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Abstract: By its emissions of greenhouse gases, economic activity is the source of climate change
which affects pandemics that in turn can impact badly on economies. Across the three highly
interacting disciplines in our title, time-series observations are measured at vastly different data
frequencies: very low frequency at 1000-year intervals for paleoclimate, through annual, monthly to
intra-daily for current climate; weekly and daily for pandemic data; annual, quarterly and monthly
for economic data, and seconds or nano-seconds in finance. Nevertheless, there are important
commonalities to economic, climate and pandemic time series. First, time series in all three disciplines
are subject to non-stationarities from evolving stochastic trends and sudden distributional shifts, as
well as data revisions and changes to data measurement systems. Next, all three have imperfect and
incomplete knowledge of their data generating processes from changing human behaviour, so must
search for reasonable empirical modeling approximations. Finally, all three need forecasts of likely
future outcomes to plan and adapt as events unfold, albeit again over very different horizons. We
consider how these features shape the formulation and selection of forecasting models to tackle their
common data features yet distinct problems.

Keywords: forecasting; model selection; climate econometrics; climate change; COVID-19; structural
change

JEL Classification: C5; C01; C18; C87; Q54

1. What Links Forecasting Economic Shifts, Climate Change and Evolving Pandemics?

Fossil fuel use for energy combined with other aspects of economic activity like
agriculture are the current major sources of climate change from anthropogenic greenhouse
gasses like carbon dioxide, nitrous oxide and methane. In turn, climate change has long
affected pandemics like the Justinian Plagues (a multidecadal cold period leading to grain
imports, accompanied by disease-carrying rats) and Black Death (probably spread by fleas
on rodents that were migrating from dessication of their usual habitat) as well as from
environmental disruptions leading to zoonotic diseases like Ebola and SARS. As the planet
warms, extreme weather events become more common forcing migration which increases
potential contact with other animals and humans. Completing the circle, pandemics impact
adversely on economic activity both directly from mass illnesses and deaths, as well as
induced behavioural changes, compounded in more recent times by non-pharmaceutical
interventions such as lockdowns. Such close links between these three disciplines of
economics, climatology (including its paleo partner) and epidemiology will naturally create
commonalities across their observational outcomes. A recent editorial shared by more than
200 major world-wide health journals linked the urgent need to tackle pandemics, health
inequities, and climate change as a constellation of issues (Atwoli et al. 2021).
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Conversely, time-series observations in these three areas are measured at vastly dif-
ferent data frequencies: very low frequency such as 1000-year intervals for paleoclimate,
through annual, monthly to very high intra-daily for current climate-related data; weekly
and daily for pandemic time series; and annual, quarterly and monthly for economic
outcomes down to very high frequency for financial data. Consequently, it is not obvious
that there should be much in common in their forecasting methods.

Despite such differences, there are four important commonalities to consider when
analyzing any of economic, climate and pandemic time series. First, observations in all
three disciplines are subject to non-stationarities from evolving stochastic trends (driven by
unit roots in their dynamics) and sudden distributional shifts deriving from the common
links just noted and the policy interventions they induce, as well as from major data
revisions and even changes to data measurement systems. We call such general forms of
non-stationarity ‘wide sense’ to distinguish from the prevalent usage of ‘non-stationarity’
to refer just to unit roots.

Next, despite insightful subject-matter theories, because of their ultimate dependence
on ever-changing human behaviour, all three disciplines have imperfect and incomplete
knowledge of their respective data generating processes (DGPs), and especially about the
interactions between them. Consequently, they all must search for reasonable empirical
modeling approximations by using model selection methods to discover the relevant
evolving empirical relationships from their observed data.

Third, inertial dynamics are manifest in all their time series usually requiring appro-
priate model specification to sustain a sequential factorization.

Finally, all three disciplines need forecasts of likely future outcomes to plan and adapt
as events unfold despite facing potential future shifts, albeit over very different horizons.

Given these commonalities, approaching such a varied set of disciplines enables us to
draw useful insights in the form of ‘principles’ that are generically helpful in forecasting
time-series. The remainder of the paper considers how these features shape the formulation
and selection of forecasting models, tackling the common problems of economic, climate,
and epidemiological forecasting.

The next section introduces some motivating examples. After that, the structure of the
paper is as follows. Section 3 briefly reviews the provable theorems about modeling and
forecasting in stationary processes and contrasts in Section 4 with what can be established
in the presence of changes over time in the distributions of the observables from stochastic
trends, location shifts, and broken trends inter alia. Section 5 considers the possibility of
forecasting breaks in advance. Section 6 then discusses the different ‘principles’ needed
when specifying forecasting models in such a setting of multiple different forms and
magnitudes of breaks applicable to all three disciplines. Section 7 considers an economic
example of forecasting facing shifts using the recently developed trend-indicator saturation
estimator (TIS) to find any changing trends and use the most recent of these for forecasting;
Section 8 illustrates an example of forecasting changes in CO2 emissions over the pandemic
which intrinsically involves all three disciplines; and Section 9 describes forecasting the
still highly evolving COVID-19 pandemic, before Section 10 concludes.

2. Motivating Examples

The massive challenges that economic, climate and pandemic forecasting have had to
face during the Sars-Cov-2 pandemic have highlighted the fundamental role in forecast
failures of unanticipated distributional shifts. Any agency making forecasts in December
2019 for 2020 of (say) employment and GDP outcomes, carbon dioxide (CO2) or nitrogen
oxide (NOx) emissions, or excess deaths relative to past years, will have been dramatically
wrong.

Figure 1a–d illustrates the magnitudes of some of these sudden shifts. Panel (a)
emphasises the long-run prevalence of wide-sense non-stationarity illustrated by top
income shares in the UK since 1918, exhibiting changing trends, with a systematic fall in
income inequality until 1979 and a subsequent reversal of that trend in the Thatcher era that
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continued until the 21st century. The huge drops in UK real GDP and hours worked seen in
Panel (b) resulting from the lockdowns during the pandemic dwarf any previous recorded
values, including the ‘Great Recession’, but are followed by a massive rise. In the UK,
the Coronavirus Job Retention Scheme, or furlough scheme, prevented the concomitant
increase in unemployment that was forecast by some models (see Castle et al. 2021d). On
a very different time scale, Panel (c) reports the massive increase of almost 140 parts per
million (ppm) in atmospheric CO2 in just the past 250 years compared to the ±25 ppm
1000-year variations over the last 800,000 years of eight Ice Ages advancing and receding.
Finally, Panel (d) records the large changes in reported UK new confirmed cases of COVID-
19 infections, with four apparent ‘waves’ of varying magnitudes and durations, partly due
to more or less intensive testing and changing coverage but also revealing some ‘negative’
numbers due to recording errors.
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Figure 1. (a) Top 1% income shares in the UK since 1918; (b) annual changes in log monthly UK real
GDP since 2007; (c) thousand-year changes in atmospheric CO2 in parts per million (ppm) over Ice
Ages, and last 250 years; (d) UK daily new confirmed cases of COVID-19 to August 2021.

Polutant emissions like NOx have also changed considerably, and very differently
across countries as Gaubert et al. (2021) document. Moreover, Le Quéré et al. (2020) show
that global CO2 emissions fell sharply as lockdowns were mandated in many countries:
Liu et al. (2021) provide an update. We return to forecast CO2 emissions in Section 8.

This small sample of time series in both levels and differences confirms that forecast-
ing practice faces wide-sense non-stationary observed processes in all three disciplines.
Changes over time in the distributions of observables occur from stochastic and evolving
trends as well as location shifts inter alia. Nevertheless, much of forecasting theory im-
plicitly assumes a stationary world, perhaps after differencing to remove any unit roots.
Large shifts can occur in differenced time series as shown in Figure 1b,c, where the change
in atmospheric CO2 seems a relatively permanent jump, and although GDP growth has
already recovered, it will drop back again to a more ‘normal’ growth rate.

Different forecasting models seem appropriate in each setting, some well known
specifications like autoregressions, random walks, vector autoregressions and simultane-
ous equations systems, others more recently formulated like, smooth robust predictors,
forecasts based on indicator-saturation estimators (which include impulse, step, and trend
indicator saturation: IIS, SIS, TIS) and Cardt (Castle et al. 2021a). Cardt is a forecasting
device that averages the forecasts from three univariate statistical models, Rho (ρ: a simple
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autoregressive model), Delta (δ: in first differences) and THIMA (Trend-Halved Integrated
Moving Average). Cardt then treats that set of averaged forecasts as if they were observed
to estimate a richer autoregressive model, making it a Calibrated Average, the fitted values
from which constitute the final forecasts, discussed more fully in Section 6.

Nevertheless, facing unanticipated future breaks, the fundamental problem remains as
to which formulation will continue to provide useful forecasts, so in Section 6, we consider
some ‘principles’ that might help avoid systematic forecast failure.

3. Modeling and Forecasting Linear Stationary Processes

It is frequently assumed that the underlying time-series are realizations of a stationary
process, perhpas after differencing, so we address this context first.

Introductory statistics and forecasting texts often prove the theorem that the con-
ditional expectation of a variable is the minimum mean square error (MMSE) unbiased
predictor: see e.g., (Hansen 2021, chp. 2.11) (or https://en.wikipedia.org/wiki/Minimum_
mean_square_error, accessed on 10 August 2021). In econometrics, perhaps even more
widely proved is that least squares (OLS) provides the best linear unbiased estimator
(BLUE) of a valid linear conditional expectation equation. In economics courses, the law of
iterated expectations, namely the expectation of the conditional expectation is the uncondi-
tional expectation is widely proved. The precise assumptions required to prove such results
are not always fully stated: the first and third rarely state the need for constant distributions,
and the second that the parameters of the conditional and marginal distributions must also
not be linked.

Under strict stationarity, data distributions are constant, so the expectations operator
E[·] usually does not need subscripted as the context is clear. Then, incomplete knowledge
of the conditioning information does not lead to biased expectations (see e.g., Clements
and Hendry 2005b) so conditional expectations can provide unbiased forecasts even from
mis-specified, mis-estimated linear models provided the error process has a symmetric
distribution. We now consider these results more formally.

Let {yt}, t = 1, . . . , T be a stationary stochastic process with the data generating
process (DGP):

yt = f (It−1) + νt. (1)

The distribution of {νt} is unknown and νt is unpredictable from the full information
set It−1 with E[νt|It−1] = 0. The linear function f (·) is also unknown. Moreover, only the
imperfect knowledge information set Jt−1 ⊂ It−1 is available. As νt is unpredictable from
the full information set, it must be unpredictable from any subset thereof, so:

E[νt | Jt−1] = 0. (2)

Taking conditional expectations on both sides of (1) using (2):

E[yt | Jt−1] = E[ f (It−1) | Jt−1] + E[νt | Jt−1] = g(Jt−1) (3)

for some entailed function g(·). Next, let et = yt − g(Jt−1), then from (3):

E[et | Jt−1] = 0,

proving {et} is a martingale difference with respect to Jt−1. Thus predictions of yt from
g(Jt−1) are unbiased despite the reduced information set. That proof is subject to knowing
g(·), although in practice some selection approach will be needed to discover it, or an
approximation thereto.

Let the n dimensional vector {xt} denote the observable data that generates It, so
when E[xt] = µ, as f (·) is linear:

yt = β0 + β′(xt−1 − µ) + νt (4)

https://en.wikipedia.org/wiki/Minimum_mean_square_error
https://en.wikipedia.org/wiki/Minimum_mean_square_error
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and hence E[yt] = β0 when νt is independently and identically distributed (i.i.d.) with mean
zero and variance σ2

ν . Approximating (4) linearly by g(x1,t−1) using just one component x1
gives the in-sample model as:

yt = γ0 + γ1(x1,t−1 − µ1) + ut, (5)

where γ0 = β0 and E[ut] = 0. When (4) is estimated by:

ŷt = γ̂0 + γ̂1(x1,t−1 − µ1), (6)

then E[γ̂0] = β0.
The 1-step ahead forecasts from (6) from an origin at T are:

ŷT+1|T = γ̂0 + γ̂1(x1,T − µ1),

leading to the forecast error ν̂T+1|T = yT+1 − ŷT+1|T given by:

ν̂T+1|T = β0 + β′(xT − µ) + νT+1 − γ̂0 − γ̂1(x1,T − µ1)

= (β0 − γ̂0) + (β1 − γ̂1)(x1,T − µ1) + β′2(xT − µ) + νT+1.

The expectation of every term is zero, so E[ν̂T+1|T ] = 0, hence the forecasts are
unbiased, but will have a larger error variance than σ2

ν . However, in general, E[γ̂1] 6= β1 so
theory testing and policy can go awry despite unbiased forecasts.

Two implications are that evaluating empirical models by forecast performance may
not reveal even serious weaknesses (see e.g., Clements and Hendry 2005a); and starting
from general information sets (here {xt}) can help avoid under-specifying models.

4. Failures in Modeling and Forecasting from Shifts of Distributions

In practice, stationarity of the underlying time-series processes rarely holds. This
is particularly so for the disciplines under consideration involving human behaviour, as
illustrated in Figure 1. We consider the implications of unanticipated shifts next.

Even when the in-sample empirical model is an unbiased estimate of the DGP, failure
of forecasting, theory, and policy can all occur if the relevant distributions unexpectedly
shift. Let Dt(yt|It−1) be the density of yt given the DGP information It−1 up to time t− 1.
When { ft(·)} in (1) is non-constant:

yt = ft(It−1) + νt, (7)

so that Dt(·) 6= Dt+1(·), even keeping νt i.i.d. ∀t. Then expectations need to be subscripted
by their time-dependent distributions:

EDt+1[yt+1 | It] =
∫

yt+1Dt+1(yt+1 | It)dyt+1 6=
∫

yt+1Dt(yt+1 | It)dyt+1 = EDt[yt+1 | It]. (8)

It is misleading sleight of hand not to subscript all expectations by their relevant
variables’ distributions when shifts occur, since both integrals in (8) would then be written
as:

E[yt+1 | It] =
∫

yt+1D(yt+1 | It)dyt+1,

and hence incorrectly thought to be equal.
Today’s conditional expectation ceases to be an unbiased MMSE predictor of to-

morrow’s outcome when distributions experience a location shift. Moreover, when time
invariance fails, it is impossible to know either the future Dt+1(·), or how the conditioning
information It would enter the conditional expectation. As a consequence, the law of
iterated expectations also fails. To see why, we first note its validity inter-temporally when
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distributions remain constant over time. If two variables at different dates, say (yt+1, yt),
are drawn from same distribution D(·) then:

ED[ED[yt+1 | yt]] = ED[yt+1].

But when their distributions shift between time periods:

EDt

[
EDt+1 [yt+1 | yt]

]
6= EDt+1 [yt+1], (9)

as Dt(yt) 6= Dt+1(yt) entails that:

Dt+1(yt+1 | yt)Dt(yt) 6= Dt+1(yt+1 | yt)Dt+1(yt). (10)

So (10) invalidates inter-temporal results based on the law of iterated expectations
after distributional shifts: see Hendry and Mizon (2014) for formal derivations.

The problem highlighted by (8) is the mathematical basis for forecast failure resulting
from using the conditional expectation relevant today to forecast what it will be tomorrow.
Importantly, (7) is the in-sample DGP up to time t, so even if that was the forecasting model,
failure could occur. Moreover, forecast failure is not just a problem for forecasters—it can
also entail theory failure. In particular, dynamic stochastic general equilibrium models
(DSGEs) are intrinsically non-structural: (9) reveals that their mathematical basis fails
when distributions shift—an example is the Bank of England abandoning its quarterly
econometric model, BEQEM (see Harrison et al. 2005), after the financial crisis in favour of
a new suite of models called COMPASS: see Burgess et al. (2013). Almost all econometric
systems in the levels of variables are in fact equilibrium-correction models (EqCMs),
including regressions, autoregressions, vector autoregressions, simultaneous equations
and cointegrated systems, ARCH, and GARCH as well as DSGEs, all of which converge
back to their in-built equilibria irrespective of shifts therein. Consequently, after location
shifts, all EqCMs must be adapted to avoid systematic forecast failure.

These results are not unique to linear models. There are infinitely many non-linear
models with embedded equilibria (including DSGE). Structural breaks are just as perni-
cious in non-linear models and suffer the difficulty of identification between non-linearities
and structural breaks. This will exacerbate forecasting difficulties making the detection of
breaks even more important. If the underlying DGP is linear with structural breaks but
is treated as non-linear then forecasts will embed this misspecified non-linearity leading
to poor forecasts. Conversely, if the DGP is non-linear but is treated as linear with breaks
then forecasts will not reflect the non-linearity present, for example in the form of missed
regime switches. Crucially, methods to detect structural breaks such as indicator saturation
estimation can be applied to non-linear models, allowing a data-based method of identifi-
cation between breaks and non-linearities. We proposed a general low-dimensional test
for non-linearity in Castle and Hendry (2010), and addressed issues of non-linear model
selection facing (e.g.,) outliers in Castle et al. (2021b).

5. The Optimum: Forecasting Breaks in Advance

We have argued that stationarity is often invalidated by shifts in distributions from
structural breaks. This leads to forecast failure, often over a long period if models keep
moving back to the previous built-in equilibrium. This section considers forecast adjust-
ments once it is suspected that a break has occurred, as well as the possibility of forecasting
a break.

A relevant example is the Indian Ocean tsunami on 26 December 2004, caused by
an undersea earthquake. In relation to this, Castle et al. (2011) discussed the necessary
conditions for usefully forecasting breaks before they occur:

(i) the break in question is predictable;
(ii) there is information relevant to that predictability;
(iii) such information is available at the forecast origin;
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(iv) there is a forecasting model specification that embodies it;
(v) there is a method for selecting that model from observations;
(vi) the resulting forecasts are usefully accurate.

They note that, although the exact timing of the tension release at the subduction
zone that triggered the earthquake was unpredictable, the devastating consequences of the
resulting tsunami could have been predicted: the satellite, Jason-1, measured the existence
of the tsunami by altimetry 2 h after it started, so warnings could have been issued to some
areas which were later affected, but the data were not analyzed till several days later.1

Treating the break as the tsunami hitting Sri Lanka, and using the empirical tsunami models
developed for Hawaii, then (i)–(vi) seem to be satisfied, albeit unfortunately only after the
event in this instance. An Indian Ocean tsunami early warning system is now in place: see
https://tsunami.incois.gov.in/TEWS/searlywarnings.jsp (accessed on 1 September 2021).

An everyday example of conditions (i)–(vi) in operation is when a trustworthy garage
mechanic ‘forecasts’ that your car’s brakes are about to fail and need changing, advice it
is usually worth taking to avoid a serious accident. The mechanic knows that (i) unsafe
brakes will not stop the vehicle; (ii) has checked the brake discs and found that they are
worn; and (iii) knows that information now; (iv) the ‘model’ is that brakes are essential
to stopping; and (v) that model has been verified all too often; and (vi) would happen
again if new brake discs are not fitted. Paradoxically, the forecast would not actually
materialize if the brakes were in fact repaired. An instance of this was the millenium bug
(Y2K), resulting from the fact that years where coded with two digits in the early days
when computer memory was very limited. Then year 2000 (coded as 0), would be before
1999. A major campaign successfully prevented the predicted Y2K systems’ meltdown,
leaving space for dissenting opinions. Similarly, the US public health response to the
2009 H1N1 influenza pandemic (swine flu) was relatively effective, and may have led to
some subsequent lowering of the guard, although this is dwarfed by the ineffective and
misleading response to the COVID-19 pandemic of the Trump administration (see several
recent leaders in The Lancet).

A different notion of forecasting a break occurs in predicting the rebound in temper-
ature after a volcanic eruption. Applying designed break-indicator saturation using a ν
shaped indicator to annual time series of temperature reconstructions, Pretis et al. (2016)
show that past major volcanic eruptions can be detected. Immediately after locating the
temperature drop following an eruption, a single observation on the indicator value can
then forecast the change in direction of the temperature recovery and provide a close
approximation to the subsequent trajectory. Again, conditions (i)–(vi) are satisfied.

Next, the impact of the COVID-19 pandemic on various European countries was
clearly predictable using the explosion of cases and deaths in Italy in mid-February 2020
as a leading indicator satisfying (i)–(iii), which could be used even though there was no
previous history for model estimation: see e.g., Harvey (2021). Unfortunately, the UK
government failed to take any action till mid-March, when it was far too late to avoid large
numbers of deaths: see Aron and Muellbauer (2020). Thus, a new item must be added to
the list:

(vii) the forecasts are acted on in a timely and effective way.

Our short-term forecasts of COVID-19 cases and deaths are discussed in Section 9.
While the terrible health and economic costs of the pandemic are of a magnitude not

seen since the ‘Spanish’ flu outbreak a century ago, failures to forecast breaks are legion:
economic forecasting has long been prone to miss shifts of distributions. The sudden onset
of the Great Depression starting in October 1929 was not forecast (except perhaps by Roger
Babson: see Friedman 2014), possibly vindicated by Dominguez et al. (1988) still being
unable to forecast the sharp downturn using modern approaches. Failures to forecast
‘turning points’ are common: see e.g., Stekler (1972) for an early study and An et al. (2018)
for a follow up.2 The Financial Crisis of 2008 was not predicted, and as the UK’s Queen
famously asked, ‘why not?’. However, in this case there was not a single easily observable
trigger event such as an earthquake or volcanic eruption. But extreme events such as the

https://tsunami.incois.gov.in/TEWS/searlywarnings.jsp
https://tsunami.incois.gov.in/TEWS/searlywarnings.jsp
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bank run on Northern Rock in September 2007 and the collapse of Lehman Brothers exactly
a year later provided warning signals.

Although distributional shifts are an important source of non-stationarity in obser-
vational time series (also see the evidence on shifts in economic time series in Stock and
Watson 1996; Clements and Hendry 2001), they are rather less studied than stochastic
trends and unit roots where the literature is vast. By definition, forecasts are almost bound
to go awry facing unanticipated distributional shifts, like the initial onset of the COVID-19
pandemic, failing (ii) and (iii). All too often, however, forecasts unnecessarily remain
persistently wrong well after the shift has become apparent, such as the Office for Budget
Responsibility (OBR) forecasts of UK productivity which were seriously wrong for 15 years,
or Surveys of Professional Forecasters (SPF) that have consistently over-predicted U.S.
Treasury bond yields for the past 25 years, as discussed by Martinez et al. (2021).

6. Some ‘Principles’ for Specifying Forecasting Models

A stationary context provides us with provable optimality theorems about forecast-
ing, with, in general, better models leading to better forecasts. Allowing for wide-sense
nonstationarity (which comes in many forms) takes these all away. Then using a simple
autoregressive model, or a no-change (random walk) forecast, can be difficult to improve
upon. We now consider a set of principles that can guide us through the forecasting process.
Cardt and forecasting devices robust after shifts are introduced.

There ought to be unanimous agreement that stationarity is not a viable basis for
deriving theoretical forecasting results of relevance to empirical practice. Nor is it necessary,
as discussed in Section 4. Recurring bouts of systematic mis-prediction have led to a
lack of consensus about ‘good’ forecasting methods, exacerbated when an advantage
claimed by one approach disappears when forecasting over other time periods or different
variables, as discussed by Castle et al. (2021a). ‘Structural’, or theory-based, formulations
play important roles in understanding in most disciplines, but structural model-based
forecasts have indifferent to poor forecasting records. As almost all forecasting models are
equilibrium-correction models, handling location shifts in all three disciplines’ models of
observational times series improves forecasts. Nevertheless, poor forecasts do not always
entail invalidity of ceteris paribus theoretical analyses: the failure of Apollo 13 to reach the
moon at the forecast time did not invalidate Newtonian gravitational theory.

There are two solutions to avoiding systematic forecast failure after shifts: adapt
theory-based systems, or use predictors that are robust to such shifts.

Combining the insights from their research, the forecasting literature, the M3 and
M4 forecasting competitions and forecasting the COVID-19 pandemic (see Doornik et al.
2020b, 2021), Castle et al. (2021a) suggested eight general ‘principles’ that could guide
the specification of models primarily intended for forecasting potentially wide-sense non-
stationary time series. Here we add two further principles:

(I) address ‘special features’ like seasonality;
(II) adapt the choice of predictors to the data frequency;
(III) select variables in forecasting models at a loose significance;
(IV) dampen trends and growth rates;
(V) shrink estimates of autoregressive parameters in small samples;
(VI) average across forecasts from ‘non-poisonous’ methods;
(VII) include forecasts from robust devices in that average;
(VIII) update estimates as data arrive, especially after forecast failure;
(IX) do not expect any single method to dominate at all times;
(X) check the implied trend when modeling in differences.

The nature of the M4 competition (see Makridakis et al. 2020) precluded analyz-
ing (II), (III), and (VIII), and also adapting the choice of predictors to multivariate con-
texts. Castle et al. (2021c) investigate (III), and show that even in processes with location
shifts occurring at or after the forecast origin, loose selection significance levels similar
to Akaike (1973) (AIC, so 10–16%) perform best. However, when using indicator satura-
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tion estimation, which involves selecting over more variables than observations, tighter
significance levels seem advisable.

Implementing (VIII) in a system context matters even more as location or trend shifts
in unmodeled included variables alter collinearity which can greatly increase root mean
square forecast errors, whereas rapidly updating estimates as new data arrive usually
offsets that problem. Data revisions also require that estimates are updated. Occasionally
the ‘past’ is changed significantly (e.g., with GDP or COVID-19 data), with substantial
impacts on estimated models. This can also affect perceived forecast accuracy, although it
is outside the control of the forecaster.

(VII) is more important if we are confident that a break has occurred, and the forecast
model is equilibrium correcting (most models are): in that case we may wish to give
much larger weight to robust forecasts. Robust forecasts can be obtained by applying the
difference operator to both sides of the estimated model to obtain forecasts of the changes,
which are then added to the last observed level. A different, but related, approach is
presented in Martinez et al. (2021).

There is ample evidence supporting (IX). In M4, e.g., the method that was best for
annual data did not do so well with hourly data (which may also be caused by (I)).
Castle et al. (2021a) also have several graphs where rankings change when the sample is
extended. This suggests that trying to find the ‘one method that beats them all’ is fruitless.
It is now also well known that two different scalar measures of forecast accuracy can give
different rankings: see Clements and Hendry (1993).

(X) is relevant when the model implies trending behaviour, but that trend may change.
It also pays to check the adequacy of differenced-data models by deriving levels forecasts.

We developed the Card method for the M4 forecasting competition which required
100,000 forecasts of various univariate time series across a range of frequencies and
time-series properties. A small subsequent extension was made to result in Cardt, see
Doornik et al. (2020a) and Castle et al. (2021a). Cardt is based on the principles of ro-
bustness, trend dampening, flexible seasonality, calibration, and averaging. The method
estimates three univariate time-series models including Rho (ρ), Delta (δ) and THIMA.
ρ estimates a first-order autoregressive model with seasonality, forcing a unit root when
estimates are close to unity, in which case it then switches to a first-difference model with
a dampened mean; δ estimates the growth rate from first differences, but dampened by
removing large values and allowing for seasonality; THIMA fits a trend-halved integrated
moving average model, namely a dampened trend arbitrarily halved, with an intercept
correction estimated by a moving-average model. Next, we compute the arithmetic average
of these three forecasts. The resulting average forecasts are treated as if they were observed
data and a richer autoregressive model is estimated from the extended data series. This
is what is termed the Calibration stage. The fitted values from this calibrated model are
the final forecasts, undoing any transformations such as logs and differencing (higher
orders of integration such as I(2) and damped I(2) were added for the COVID-19 data). The
calibration stage is crucial as it allows for a richer autoregressive model to be estimated,
providing a better approximation to the time-series properties of the data, without concerns
about overfitting or explosive roots because the new model is not used to extrapolate
forecasts. Instead, the forecasts are the fitted values from the updated autoregressive model
incorporating the first stage average forecasts, and hence have stable properties over the
forecast horizon. (X) is addressed by an attempt to detect persistent bias in the calibration
residuals at the end of the sample.

7. Forecasting Facing Shifts in Economics

Shifts in distributions affect our ability to forecast. Three empirical applications
illustrate the relevance of the principles when forecasting within the three disciplines,
starting with economics, followed by climate and finally the COVID-19 pandemic. The
first application shows that using a trend in the forecast model, when in fact that trend has
changed, can lead to persistent forecast failure.
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Figure 2a shows the historical time-series of UK productivity, together with 15-years
of 5-year ahead forecasts by the Office for Budget Responsibility (OBR) in part (b). We
aim to show how a misrepresented structural trend can give rise to such persistent mis-
forecasting, using trend indicator saturation (TIS: Castle et al. 2019) to detect trend shifts
in a long-run UK production function. TIS can also help to resolve a puzzling empirical
relation concerning the coefficient of capital per worker if a constant trend is assumed to
represent ‘disembodied’ technical progress.

1860 1880 1900 1920 1940 1960 1980 2000 2020

1.0

1.5

2.0

2.5

3.0 (a) UK Productivity yt  − lt

2005 2010 2015 2020 2025

100

110

Office for Budget Responsibility (OBR) Forecasts

(b) OBR Forecasts of UK Productivity

Figure 2. (a) UK annual productivity yt − lt over 1860-2017; (b) Office of Budget Responsibility (OBR)
five-year-ahead forecasts of UK productivity.

The data consists of Y, L, and K, where Y is GDP(A) at factor cost and constant prices,
L is working population minus unemployment, and K is total gross capital stock, from
1860 to 2017: Hendry (2015) provides details of the data. Lower case letters denote natural
logarithms, and ts = t/100 is a deterministic trend, with yt − lt plotted in Figure 2a.

First, assuming a constant trend, the estimate of the empirical production function
over almost a century and a half (up to 2007) delivers:

(̂y− l)t = 4.46
(0.14)

+ 0.198
(0.044)

ts + 0.77
(0.030)

(k− l)t,

σ̂ = 5.96%, R2 = 0.989, Far(2, 143) = 357∗∗, Farch(1, 146) = 257∗∗, (11)

χ2
nd(2) = 43.6∗∗, Fhet(4, 143) = 7.3∗∗, Freset(2, 143) = 27.7∗∗, T = 1860−2007.

In (11), coefficient standard errors are shown in parentheses, σ̂ is the residual standard
deviation, R2 is the coefficient of multiple correlation, Far tests for residual autocorrelation
(see Godfrey 1978), Farch tests for autoregressive conditional heteroscedasticity (see Engle
1982), Fhet tests for residual heteroskedasticity (see White 1980), χ2

nd(2) tests for non-
Normality (see Doornik and Hansen 2008) and Freset tests non-linearity (see Ramsey 1969).
One star indicates test significance at 5%, two at 1%.

Model (11) uses contemporaneous information in the predictive model (capital per
worker) which allows the effect of the trend estimates to be isolated to explain forecast
performance. However, the coefficients of (k− l)t and the trend are implausible: the former
suggests that the share of labour was merely 23%, inconsistent with direct measurements,
and the trend growth in other sources of productivity was just 0.2% per annum. Since
every mis-specification test is significant at any reasonable significance level, the estimated
standard errors are unreliable. Moreover, methods such as heteroskedastic and autocorre-
lation consistent standard errors (HACSEs) are unlikely to be useful either, as an important
component of the mis-specification rejections is almost certainly due to trend breaks clearly
visible in Figure 2a.

TIS saturates a model with trend indicators from which significant trends are retained
using a multi-path block search algorithm, capturing broken trends at any unknown
points in the data sample. TIS is a variant of indicator saturation, see Johansen and
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Nielsen (2009), where the trends are defined as τ′3 = (−3,−2,−1, 0, . . . , 0), through τ′t =
(−t,−(t− 1),−(t− 2), . . . ,−1, 0 . . . 0) up to τ′T−3 = (−T + 3,−T + 4,−T + 5, . . . ,−1, 0, 0),
implemented in Autometrics (see Doornik 2009). We also apply step indicator saturation
(SIS) jointly, allowing for level shifts to be detected in a more parsimonious form, see
Castle et al. (2015). Both forms of saturation include as many indicators as observations
(excluding any that are perfectly collinear with the intercept and full sample trend as these
are included but not selected over), so selection must be done at very tight significance
levels to avoid overfitting (measured by the retention of irrelevant indicators, called the
gauge). At such tight levels the fraction of irrelevant indicators is very close to the selection
significance level so there is almost no chance that broken trends or step shifts are detected
in (12) when they are irrelevant.

Using a selection significance level of α = 0.0001 yields:

(̂y− l)t = 3.35
(0.18)

+ 0.20
(0.10)

ts + 0.30
(0.060)

(k− l)t + 8.77
(1.07)

Ts
1917 − 9.38

(1.22)
Ts

1919 + 3.27
(1.26)

Ts
1930

− 4.20
(1.29)

Ts
1932 + 2.27

(0.64)
Ts

1939 − 2.02
(0.41)

Ts
1948 + 0.65

(0.21)
Ts

1957 + 1.14
(0.21)

Ts
2005, (12)

σ̂ = 2.44%, R2 = 0.999, Far(2, 145) = 61.0∗∗, Farch(1, 156) = 10.5∗∗,

χ2
nd(2) = 1.40, Fhet(20, 137) = 1.62, Freset(2, 145) = 34.0∗∗, T = 1860–2017.

Heteroskedasticity and autocorrelation robust standard errors (HACs) are reported
in parentheses. The model is estimated over the full sample up to 2017: the main point is
to show the need for different trends. Eight trend shifts are retained (all scaled by 100),
with no step shifts, and the coefficient of (k− l)t is now plausible at 30%. The shift in 1919
essentially cancels that of 1917, as does the shift in the early 1930s and that of 1948 cancelling
the shift in 1939 over World War II. The trend rate of productivity growth was 0.7% up to
WWII, increasing to 1.3% in the interwar period and no growth throughout WWII. Then in
1948 with the post-war reconstruction and Beveridge reforms, trend productivity increased
to 2% p.a., tailing off in 1957 to 1.3% before flattening completely in 2005 to productivity
growth at just 0.02% p.a. The outcome is recorded in Figure 3.
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Figure 3. (a) Actual and fitted values for (y− l)t from TIS; (b) scaled residuals; (c) residual density
and histogram; (d) trend adjustment of the estimated model given the retained trend indicators.
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Equation (12) could be generalized to include dynamics in the form of lagged output
per worker and capital per worker. This will resolve the misspecification present in the
model, but will obscure the emphasis on breaks in trends. Including dynamics will mean
the lagged dependent variable can proxy the shifts in trend through a coefficient close to
one. Excluding dynamics enables trend saturation to model the shifts directly. To enable
comparisons between (11) and (12) we do not include dynamics to enable direct estimation
and extrapolation of a static production function.

The 1-step ahead pseudo forecasts are computed for models (11) and (12), and reported
in Figure 4 and Table 1. Forecasting starts in 2008, using recursive estimation, i.e., re-
estimating the model each time, but keeping the structure fixed. These are not ex ante
forecasts, because we condition on (k− l)t and performed the TIS selection over the full
sample up to 2017. We also report the results from the robust version of (11) and (12)
from Hendry (2006) along with the 1-step ahead forecasts computed from Cardt. The
robust versions of the production functions difference both sides of the equation without
re-estimating which removes the constant term and changes the trend into a constant. The
forecasts are then re-integrated by adding the previous level, noting that trend indicators
end at 0 so will not enter the forecasts; for example, the forecasts for (12) would be given
by (̂y− l)T+h = (y− l)T+h−1 + 0.20 + 0.30∆(k− l)T+h.

Table 1. Root mean square error (RMSE; multiplied by 100) and mean absolute percentage error
(MAPE) for 1-step ahead forecasts of (y− l)t over 2008–2017 and 2010–2017 with recursive estimation.

2008–2017 2010–2017

1-Step Forecasts RMSE MAPE RMSE MAPE

Without modeling trend breaks (11) 3.62 1.09 3.02 0.96
Robust version of (11) 1.92 0.38 0.57 0.14

With modeling trend breaks (12) 3.00 0.70 1.13 0.33
Robust version of (12) 2.62 0.55 0.65 0.20

Cardt 1.67 0.40 0.81 0.21

2010 2015

2.8

2.9

3.0

(a) Model without TIS

(y−l)t 
forecasts ±2σ̂f 
Robust 

(y−l)t 
forecasts ±2σ̂f 
Robust 

(y−l)t 
forecasts ±2σ̂f 
Robust 

2010 2015

2.8

2.9

3.0

(b) Model with TIS(b) Model with TIS

(y−l)t 
forecasts ±2σ̂f 
Robust 

(y−l)t 
forecasts ±2σ̂f 

2010 2015

2.8

2.9

3.0

(c) Cardt

(y−l)t 
forecasts ±2σ̂f 

Figure 4. (a) 1-year ahead pseudo forecasts for (y− l)t from model (11); (b) model (12); and (c) 1-year
ahead forecasts from Cardt.

The forecasts of output per worker without modeling the trend breaks are substantially
worse than the forecasts when the trend breaks are modeled, with RMSEs more than 60%
larger. A break in trend very close to the forecast origin is detected by TIS (Ts

2005) which
leaves only one observation to identify the break when estimating up to 2007 given the
intercept and full sample trend forced in the model. The standard errors on both Ts

2005 and
the full sample trend ts fall from 2.6 to 0.7 with two further observations up to 2010. Hence,
the implied trend is very uncertain immediately after the break, as can be seen in Figure 4b
for the forecasts in 2008/9. After two periods, the broken trend is accurately estimated
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and the forecasts based on TIS improve dramatically, falling from a RMSE of 3 to 1.13 by
removing the 1-step ahead forecasts for 2008 and 2009.

The robust forecasts applied to the TIS selected model are very similar to the TIS based
forecasts which indicate there is no systematic bias in the TIS forecasts. Figure 4b shows
that all the forecasts from (11) are below the outcomes, so differencing—as implemented
by the robust device—is effective. The forecast uncertainty bands are also significantly
smaller for the TIS forecasts, highlighting the importance of modeling trend breaks for
forecasting. Both the robust predictor and Cardt (described in Section 6) improve on the
forecasts modeling the breaks using TIS, confirming their effectiveness in rapidly adapting
to breaks.

While models (11) and (12) are not proper forecasting models (unlike Cardt), the
results illustrate how forecasts can go wrong systematically. Shortly after the break, when
there is not enough information yet to estimate the new trend, forecast methods that
are robust provide a useful complement to the existing model. TIS can help to detect
such breaks.

8. Forecasting Changes in CO2 Emissions over the Pandemic

Our climate forecasting example considers reductions in CO2 emissions over the
COVID-19 pandemic. This intrinsically involves all three disciplines.

To limit the spread of COVID-19 during 2020 and consequential hospitalisations,
demands on intensive care units (ICUs) and deaths, many countries and regions suddenly
imposed lockdowns and other non-pharmaceutical interventions (NPIs). The restrictions
on travel and key aspects of economc activity led to reductions in CO2 emissions. Lock-
downs were imposed at different points in time in early 2020 across countries, for different
geographical coverages and stringencies. Lockdowns have continued during 2021, but our
data are for 2019–2020, before effective vaccines were available.

Behavioural changes also occurred, with voluntary isolations and social distancing
having similar impacts on economic activity. Various economic policies, such as job
retention schemes or ‘furlough’ schemes, sought to minimize the economic damage by
changing economic relationships without worsening the pandemic, and again were at
different levels of generosity and coverage for different time periods in different countries:
see Castle et al. (2021d). Consequently, differential levels of CO2 emissions compared to
the same date in 2019 had many shifts, making forecasting especially difficult, putting a
premium on predictors that are robust after breaks.

Figure 5 shows the reduction in global CO2 emissions during 2020 based on daily
data available from https://carbonmonitor.org (accessed on 24 September 2021): see
Liu et al. (2021) for a detailed description. On the left are global daily emissions, as an
average over the last seven days to remove seasonality within the week. As a contrast, the
dotted line shows the data for 2019 (using a lag of 52 weeks, 364 days). On the right is the
percentage change in 2020 from the previous year. In that case, we use more smoothing
in the denominator: the 2019 data are an average over three weeks, centered on the same
week as used for 2020. The sharp drop in March 2020 is clearly visible, and during April
emissions were down by 15%, albeit a tiny reduction of under 20 Mt relative to annual
emissions of more than 3 ppm (1 ppm = 7.8 gigatonnes).

Figure 6 shows the reductions in emissions from aviation and ground transportation,
which were particularly affected by the lockdowns. The drop from transportation has
largely disappeared by September 2020, although COVID-19 cases surged again in many
regions towards the end of the year. Emissions from international aviation remained low:
many travel restrictions have persisted into the second half of 2021.

Figure 7 shows so-called hedgehog graphs: each short line is a seven day out-of-sample
forecast using updated parameter estimates. The three forecasting devices we applied for
1 through 7 days ahead are an autoregression of order one with an intercept: AR(1); the
robust AR(1), also written as RobAR1; and Cardt. We use data from 16 January 2020 to 31
December 2020, and the first forecast is for 24 January based on just 8 observations. Table 2

https://carbonmonitor.org
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reports the relative RMSEs and MAPEs of the methods compared to the benchmark AR(1)
model.
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Figure 5. Global daily CO2 emissions 2019–2020 (Mt, left), and percentage change from 52 weeks
before (right). Data from carbon monitor.
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Figure 6. Percentage reduction in daily CO2 emissions from the previous year: aviation (left) and
ground transportation (right). Data from carbon monitor.

Table 2. Relative RMSEs and MAPE forecasting the reduction in CO2 emissions 1, 2, 4, and 7 days
ahead from 24 January 2020 to 31 December 2020, compared to benchmark AR(1) forecast. <1
indicates smaller RMSE/MAPE than AR(1), with bold denoting smallest out of forecasting models
considered.

World Total Intl. Aviation EU+ Aviation US Aviation World Transport UK Transport

H RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE
Robust AR(1)

1 0.66 0.56 0.27 0.32 0.53 0.85 0.70 0.48 0.71 0.77 0.88 0.72
2 0.81 0.73 0.33 0.54 0.59 0.78 0.82 0.64 0.75 0.82 0.91 0.71
4 1.03 1.14 0.44 0.48 0.63 0.83 0.83 0.89 0.78 0.92 0.91 0.91
7 1.31 1.49 0.57 0.58 0.70 0.83 0.86 1.08 0.89 1.02 0.94 1.19

Cardt
1 1.29 1.48 2.75 4.20 1.50 0.95 1.19 1.78 1.17 1.07 0.99 1.18
2 1.09 1.23 2.29 2.22 1.33 0.96 1.01 1.36 1.10 1.00 0.94 1.20
4 0.87 0.81 1.61 2.06 1.12 0.95 0.87 0.97 0.97 0.85 0.82 1.00
7 0.63 0.61 1.08 1.36 0.80 0.96 0.64 0.76 0.69 0.71 0.60 0.77

The robust transformation of the AR(1) model, as described in Section 6, has the
smallest RMSE and MAPE one step ahead. Two steps ahead, Cardt starts to get closer to
the robust forecasts, with mostly smaller RMSE and MAPE seven days ahead. For global
CO2 emissions, the AR(1) and its robust version go awry in early February: this is (V) in
action, but Cardt is robust to the small number of observations. Then in aviation at the
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end of March, the autoregressive model becomes explosive (again: this also happened mid
February), which requires protecting against: (IV).
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Figure 7. Recursive forecasts of smoothed daily reductions in CO2 during 2020: global emissions
(left), international aviation (right). Three forecasting methods: AR(1) (first row); robust AR(1)
(middle row); Cardt (bottom row). Data from carbon monitor.

On 7-days ahead forecasts, robust AR(1) does not encompass Cardt, nor vice versa,
as shown in (13). Since the 7-day ahead forecasts have at least 6th order moving average
errors we report HACSEs in parentheses. For international aviation:

CO2Reductions Intl. Avit = − 3.65
(1.44)

+ 0.49
(0.10)

RobAR1(7)t + 0.44
(0.10)

Cardt(7)t, (13)

with σ̂ = 4.37 and R2 = 0.96 for the period 2020-01-31 to 2020-12-31. More results are
reported in Table 3.

Table 3. Coefficients and standard errors (HACSE) from encompassing regressions (13).

World Total Intl. Aviation EU+ Aviation US Aviation World Transport UK Transport

Coeff HACSE Coeff HACSE Coeff HACSE Coeff HACSE Coeff HACSE Coeff HACSE

Encompassing model estimates

RobAR1 0.12 0.050 0.49 0.101 0.39 0.073 0.28 0.047 0.27 0.123 0.25 0.055
Cardt 0.74 0.074 0.44 0.103 0.53 0.078 0.63 0.065 0.63 0.123 0.62 0.074

As advised in (VI) and (VII) above, and often found in practice, averaging forecasts
can dominate over the individual best one. Consider averaging robust AR(1), with a
diminishing weight on the robust forecasts as the horizon grows:

AVG(h)t = Cardt(h)t + ρh(RobAR1(h)t −Cardt(h)t). (14)

Choosing ρ = 0.9 gives almost equal weights at 7-steps ahead (ρ7 = 0.48). This greatly
improves the RMSE of the robust AR(1), often close to halving it, as reported in Table 4.



Econometrics 2022, 10, 2 16 of 21

Because of the increasing weights on the Cardt target, the advantage is not always visible
at horizon 7.

Table 4. RMSEs for additional forecast devices (14) and (15) at horizons 1, 2, 4, 7.

World Total Intl. Aviation EU+ Aviation US Aviation World Transport UK Transport

Averaging Robust AR(1) and Cardt
1 0.294 0.236 0.733 0.849 0.508 0.988
2 0.663 0.573 1.567 1.840 0.989 1.799
4 1.413 1.552 3.117 3.310 1.889 3.261
7 2.478 3.618 6.030 5.840 3.718 5.754

Dampened Robust AR(1)
1 0.291 0.232 0.725 0.840 0.503 0.979
2 0.655 0.566 1.541 1.814 0.971 1.778
4 1.379 1.539 3.037 3.218 1.823 3.167
7 2.392 3.582 5.796 5.644 3.534 5.528

We also investigate the potential role of (V) for the robust AR(1) predictor, by halving
its local forecast ‘trend’, defined as:

SMO(h)t = CO2Reductionst−h + ρh(RobAR1(h)t −CO2Reductions(h)t−h). (15)

This is essentially the smooth robust random walk of Martinez et al. (2021). The target
is the last observed value, which is the random walk (or naive) forecast, while the robust
forecast shrinks towards this. The difference is that we select ρ, rather than estimate it from
a stationary autoregression (which we do not have here). Devices (14) and (15) yield very
similar RMSEs. The disadvantage of (14) as given is that it is not yet adapted to seasonality,
which is principle (I).

The ranking of methods differs over time, matching the fundamental problem facing
forecasters discussed above of having to also forecast which model specification to use
at any given time. Switching over time or variables within the ‘best of the bunch’ of
forecasting devices in use is not uncommon and supports computing averages, as well as
damping both local trends and autoregressive coefficients to avoid the worst outcomes.

9. COVID-19 Pandemic Forecasting

The COVID-19 pandemic, currently dominating the physical and economic well-being
of individuals and societies globally (without seriously abating as we write), has put
forecasting in the limelight to help plan responses. In addition to its devastating impacts,
structural change is a salient feature of the pandemic data: sudden shifts from policy
interventions (like lockdowns), evolving technological advances (like testing and vaccines),
and rapidly changing trends, as behaviour changes and virus infectivity increases from
mutating variants. Data measurement errors that were abruptly corrected, as well as
sudden definitional changes and rapid increases in testing all interact with the pandemic
process to make the observational time series doubly non-stationary as Figure 8 shows for
UK cases, deaths and vaccinations.

Changing definitions in the UK data included the sudden inclusion of care-home
deaths, not just those in hospitals, and from having tested positive for COVID-19 at any time
to having been caught within 28 days; weekend reporting delays generated unexpected
and evolving weekly ‘seasonality’; increased infection rates and antibody testing altered
what percentage of cases were recorded, whereas correcting previous reporting errors led
to some negative cases (in April 2021); and large revisions occurred when omitted data
(due to using an outdated spreadsheet format) were suddenly added back. While some of
these features were unique to the UK, others were generic.

Consequently, even short-term forecasting, such as a week ahead, was hazardous.
Many variants of epidemiology SIR or SEIR models (susceptible, exposed, infectious,
removed), and a number of purely statistical predictors (autoregressions, exponential
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smoothing, Cardt and growth curves: see inter alia, Petropoulos and Makridakis 2020;
Castle et al. 2021a; Harvey and Kattuman 2020) as well as linked economic and SEIR models
have all been tried. Examples of the first include the Los Alamos National Laboratory
(LANL: see https://covid-19.bsvgateway.org) which has published forecasts twice a week
(from 5 April 2020) based on a dynamic growth model, and the Institute for Health Metrics
and Evaluation (IHME: see www.healthdata.org) which has published forecasts (since 25
March 2020, but not consistently), combining SIR with curve fitting.
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Figure 8. (a,b): Cumulative confirmed cases and deaths; (c,d): new cases and deaths with smoothed
trends; (e,f): weekly and cumulative vaccinations. Sources: https://coronavirus.data.gov.uk and
https://coronavirus.jhu.edu.

We have produced real-time short-term forecasts of cumulative daily confirmed cases
and deaths since mid-March 2020 for ≈50 countries, ≈50 US states, and more than 300 En-
glish local authorities. To do so has involved making 4 sets of forecasts about 4 times a
week, later forecasting 7 days ahead, so required 3200 model estimates each time. The
key to achieving that was automating downloading and sorting data, estimating and
forecasting: see www.doornik.com/COVID-19.

To forecast cumulative COVID-19 cases and deaths, we decompose the data into
trend, seasonal and irregular components using TIS. Separate forecasts are made of the
components before aggregating. The seasonal component is extrapolated from the most
recent estimates of the seasonal pattern, whereas the trend and irregular forecasts are
computed using Cardt.

Doornik et al. (2021) evaluate our forecast performance relative to LANL and IHME.
Our models produced very good forecasts for deaths, dominating particularly early in the
pandemic when little was known about the evolution of the pandemic and agnostic models
based on time-series properties of the data performed well. The performance for cases
was more average relative to the other forecasting models. Figure 9 records our real-time
forecasts for UK total deaths and confirmed cases over January to August 2021. We miss
the slow-down in deaths owing to vaccination, as we did not adjust the forecasting model
at the time for this structural change.

https://covid-19.bsvgateway.org
www.healthdata.org
https://coronavirus.data.gov.uk
https://coronavirus.jhu.edu
www.doornik.com/COVID-19
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Figure 9. UK total deaths (left scale; top line) and UK confirmed cases (right scale; middle line),
together with real-time average forecasts up to seven days ahead. At the bottom are our full-sample
estimates of the R-values, with 95% confidence bands. Period January to August 2021.

Underlying the aggregate UK COVID-19 statistics, and a feature generally seen world-
wide, is changing heterogeneity by locality. Figure 10 highlights this with a sequence of
snapshots of our forecasts for Local Authority areas in England. The forecasts highlight
the many large regional shifts from widespread low levels in July 2020 after a major lock-
down, as well as ‘losing the battle’ in January 2021 following the transition from a tier
system during Christmas 2020 to a lockdown early in the new year, starting to win again
by June 2021 thanks to the benefits of the rapid development of vaccines and the NHS’s
successful vaccination campaign (more than 80 million doses by end August 2021, as seen
in Figure 8f), yet partly wasting those victories by mid-July to enable travel for holidays
before full protection was achieved. The pattern of cases is also affected by where new
COVID-19 variants start, as with the so-called ‘Kent’ (B.1.1.7) mutation, now named alpha,
coming in autumn 2020, with delta rapidly becoming dominant during May 2021.

From 2020-07-09 via 2021-01-02 and 2021-06-20 to 2021-07-14

Figure 10. Forecasts for England lower-tier local authorities at four time points.

10. Conclusions

Climate change, evolving pandemics and shifts in economic activity all interact.
The time-series observations of many variables in all three disciplines are non-stationary
from stochastic trends and abrupt shifts, so need robust forecasts to plan over different
horizons. The Sars-Cov-2 pandemic has highlighted the complexities of forecasting facing
rapidly evolving situations influenced by many, often unknown, factors, yet emphasises the
importance of doing so. Moreover, from their common component of human behaviour, all
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three disciplines have incomplete knowledge of their data generating processes, entailing
model search for empirical estimates of ‘structural’ representations, which are essential for
understanding, but are not necessarily the best devices for forecasting.

Commonalities across climate, pandemic and economic time series lead to both fore-
casting similarities and differences across those disciplines. These are partly dependent on
the data accuracy and its frequency; partly on the existence of valid conditioning variables
and partly on the extent and form of non-stationarity.

We proposed a range of adaptations to forecasting models that experience suggested
were helpful in minimizing systematic forecast failure. ‘Principles’ from Section 6 that were
useful in the applications included (VIII) (update estimates as data arrive, especially after
forecast failure) and (X) (check the implied trend), implemented through trend indicator
saturation, and relevant in Section 7. Next, (IV) (dampen trends and growth rates), (VI) (av-
erage across forecasts from ‘non-poisonous’ methods), (VII) (include forecasts from robust
devices in that average, (VIII) (update estimates as data arrive) but jointly with (V) (‘shrink’
estimates of autoregressive parameters in small samples) were all useful in Section 8, which
also implemented (X) by using robust predictors in differences that were transformed back
to levels as proposed. Section 9 highlighted the role of (I) to address the ‘special feature’ of
seasonality, as well as the value of robust predictors.

Applications in each arena illustrated and compared forecasting devices stressing
the difficulties of forecasting but seeking viable approaches. Sudden shifts are naturally
often unanticipated, as with the onset of COVID-19, and hence almost unpredictable.
Consequently, we have focused on forecasting devices that are relatively robust after such
shifts, and hence help avoid systematic forecast failure.
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Notes
1 Retrospectively, Holliday et al. (2006) showed that the high stress tension in that subduction region was measurable before the

earthquake.
2 Also see https://voxeu.org/article/predicting-economic-turning-points, (accessed on 4 October 2021).
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