no content] are reported in Table 2. Although Models 2 and 3 are mis-specified, the (asymptotic) distributions of the test statistics obtained by the re-sampled standardized residuals are approximately the same under both the null and alternative hypotheses, as we discussed in Section 5.



Table 2. Mean, variance, and quantiles of portmanteau statistics [image: there is no content] and [image: there is no content] obtained by the residual-based bootstrap approach for some VAR-GARCH Gaussian error models, and that of the corresponding chi-square distributions. The sample size used is 1000, and 1000 bootstrap samples are run for each model. Results of M = 15 are reported.







	
Model

	

	
Mean

	
Variance

	
Quantile: 1%

	
5%

	
10%

	
90%

	
95%

	
99%






	

	
[image: there is no content]

	
60

	
120

	
37.48

	
43.19

	
46.46

	
74.40

	
79.08

	
88.38




	

	
[image: there is no content]

	
135

	
270

	
99.74

	
109.16

	
114.42

	
156.44

	
163.12

	
176.14




	
1

	
[image: there is no content]

	
60.11

	
118.73

	
37.78

	
43.59

	
46.35

	
74.01

	
80.07

	
86.14




	

	
[image: there is no content]

	
136.99

	
280.39

	
98.16

	
109.34

	
116.05

	
158.50

	
165.40

	
178.68




	
2

	
[image: there is no content]

	
60.15

	
119.89

	
36.08

	
42.96

	
46.17

	
74.11

	
79.26

	
87.95




	

	
[image: there is no content]

	
137.12

	
282.20

	
98.83

	
109.75

	
114.77

	
158.43

	
164.84

	
178.52




	
3

	
[image: there is no content]

	
60.08

	
115.74

	
38.14

	
44.18

	
47.71

	
74.14

	
77.96

	
86.51




	

	
[image: there is no content]

	
137.36

	
285.68

	
97.31

	
108.58

	
115.17

	
159.42

	
165.06

	
179.60

















7. Application


In this section, we apply the proposed portmanteau tests to check the adequacy of a fitted VARMA-GARCH model for the returns of two well-known stock indices. The data consist of 1756 daily closing values of FTSE 100 Index and Deutsche Borse Ag German Stock Index (DAX) from January 3, 2006 to December 31, 2012. We focus on the return series [image: there is no content], where [image: there is no content] is the return on FTSE 100 index and [image: there is no content] on DAX index. Some preliminary analysis indicates that there exist some serial and cross-sectional correlations in the returns. Thus, a VAR(1) model is entertained. Significant autocorrelations of the cross-product vector of residuals of the fitted VAR(1) model suggest the existence of conditional heteroscedasticity in the returns. We then entertain three VAR-GARCH models and compute the proposed portmanteau test statistics [image: there is no content] and [image: there is no content] with [image: there is no content]. These test statistics are computed via two procedures. The first procedure uses the first and second order derivatives of log-likelihood function whereas the second procedure uses the residual-based bootstrap method. The model checking results are given in Table 3.



Table 3. Diagnostic tests for three models fitted to daily returns of FTSE 100 and DAX indices. The sample period is from January 3, 2006 to December 31, 2012. For Models 2 and 3, the degrees of freedom for the Student-t distribution are 7.00 and 7.02, respectively. Portmanteau statistics obtained by the first and second order derivatives of the log-likelihood function and the residual-based bootstrap procedure are reported and denoted by [image: there is no content] and [image: there is no content][image: there is no content], respectively. For each model, 1000 bootstrap samples are generated.







	

	
Model

	
Log-likelihood

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
1

	
VAR(1)-GARCH(1,1) with Gaussian

	
-5641.0

	
52.90

	
172.65

	
55.67

	
170.18




	
2

	
VAR(1)-ARCH(1) with Student-t

	
-5658.3

	
48.94

	
235.14

	
46.65

	
237.90




	
3

	
VAR(1)-GARCH(1,1) with Student-t

	
-5638.8

	
43.00

	
157.75

	
45.13

	
158.97














For all the three entertained models, the portmanteau test statistics obtained by the bootstrap method and derivatives of the log-likelihood function are reasonably close. They provide the same diagnostic inference for the fitted models using the 5% critical values. Specifically, for the proposed [image: there is no content] and [image: there is no content], the asymptotic [image: there is no content] distributions have degrees of freedom 60 and 135, respectively. The corresponding 5% critical values are 79.08 and 163.12, respectively. Therefore, the proposed portmanteau tests reject Models 1 and 2 of Table 3. For Model 3, the Q statistics of the two tests are 43.00 and 157.75, respectively. Thus, Model 3 cannot be rejected by the proposed test statistics. Parameters of the fitted VAR(1)-GARC(1,1) model with Student-t innovations are given in Table 4.



Table 4. Estimated coefficients of the VAR(1) model with GARCH(1,1) Student-t innovations for FTSE 100 and DAX return bivariate time series data from January 3rd, 2006 to December 31st, 2012.







	
Parameters

	
Estimates

	
Std. errors






	
[image: there is no content]

	
0.0306

	
0.0016




	
[image: there is no content]

	
0.0014

	
0.0027




	
[image: there is no content]

	
0.0358

	
0.0025




	
[image: there is no content]

	
-0.0233

	
0.0038




	
[image: there is no content]

	
1.2495

	
0.0000




	
[image: there is no content]

	
-0.0280

	
0.0057




	
[image: there is no content]

	
1.1952

	
0.0000




	
[image: there is no content]

	
-0.0128

	
0.0026




	
[image: there is no content]

	
-0.0076

	
0.0105




	
[image: there is no content]

	
0.0419

	
0.0101




	
[image: there is no content]

	
0.0531

	
0.0526




	
[image: there is no content]

	
0.9584

	
0.0319




	
[image: there is no content]

	
-0.0106

	
0.0103




	
[image: there is no content]

	
0.0165

	
0.0116




	
[image: there is no content]

	
0.9606

	
0.0340




	
ν

	
7.0154

	
1.3909










Next, for comparison purpose, we also compute the test statistic of Ling and Li [12] for Model 2 of Table 3, i.e., the VAR(1)-ARCH(1) model with Student-t innovations. As mentioned before, those authors employ the sum of squared series of the standardized residuals, [image: there is no content] to obtain their [image: there is no content] statistics. In this particular case, [image: there is no content] = 19.45 with p-value 0.194. Therefore, based on the test statistics of Ling and Li [12], one could not reject Model 2 of Table 3 for the daily return series of FTSE 100 and DAX indices. This is in contrast with the proposed [image: there is no content] statistics that rejects Model 2. From the parameter estimates of Model 3, shown in Table 4, there exist some significant coefficients in the higher-order volatility coefficient matrices. The estimation result, thus, provides some support for rejecting Model 2 of Table 3.





In summary, the simple example considered in this application demonstrates the importance of using the cross-product vector of standardized residuals in checking a fitted VARMA-GARCH model. Overlooking the cross-dependence in the standardized residuals may lead to erroneous conclusion. Moreover, the residual-based bootstrap method approximates the portmanteau statistics well, and provides a more straightforward approach to perform model checking in a real application.




8. Conclusion


In conclusion, we have derived the asymptotic distributions of standardized residual autocorrelation and autocovariance functions of squared and cross product of standardized residuals for vector ARMA model with multivariate GARCH innovations. Moreover, we propose two portmanteau statistics for a joint procedure to diagnose VARMA-GARCH models. Both cases of multivariate GARCH Gaussian and Student-t innovations are explored. To make the model checking tests easily implemented in real application, we also provide a residual-based bootstrap approach. Simulation is used to show the difference in the residual autocorrelations and autocovariances between VARMA model with and without GARCH effect. Empirical sizes and powers calculated based on three models suggest that our portmanteau statistics are useful in model checking. A larger power of our test is shown by simulated data compared with previous model checking test, in detecting conditional heteroscedastic data with strong autocorrelation in cross product between elements in the GARCH part. Simulation results also show that the test statistics obtained by bootstrap approximate the theoretical limiting distributions well. By estimation via both the first and second order derivatives of Log-likelihood function and the bootstrap procedure, an empirical example is analyzed to illustrate the importance of considering GARCH effect and heavy tail property for multivariate index or stock return data, and also other financial dataset. In future research, we expect our result be implemented to find other forms of the portmanteau statistic, and different methods of bootstrap for VARMA-GARCH models.
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Appendix


Proof of Lemma 3.2. From the calculation of [image: there is no content] and iterated expectation, we have


E[∂Ln∂φvec′(ρm)]=1n∑t=1n∑s=m+1nE[12(∂[image: there is no content]∂φ′)′vec(Σt-1[image: there is no content]at′Σt-1-Σt-1)(εs-m′⊗εs′)-(∂[image: there is no content]∂φ′)′Σt-1[image: there is no content](εs-m′⊗εs′)]=-1n∑t=1nE(∂[image: there is no content]∂φ′)′Σt-1[image: there is no content](εt-m′⊗εt′)=-1n∑t=1nE(∂[image: there is no content]∂φ′)′Σt-1/2[image: there is no content](εt-m′⊗εt′)=-1n∑t=1nE(∂[image: there is no content]∂φ′)′(1⊗Σt-1/2[image: there is no content])(εt-m′⊗εt′)=-1n∑t=1nE(∂[image: there is no content]∂φ′)′(εt-m′⊗Σt-1/2).










E[∂Ln∂δvec′(ρm)]=1n∑t=1n∑s=m+1nE[12(∂[image: there is no content]∂δ′)′vec(Σt-1[image: there is no content]at′Σt-1-Σt-1)(εs-m′⊗εs′)]=O.








Next, we compute [image: there is no content] as


∂vec(ρm)∂λ′=1n∑t=m+1n∂vec(εmεt-m′)∂λ=1n∑t=m+1n[([image: there is no content]⊗[image: there is no content])∂εt-m∂λ′+(εt-m⊗[image: there is no content])∂[image: there is no content]∂λ′]








where ∂[image: there is no content]/∂λ′=Σt-1/2(∂[image: there is no content]/∂λ′)+(at′⊗[image: there is no content])(∂vec(Σt-1/2)/∂λ′). Therefore, we have


∂vec(ρm)∂λ′=1n∑t=m+1n{([image: there is no content]⊗[image: there is no content])[Σt-m-1/2(∂at-m/∂λ′)+(at-m′⊗[image: there is no content])(∂vec(Σt-m-1/2)/∂λ′)]+(εt-m⊗[image: there is no content])[Σt-1/2(∂[image: there is no content]/∂λ′)+(at′⊗[image: there is no content])(∂vec(Σt-1/2)/∂λ′)]}≐1n∑t=m+1n(εt-m⊗Σt-1/2(∂[image: there is no content]/∂λ′)),








where ≐ indicates asymptotic equivalence as [image: there is no content]. The prior asymptotic equivalence holds because the other three terms converge to zero. It follows that


E∂vec(ρm)∂λ′=1n∑t=m+1nE(εt-m⊗Σt-1/2)∂[image: there is no content]∂λ′.








Consequently, the results of Lemma 3.2 hold. ☐.



Proof of Lemma 3.4. For simplicity, let Σt*=Σt-1[image: there is no content]at′Σt-1-Σt-1. From the calculation of [image: there is no content], we have


E[∂Ln∂φvec′(rm)]=1n∑t=1n∑s=m+1nE[12(∂[image: there is no content]∂φ′)′vec(Σt*)(vech′(cs-m)⊗vech′(cs))-(∂[image: there is no content]∂φ′)′Σt-1[image: there is no content](vech′(cs-m)⊗vech′(cs))]=1n∑t=1nE[12(∂[image: there is no content]∂φ′)′vec(Σt*)(vech′(ct-m)⊗vech′(ct))].E[∂Ln∂δvec′(rm)]=1n∑t=1n∑s=m+1nE[12(∂[image: there is no content]∂δ′)′vec(Σt*)(vech′(cs-m)⊗vech′(cs))]=1n∑t=1nE[12(∂[image: there is no content]∂δ′)′vec(Σt*)(vech′(ct-m)⊗vech′(ct))].








Then


E[[image: there is no content]vec′(rm)]=1n∑t=m+1nE[12(∂[image: there is no content]∂λ′)′vec(Σt*)(vech′(ct-m)⊗vech′(ct))]










=1n∑t=m+1nE[12(∂[image: there is no content]∂λ′)′(Σt-1/2⊗Σt-1/2)vec(ct)(vech′(ct-m)⊗(vech′(ct)))]










=1n∑t=m+1nE12[∂vec(Σt1/2)∂λ′′(Σt-1/2⊗[image: there is no content]+[image: there is no content]⊗Σt-1/2)vech′(ct-m)⊗(vec(ct)vec′(ct)Dk+′)]










=1n∑t=m+1nE{∂vec(Σt1/2)∂λ′′(Σt-1/2⊗[image: there is no content]+[image: there is no content]⊗Σt-1/2)[vech′(ct-m)⊗Dk+′]}










=Xm′.








Next, we compute [image: there is no content]:


∂vec(rm)∂λ′=1n∑t=m+1n∂[vec(vech(ct)vech′(ct-m))]∂λ′










=1n∑t=m+1n[([image: there is no content]⊗vech(ct))∂vech(ct-m)∂λ′+(vech(ct-m)⊗[image: there is no content])∂vech(ct)∂λ′]










≐1n∑t=m+1n(vech(ct-m)⊗[image: there is no content])∂vech(ct)∂λ′










=1n∑t=m+1n(vech(ct-m)⊗[image: there is no content])Dk+∂vec(ct)∂λ′










=1n∑t=m+1n(vech(ct-m)⊗Dk+)[([image: there is no content]⊗Σt-1/2[image: there is no content]at′)∂vec(Σt-1/2)∂λ′










+(Σt-1/2⊗Σt-1/2)∂[image: there is no content]at′∂λ′+(Σt-1/2[image: there is no content]at′⊗[image: there is no content])∂vec(Σt-1/2)∂λ′].








Since


[image: there is no content]








it follows that


E[∂vec(rm)∂λ′]=-1n∑t=m+1nE[vech(ct-m)⊗Dk+](Σt-1/2⊗[image: there is no content]+[image: there is no content]⊗Σt-1/2)∂vec(Σt1/2)∂λ′,








which is -[image: there is no content] defined in (14). Therefore, the results of Lemma 3.4 hold. ☐.



Proof of Lemma 5.2. To show the above lemma, we first express [image: there is no content] as a function of entire past of the cross product of innovations [image: there is no content].


[image: there is no content]=C0+∑j=0t-1CjRt-j=C0+∑j=0t-1Cj[Σt-j1/2⊗Σt-j1/2]vec(εt-jεt-j′)










=C0+∑j=0t-1CjG(Ht-j)vec(εt-jεt-j′)










[image: there is no content]










=C0+∑j=0t-1CjG(Ht-j*)vec(εt-j*εt-j*′)








Thus, one can write [image: there is no content] as [image: there is no content]. Let [image: there is no content] be the truncated version. Since G([image: there is no content])=[image: there is no content]⊗[image: there is no content]≡(∑i=1kJi,k′·[image: there is no content]·ei)1/2⊗(∑i=1kJi,k′·[image: there is no content]·ei)1/2 is a continuous differentiable function in all its argument with finite second moments, then so is [image: there is no content]. By similar arguments as Lemma 6.13 of Hidalgo and Zaffaroni [18], we have


E*|1n∑t=1n[ht,K*(λ^)-ht,K([image: there is no content])]|=Op(K1/2n1/2).








and the truncation error approaches zero fast enough, i.e.,


[image: there is no content]








as [image: there is no content]. By choosing K large enough, the result of (29) holds. The proof of (30) proceeds similarly. ☐.



Proof of Lemma 5.3. We begin with (31). By the mean value theorem,


[image: there is no content]








where C is a constant and [image: there is no content] is an intermediate point between [image: there is no content] and [image: there is no content]. By the first-order derivatives, we have


∂at*∂φ′=Θ-1(L)[Xt-1*⊗[image: there is no content]],Xt-1*=(Yt-1*′,...,Yt-p*′,at-1*′,...,at-q*′),










∂[image: there is no content]∂φ′=[image: there is no content]-∑i=1s(Bi⊗Bi)Li-1∑i=1r([image: there is no content]⊗[image: there is no content])Li(([image: there is no content]⊗at*+at*⊗[image: there is no content])∂at*∂φ′),










∂Ht*∂δ′=[image: there is no content]-∑i=1s(Bi⊗Bi)Li-1[[image: there is no content],H˜t-1*(1),...,H˜t-r(1),H˜t-1*(2),...,H˜t-s*(2)],










H˜t-i*(1)=([image: there is no content]⊗[image: there is no content])·[[image: there is no content]⊗(at-i*at-i*′e1),...,[image: there is no content]⊗(at-i*at-i*′ek)]+([image: there is no content]⊗[image: there is no content])·((at-i*at-i*′)⊗[image: there is no content]),










H˜t-i*(2)=([image: there is no content]⊗[image: there is no content])·[[image: there is no content]⊗(Σt-i*e1),...,[image: there is no content]⊗(Σt-i*ek)]+([image: there is no content]⊗[image: there is no content])·(Σt-i*⊗[image: there is no content]),








By Assumptions 2 and 3, the following expansion holds


[image: there is no content]








where [image: there is no content] and [image: there is no content] denote Frobenius and Euclidean norms, respectively. [image: there is no content], [image: there is no content] and [image: there is no content] are constants, and 0<[image: there is no content]<1. [image: there is no content] is a strictly stationary time series with E*[image: there is no content]<∞. Then it follows that


sup[image: there is no content]∥∂Ht*∂ϕ∥≤[image: there is no content]+[image: there is no content]∑i=1t-1ρ2i∥Yt-1*∥2≡[image: there is no content]








where [image: there is no content], [image: there is no content] and [image: there is no content] are constants, and 0<[image: there is no content]<1. [image: there is no content] is a strictly stationary time series with E*[image: there is no content]<∞. Similarly, it could be obtained that


sup[image: there is no content]∥∂Ht*∂δ∥≡[image: there is no content]








where [image: there is no content] is a strictly stationary time series with E*[image: there is no content]<∞. Moreover, since [image: there is no content], [image: there is no content] has a lower bound. Then,


∥vec(Σt*-1([image: there is no content]))∥=∥Σt*-1([image: there is no content])∥F=O(1)








Therefore, it follows that E*sup[image: there is no content]∥∂Ht*∂λ([image: there is no content])∥=[image: there is no content] and E*sup[image: there is no content]∥vecΣt*([image: there is no content])-1∥=[image: there is no content]. So the left side of (31) is [image: there is no content]. Following the similar arguments, we could show that (32) holds. ☐.





© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).







media/file4.png
Density

25

GARCH(1,1) Student-t Innovations

20F

v=7

40

35+

GARCH(1,1) Student-t Innovations

v=7

0.1

0.15






nav.xhtml


  econometrics-01-00001


  
    		
      econometrics-01-00001
    


  




  





media/file0.png





media/file2.png
Density

Density

Gaussian Innovations

25 .
n =500
20t M — — —n=1000 |
L Rt n = 3000
I\
15+t S i
| \
./ \.
| \

10} R :
5t i
0 : .

-0.2 0 0.1 0.2 0.3

p,(1,1)
GARCH(1,1) Innovations

25 .

- n =500
20} I — — —n=1000|]
N n = 3000
. |

15F I _
2

107 / \ T
5t i
0

0.2

Density

Density

Gaussian Innovations

n =500

— — —n=1000 |1

r1(1,1)

GARCH(1,1) Innovations

0.4

n =500

— — —n=1000 |1

0.4





media/file3.jpg
Density

‘GARCH(1 1) Stodent-t Imaatons

‘GARCH(1,1) Student-t Inovations

5

10

w©
- —ve7 —
0 st 3 . —v=ts
- vem)
B
2

15

10

ET3 i o0 o

3






media/file1.jpg
2

10

Dersty

)

[ T

15

10

e
R B

3

o o2






