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Abstract: The primary objective of this paper is to revisit DSGE models with a view to bringing out
their key weaknesses, including statistical misspecification, non-identification of deep parameters,
substantive inadequacy, weak forecasting performance, and potentially misleading policy analysis.
It is argued that most of these weaknesses stem from failing to distinguish between statistical and
substantive adequacy and secure the former before assessing the latter. The paper untangles the
statistical from the substantive premises of inference to delineate the above-mentioned issues and
propose solutions. The discussion revolves around a typical DSGE model using US quarterly data.
It is shown that this model is statistically misspecified, and when respecified to arrive at a statistically
adequate model gives rise to the Student’s t VAR model. This statistical model is shown to (i) provide
a sound basis for testing the DSGE overidentifying restrictions as well as probing the identifiability
of the deep parameters, (ii) suggest ways to meliorate its substantive inadequacy, and (iii) give rise to
reliable forecasts and policy simulations.

Keywords: DSGE modeling; model validation; identification; statistical adequacy; Normal VAR;
Student’s t VAR; substantive adequacy; forecasting; policy simulations

JEL Classification: C32; C52; E17; E27

1. Introduction

The Real Business Cycle (RBC) models proposed by (Kydland and Prescott 1982;
Prescott 1986) were heralded by (Wickens 1995) as A Needed Revolution in Macroeconometrics:

“The main failing of most macroeconometric models is in not taking macroeco-
nomic theory seriously enough with the result that little or nothing is learned
about key parameter values, a fault no amount of econometric sophistication will
compensate for”. (p. 1637)

The original RBC models were subsequently extended in several directions that even-
tually led to the broader family of Dynamic Stochastic General Equilibrium (DSGE) models.
The DSGE models combined the RBC perspective with (Lucas 1976) call for structural
models to be built on sound microfoundations, with the parameters of interest reflecting
primarily the preference of the decision-makers as well as the relevant technical and institu-
tional constraints. The DSGE models are built upon an inter-temporal general equilibrium
framework with a well-defined long-run structure and intrinsic dynamics. (Lucas 1976)
argued that such structural models with deep parameters are likely to be invariant to policy
interventions and thus provide a better basis for prediction and policy evaluation. This
produced structural models that are founded on the inter-dependence of certain repre-
sentative rational agents (e.g., household, firm, government, central bank) intertemporal
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optimization (e.g., the maximization of life-time utility) that integrates their expectations;
see (Canova 2007; DeJong and Dave 2011).

From the theory perspective, DSGE modeling has been a success in revolutionizing
macroeconomics by providing more cogent microfoundations and introducing intrinsic and
extrinsic dynamics through shocks into macroeconomic models. DSGE models are currently
dominating both the empirical modeling in macroeconomics as well as the economic policy
evaluation; see (Hashimzade and Thornton 2013).

From the empirical perspective, however, DSGE models have been criticized on several
grounds. First, DSGE models do not fully account for the probabilistic structure of the data;
see (Favero 2001). Second, the use of ‘calibration’ to quantify DSGE models has been called
into question; see (Gregory and Smith 1993; Kim and Pagan 1994). Third, the identifica-
tion of their ‘deep’ parameters remains problematic; see (Canova 2009; Consolo et al. 2009).
Fourth, the appropriateness of the Hodrick-Prescott (H-P) filter has been seriously chal-
lenged; see (Chang et al. 2007; Harvey and Jaeger 1993; Saijo 2013). Fifth, the forecasting
capacity of DSGE models is rather weak; see (Edge and Gurkaynak 2010). In light of that,
one can make a case that, despite the current popularity of DSGE models, there is a lot to
be done to ensure their empirical adequacy for inference and policy simulation purposes.

On the positive side, there have been several attempts to remedy some of these
weaknesses, including a trend toward estimating the parameters of such models (Fernández-
Villaverde and Rubio-Ramírez 2007; Ireland 2004; Smets and Wouters 2003), as well as
identifying the structural parameters using statistical techniques (Consolo et al. 2009). In
addition, questions relating to various forms of possible ‘substantive’ misspecifications of
DSGE models have been raised; see (Canova 2009; Del Negro and Schorfeide 2009):

“Over the last 20 years dynamic stochastic general equilibrium (DSGE) models
have become more detailed and complex and numerous features have been
added to the original real business cycle core. Still, even the best practice DSGE
model is likely to be misspecified; either because features, such as heterogeneities
in expectations, are missing or because researchers leave out aspects deemed
tangential to the issues of interest”.

Unfortunately, the form of expectations and potentially relevant variables omitted from
a DSGE model (e.g., Tables 1–3) pertain to substantive (structural) misspecifications that
will have statistical implications, but the literature has ignored statistical misspecification:
invalid probabilistic assumptions imposed on one’s data. The two forms of misspecification
are very different and before one can reliably probe for substantive misspecification one
needs to secure statistical adequacy to ensure the reliability of the inference procedures
used in probing substantive misspecification; see (Spanos 2006b).

The primary aim of the discussion that follows is to propose novel ways to address
some of the empirical weaknesses mentioned above by bridging the gap between DSGE
models and the relevant data more coherently. In particular, the paper proposes modeling
strategies that bring out the statistical modelMθ(z) implicit in every DSGE modelMϕ(z),
and suggests effective ways to test the validity of the probabilistic assumptions comprising
Mθ(z) vis-a-vis data Z0 to establish its statistical adequacy. It is argued that a mispecified
Mθ(z) will undermine the reliability of any inference based on the estimated DSGE model,
rendering the ensuing evidence untrustworthy. To avoid that one needs to respecify the
originalMθ(z) to account for all the statistical information (the chance regularity patterns)
exhibited by data Z0. When a statistically adequate model is secured, one could then
proceed to probe the substantive adequacy of the DSGE model by testing the validity of its
overidentifying restrictions, as well as any other relevant issues in [b]. Section 2 focuses on
the importance of separating the statistical (Mθ(z)) from the substantive (Mϕ(z)) model
by discussing how a statisticallyMθ(z) undermines the reliability of all inferences based
on Mϕ(z). This perspective is then used in Sections 3 and 4 to revisit the Smets and
Wouters (2007) DSGE model to: (a) test the statistical adequacy of its implicit statistical
modelMθ(z), (b) respecifyMθ(z) to attain statistical adequacy, (c) appraise the empirical
validity of the DSGE modelMϕ(z), (d) evaluate the reliability of its forecasting and impulse
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response analysis, and (e) propose a procedure to probe the identifiability of its structural
parameters ϕ.

2. Empirical Model Validation
2.1. Macroeconometric Models

Arguably, the single most important weakness of the macroeconometric models of
the 1970s (Bodkin et al. 1991; McCarthy 1972) was their unreliable inferences, including
poor forecasting performance. When these models were compared on forecasting grounds
with data-driven single equation AR(p) models, they were found wanting; (Nelson 1972).
In retrospect, the poor forecasting performance of these models can be attributed to several
different sources.

The new classical macroeconomics of the 1980s blamed their inadequacy as stemming
from their ad hoc specification and their lack of proper theoretical microfoundations; see
(Lucas 1980). Indeed, these weaknesses are often used to motivate the introduction of
calibration in RBC modeling (DeJong and Dave 2011):

“. . . an important component of Kydland and Prescott’s advocacy of calibration is
based on a criticism of the probability approach. . . . In sum, the use of calibration
exercises as a means for facilitating the empirical implementation of DSGE models
arose in the aftermath of the demise of system of equations analyses”. (p. 257)

Equally plausible, however, is the argument that traces their predictive failure to their
statistical misspecification in the sense that these empirical models did not account for the
statistical regularities in the data; see (Spanos 2010b, 2021). As argued by (Granger and New-
bold 1986, p. 280), statistically misspecified models are likely to give rise to untrustworthy
empirical evidence and poor predictive performance. Lucas (Lucas 1987) called atten-
tion to the substantive adequacy of macroeconometric models but ignored their statistical
misspecification as a source of untrustworthiness of the ensuing empirical evidence.

2.2. Structural vs. Statistical Models

A strong case can be made that the predictive failure of the empirical macroeconometric
models of the 1980s can be traced to the questionable modeling strategy of foisting a
substantive (structural) model Mϕ(z) on data z0 and proceeding to draw inferences.
Such a strategy, however, will invariably give rise to an empirical model which is both
substantively and statistically misspecified. This stems primarily from the fact that the
modeler (a) treats the substantive model as established knowledge, and not as a tentative
explanation to be evaluated against the data, and/or (b) largely ignores the validity of the
probabilistic assumptions imposed (directly or indirectly) on the data via the error term.
This raises a serious philosophical problem known as Duhem’s conundrum where one cannot
separate the two sources of misspecification (statistical or substantive) and apportion blame
with a view to find ways to address it; see (Mayo 1996).

A case can be made (Spanos 1986) that the key to addressing this conundrum is to
untangle the statistical model,Mθ(z), that is implicit in every substantive model,Mϕ(z),
whose generic forms are:

Mθ(z)={ f (z; θ), θ∈Θ⊂Rm}, z∈Rn
Z, Mϕ(z)={ f (z;ϕ), ϕ∈Φ⊂Rp}, z∈Rn

Z,

where p < m < n, f (z; θ) denotes the distribution of the sample Z:= (Z1, . . . , Zn), Θ and Rm,
the parameter and samples spaces, respectively. Most importantly, the substantive model
constitutes a reparametrization/restriction of the statistical model via restrictions that can
be generically specified by G(ϕ, θ) = 0, where ϕ∈Φ and θ∈Θ denote the structural and
statistical parameters, respectively. This can be achieved by delimiting the statistical model
to comprise solely the probabilistic assumptions imposed on data z0, or more accurately
on the stochastic process {Zt, t∈N:= (1, 2, . . . , n, . . . )} underlying z0, by viewing the
statistical model as a particular parametrization of the stochastic process {Zt, t∈N}without
any substantive restrictions imposed; (Spanos 2006b).
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Example 1. Consider the structural model underlying the Simultaneous Equations formulation:

Mϕ(z): Γ>(ϕ)Yt + ∆>(ϕ)xt = εt, εt v N(0, Ω(ϕ)), (1)

that has dominated textbook econometrics since the 1960s. It can be shown that the implicit statistical
model,Mθ(z), is its (unrestricted) reduced form (Spanos 1986) :

Mθ(z): Yt = B>(θ)xt + ut, ut v N(0, Σ(θ)). (2)

The two models are related via B(θ)= −
(

Γ>(ϕ)
)−1

∆>(ϕ) and ut =
(

Γ>
)−1

εt, yielding the
identifying restrictions:

G(ϕ, θ) = 0: B(θ)Γ(ϕ) + ∆(ϕ) = 0, Ω(ϕ) = Γ>(ϕ)Σ(θ)Γ(ϕ), (3)

where the structural parameters ϕ:=(Γ, ∆, Ω) are said to be identified, if, for a given θ:=(B, Σ)
there exists a unique solution of G(ϕ, θ) = 0 for ϕ. The reduced form in (2), when interpreted as an
unrestricted parameterization of the stochastic process {Zt:=(Yt, Xt), t∈N} is the implicitMθ(z),
which can be specified in terms of a complete, internally consistent and testable set of probabilistic
assumptions [1]–[5] as shown in Table 1; see (Spanos 1990).

Table 1. Multivariate Linear Regression Model.

Statistical GM: Yt = β0 + B>1 xt + ut, t∈N,

[1] Normality: (Yt|Xt = xt) v N(., .),
[2] Linearity: E(Yt|Xt = xt) = β0 + B>1 xt, linear in xt,
[3] Homosk/city: Var(Yt|Xt = xt) = Σ, free of xt,
[4] Independence: {(Yt|Xt = xt), t∈N} independent process,
[5] t-invariance: θ:=(β0, B1, Σ) do not change with t.
β0=E(Yt)−B>1 E(Xt) B1 = Cov(Xt)−1Cov(X t, Yt), Σ = Cov(Y t)−Cov(Y t, Xt)B1

This untangling of the statistical and substantive models enables one to distinguish
clearly between two different forms of adequacy:

[a] Statistical adequacy: does the statistical model Mθ(z) account for the chance
regularities in z0? Equivalently, does data Z0 constitute a truly typical realization of the
statistical Generating Mechanism (GM) inMθ(z)? The answer to these questions is that
the validity ofMθ(z) can be evaluated using thorough Mis-Specification (M-S) testing; see
(Spanos 2006b, 2018).

[b] Substantive adequacy: does the substantive (structural) modelMϕ(z) adequately
capture (describes, explains, predicts) the phenomenon of interest? Substantive inadequacy
arises from errors in narrowing down the relevant aspects of the phenomenon of interest,
flawed ceteris paribus clauses, missing crucial variables and/or confounding factors, etc.;
see (Spanos 2006a, 2010b). What renders the inference procedures based on the estimated
structural model (1) reliable and the ensuing evidence statistically trustworthy, is the
validity of assumptions [1]–[5] for data Z0.

In the traditional approach to DSGE modeling, the statistical modelMθ(z) is specified
indirectly by attaching errors (shocks) to the behavioral equations comprising the structural
modelMϕ(z). As a result, the primary concern in the DSGE literature has been on the
substantive and not the statistical misspecification; see (Del Negro and Schorfeide 2009; Del
Negro et al. 2007). This is an important development but it has a crucial weakness. Probing
for substantive misspecifications inMϕ(z) without ensuring statistical adequacy ofMθ(z)
will undermine any form of substantive probing based onMϕ(z); see (Consolo et al. 2009).

The statistical adequacy of Mθ(z) needs to be established first because that will
ensure the ‘optimality’ and reliability of the inference procedures employed to probe the
substantive adequacy ofMϕ(z). This is because statistical misspecification undermines the
optimality and reliability of frequentist inference via:
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(i) Rendering the distribution of the sample f (z; θ), z∈Rn, as well as the likelihood
function L(θ; z0)∝ f (z0; θ), θ∈Θ, erroneous.

(ii) Distorting the relevant sampling distribution, f (yn; θ) = dFn(y)/dy, ∀yn∈R, of any
statistic (estimator, test, predictor), Yn = g(Z1, Z2, . . . , Zn), that underlies the inference
in question since:

Fn(y) = P(Yn ≤ y) =
∫ ∫

· · ·
∫

︸ ︷︷ ︸
{z: g(z)≤y}

f (z; θ)dz, ∀y∈R, .
(4)

(iii) Undermining the reliability of inference procedures by belying their optimality and in-
ducing sizeable discrepancies between the actual and the nominal (the ones assuming
the validity ofMθ(z)) error probabilities. Applying a 0.05 significance level (nominal)
test when the actual type I error is greater than 0.80 will lead an inference astray.
This unreliability affects not just testing and estimation but also goodness-of-fit and
prediction measures rendering them highly misleading. Statistical adequacy secures
the reliability of inference by securing the optimality of inference and ensuring that
the actual error probabilities approximate closely the nominal ones. As shown in (Spanos
and McGuirk 2001), such discrepancies can easily arise for what are often considered
‘minor’ statistical misspecifications.

In relation to statistical misspecification, it is also important to emphasize that all
approaches to inference (frequentist, Bayesian, nonparametric), as well as the Akaike-type
model selection procedures, invoke statistical models, and thus they are all vulnerable to
statistical misspecification. In the case of Bayesian inference, a misspecified modelMθ(z)
gives rise to a false f (z; θ), leading to an erroneous likelihood function L(θ; z0)∝ f (z0; θ),
θ∈Θ, and that in turn gives rise to an incorrect posterior: π(θ|z0) = π(θ)·L(θ; z0), θ∈Θ,
undermining all forms of Bayesian inference. Moreover, no amount of finessing of the prior
π(θ) can rectify the statistical misspecification problem induced by an invalid L(θ; z0); see
(Spanos 2010a). This is particularly relevant for the recent trend to estimate DSGE models
using Bayesian methods; see (Smets and Wouters 2005, 2007; Del Negro et al. 2007; Galí
and Wouters 2011).

The importance of the distinction between a substantive (structural),Mϕ(z), and its
implicit statistical model,Mθ(z), stems from the fact that the error-reliability of inference
stems solely from the validity of the probabilistic assumptions definingMθ(z) vis-a-vis
data z0; see (Spanos 1986).

At a practical level, one can summarize the proposed modeling process in the form of
the following stages.

Stage 1. Untangle the statistical modelMθ(z) from the substantive modelMϕ(z),
without compromising the integrity of either source of information because the two models
are ontologically distinct. From this perspective, the structural modelMϕ(z) derives its
statistical meaningfulness fromMθ(z) and the latter derives its theoretical meaningfulness
from the former.

Stage 2. Establish the statistical adequacy ofMθ(z) using comprehensive M-S testing
(Mayo and Spanos 2004; Spanos 2018) by assessing the validity of the probabilistic assump-
tions comprising Mθ(z). Without it one cannot rely on statistical inference to reliably
assess any substantive questions of interest, including the adequacy ofMϕ(z) vis-a-vis the
phenomenon of interest—the reliability of such inferences will be unknown; see (Spanos
2009a, 2012).

Stage 3. When the original statistical model, Mθ(z), is misspecified, one needs to
respecify it to account for all the chance (statistical) regularities in the data, i.e., ensure that
the respecified modelMϑ(z) is statistically adequate for data z0.

Stage 4. Armed with a statistically adequate Mθ(z), one can proceed to evaluate
the substantive adequacy of Mϕ(z), including testing the overidentifying restrictions
stemming from the implicit restrictions G(ϕ, θ) = 0. If these restrictions do not belie data
z0, the estimated Mϕ(z) can is empirically valid, but not substantively adequate until
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further probes vis-a-vis the phenomenon of interest reveal no serious flaws relating to [b]
above; see (Spanos 2006a).

3. Revisiting DSGE Modeling

DSGE models aim to describe the behavior of the economy in an equilibrium steady-
state stemming from optimal microeconomic decisions associated with several represen-
tative agents (households, firms, governments, central banks, etc.). These decisions are
based on the intertemporal optimizing the behavior of representative agents, with the
first-order conditions of the optimization problem linearized around a constant steady-state
using a first-order Taylor approximation; 2nd order terms raise problems beyond the scope
of the present paper; see (DeJong and Dave 2011; Heer and Maussner 2009; Klein 2000).
After linearization, the model is specified in terms of log difference, which is thought to be
substantively more meaningful.

3.1. Smets and Wouters 2007 DSGE Model

Consider the DSGE model proposed by Smets and Wouters (2007).
Exogenous Shocks: There are 7 exogenous shocks.

(η
p
t , ηa

t , ηb
t , ηi

t, ηw
t , ηr

t , η
g
t )∼NIID(0, Ω), Ω = diag(σ2

p , σ2
a , σ2

b , σ2
i , σ2

w, σ2
r , σ2

g)

Parameters: ϕ = (cy, iy, zy, c1, c2, c3, i1, i2, q1, φp, α, z1, k1, k2, π1, π2, π3, λ, σl , w1, w2,
w3, w4, ρ, rπ , rY, r∆y, ρg, ρb, ρi, ρa, ρp, ρw, ρr, ρga, µp, µw, σp, σa, σb, σi, σw, σr, σg)

Deep Structural Parameters: ψ:=(ϕ, σc, h, ξw, σl , ξp, ιw, ιp, Ψ, Φ, rπ , ρ, rY, r∆Y, π,
β, l, γ, α, σa, σb, σg, σI , σr, σp, σw, ρa, ρb, ρg, ρI , ρr, ρp, ρw, µp, µw, ρga, δ, λw, εp, εp, gy),

which relate to the following deeper structural parameters:

cy = 1−gy−iy, zy = Rk
∗ky, c1 =

(λ/γ)

1 + (λ/γ)
, c2 =

(σc−1)Wh
∗ L∗/C∗

σc(1 + (λ/γ))
, c3 =

1− (λ/γ)

σc(1 + (λ/γ))
,

i1 =
1

1 + βγ1−σc
, i2 =

1
(1 + βγ1−σc)γ2 ϕ

, q1 = βγ−σc(1−δ), z1 =
1−Ψ

Ψ
, k1 =

1−δ

γ
,

iy = (γ−1 + δ)ky, k2 = (1−(1−δ)/γ)(1 + βγ1−σc)γ2 ϕ, π1 =
ιp

1 + βγ1−σc ιp
, π2 =

βγ1−σc

1 + βγ1−σc ιp
.

π3 =
1

(1 + βγ1−σc ιp)[(1− βγ1−σc ξp)(1− ξp)/ξp((φp − 1)εp + 1)]
.

That is, there are 41 deep structural parameters in the S-W model out of which 5 are
calibrated, and the rest are estimated using data Z0; see Smets and Wouters (2007).

After linearization, the DSGE modelMψ(z; ξ; εt) is expressed in terms of three types
of variables (Table 2):

(i) Observables zt = (ct, it, yt, wt, πt, lt, rt), ct-consumption, it-investment, yt-output, lt-
labor hour, πt-inflation rate, wt-real wage rate, and rt-interest rate.

(ii) Latent variables ξt = (zt, qt, ks
t , kt, rk

t , µ
p
t , µw

t ), zt-capital utilization rate, qt-current value
of the capital stock, ks

t-current capital services used in production, kt-installed capital,
rk

t -rental rate of capital, µ
p
t -price mark-up, µw

t -wage mark-up.
(iii) Latent shocks (Table 3): εt = (η

p
t , ηa

t , ηb
t , ηi

t, ηw
t , ηr

t , η
g
t ).
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Table 2. Smets and Wouters (2007) DSGE model—Behavioral equations.

Resource constraint: yt = cyct + iyit +zyzt + ε
g
t

Consumption: ct = c1ct−1 + (1−c1)Etct + 1 + c2(lt−Etlt + 1)−c3(rt−Etπt + 1 + εb
t )

Investment: it = i1it−1 + (1−i1)Etit + 1 + i2qt + εi
t

Arbitrage: qt = q1Etqt + 1 + (1−q1)Etrk
t + 1−(rt−Etπt +1 + εb

t )
Production: yt = φp(αks

t + (1−α)lt + εa
t )

Capital services: ks
t = kt−1 + zt

Capital utilization: zt = z1rk
t

Installed capital: kt = k1kt−1 + (1−k1)it + k2εi
t

Price mark-up: µ
p
t = mplt−wt = α(ks

t−lt) + εa
t−wt

Phillips curve: πt = π1πt−1 + π2Etπt + 1−π3µ
p
t + ε

p
t

Rental rate of capital: rk
t= −(kt−lt) +wt

Wage mark-up: µw
t = wt−mrst = wt−(σl lt + 1

1−λ/γ (ct−λ/γct−1))

Real wage: wt = w1wt−1 + (1−w1)(Etwt + 1 + Etπt + 1)−w2πt + w3πt−1−w4µw
t + εw

t
Taylor rule: rt = ρrt−1 + (1−ρ){rππt + rY(yt−yp

t )} + r∆y{(yt−yp
t )−(yt−1−yp

t−1)} + εr
t

Table 3. Smets and Wouters (2007) DSGE model: Exogenous Shocks.

Exogeneous spending: ε
g
t = ρgε

g
t−1 + η

g
t + ρgaη

g
t

Risk premium: εb
t = ρbεb

t−1 + ηb
t

Investment-specific technology: εi
t = ρiε

i
t−1 + ηi

t
Total factor productivity: εa

t = ρaεa
t−1 + ηa

t
Price mark-up: ε

p
t = ρpε

p
t−1 + η

p
t −µpη

p
t−1

Wage mark-up: εw
t = ρwεw

t−1 + ηw
t −µwηw

t−1
Monetary policy: εr

t = ρrεr
t−1 + ηr

t

The estimable form ofMψ(z; ξ; εt), the structural DSGE modelMϕ(z), is derived
by solving a system of linear expectational difference equations and eliminating certain
variables. Mϕ(z) is specified in terms of the observables Zt:= (ĉt, ît, ŷt, ŵt, π̂t, l̂t, r̂t): the
log difference of real GDP (ŷt = yt−yt−1 + γ), real consumption (ĉt = ct−ct−1 + γ), real
investment (ît = it−it−1 + γ) and the real wage (ŵt = wt−wt−1 + γ), log hours worked
(l̂t = lt + l), the log difference of the GDP deflator (π̂t = πt + π), and the federal funds
rate (r̂t = rt + r), where γ = 100(γ−1) is the common quarterly growth rate of real GDP,
π = 100(Π∗−1) is the quarterly steady-state inflation rate; and r = 100(β−1γσc Π∗−1) is the
steady-state nominal interest rate and l is steady-state hours worked, which is normalized
to be equal to zero. All the three steady-state values (γ, π and r) are evaluated using
observed data as a part of the modeling.

3.2. Traditional Model Quantification

Smets and Wouters (2007) use the “Dynare” software in Matlab to estimate and solve
the structural model by distinguishing four types of endogenous variables (Blanchard and
Kahn 1980):

Purely backward (or purely predetermined) variables: Those that appear only at the
current and past periods in the model, but not at any future period.
Purely forward variables: Those that appear only at the current, and future periods in
the model, but not at past periods.
Mixed variables: Those that appear at current, past, and future periods in the model.
Static variables: Those that appear only at current, not past and future periods in the
model.
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Using the Dynare software the solution of the structural model (Smets and Wouters
2007) yields the restricted state-space formulation:

Xt = A1(ψ)Xt−1 + A2(ψ)εt, t∈N, (5)

where Xt:=[st:xt]
> is a vector of 40 variables consisting of 20 state variables. (14 predeter-

mined variables and 6 mixed variables) as st and 20 control variables (6 purely forward
variables and 14 static variables) as xt. A1(ψ) is a (40 × 40) matrix, A2(ψ) is a (20 × 7)
matrix and εt is a vector of 7 exogenous shocks. The restricted state space solution (5)
of the DSGE model provides the basis for calibration; note that A1(ψ) and A2(ψ) are
defined by (Blanchard and Kahn 1980) algorithm. The calibration is accomplished using
the following steps.

Step 1. Select substantively meaningful values for the structural parameters ϕ.
Step 2. Select the sample size, say n, and the initial values x0.
Step 3. Use the values in steps 1–2, together with Normal pseudo-random numbers

for εt to simulate N samples of size n.
Step 4. After ‘de-trending’ using the Hodrick-Prescott (H-P) filter, use the simulated

data Zs
0 to evaluate the first two moment statistics (mean, variances, covariances) of interest

for each run of size n, and their empirical distributions for all N.
Step 5. Compare the relevant moments of the simulated data Zs

0 with those of the
actual data Z0, finessing the original values of ϕ to ensure that (i) these moments are
close to each other using the minimization: minϕ∈Φ ‖Cov(Zs

0; ϕ)− Cov(Z0)‖, as well as (ii)
ensuring that the model gives rise to realistic-looking data; the simulated data mimic the
actual data.

Calibration. In applying this procedure, five parameters are fixed at specific values:
δ = 0.025, gy = 0.18, λw = 1.5, εp = εw = 10.

3.3. Confronting the DSGE Model with Data

Smets and Wouters (2007) estimate their model using Bayesian statistics, where the
reliability of inference depends crucially on the statistical adequacy of the implicitMθ(z),
since the posterior: π(θ|z0) = π(θ)·L(θ; z0), θ∈Θ, invokes its validity via the likelihood
function L(θ; z0)∝ f (z0; θ), θ∈Θ. The data used for the estimation/calibration of the DSGE
model in Table 2 are US quarterly time series for the period 1947:2–2004:4 (n = 231): the
log difference of real GDP (ŷt), real consumption (ĉt), real investment (̂it), and the real wage
(ŵt), log hours worked (l̂t), the log difference of the GDP deflator (π̂t), and the federal
funds rate (r̂t).

The validation of the DSGE structural modelMϕ(z) will be achieved in three steps.
Step 1. Unveil the statistical modelMθ(z) implicit in the DSGE modelMϕ(z). Step 2.
Secure the statistical adequacy ofMθ(z) using M-S testing and respecification. Step 3. Test
the overidentifying restrictions in the context of a statistically adequate model secured in
Step 2.

An obvious form of potential statistical misspecification stems from the fact that most
of the data series exhibit non-stationarity that cannot be fully accounted for using log
differences as implicitly assumed. As shown below, one needs to add trends to account for
the mean-heterogeneity in the data.

The implicit statistical modelMθ(z) behind the linearized structural modelMϕ(z) in
terms of the observables: Zt:=(ŷt, ĉt, ît, π̂t, ŵt, l̂t, r̂t), is a Normal VAR(p) model (Table 4),
with p = 2. For the details connecting the structural and the statistical model in Tables 2 and 4,
see Appendix A.
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Table 4. Normal VAR(p) model.

Statistical GM: Zt = a0 + ∑
p
i=1 A>i Zt−i + ut, t∈N,

[1] Normality: (Zt|Z0
t−1) is Normal,

[2] Linearity: E(Zt|σ(Z0
t−1)) = a0 + ∑

p
i=1 A>i Zt−i,

[3] Homosked.: Var(Zt|σ(Z0
t−1))=V is free of Z0

t−1:=(Zt−1, . . . Z1),
[4] Markov: {Zt, t∈N} is a Markov(p) process,
[5] t-invariance: θ:=(a0, A1, A2, . . . , Ap, V) are t-invariant for all t∈N.

3.3.1. Evaluating the Validity of the Implicit Statistical Model

As shown in (Fernández-Villaverde et al. 2007), the solution of the Smets and Wouters
(2007) structural model gives rise to a Normal, VARMA(2,1) model. However, since the
latter imposes unnecessary statistical restrictions due to the MA(1) component, the implicit
statistical model is a VAR(p), p ≥ 2, which imposes no such restrictions, and the value of p
will be decided on statistical adequacy grounds.

Although Mis-Specification (M-S) testing can take a variety of forms (Lutkepohl 2005),
in the case of the Normal VAR(p) [N-VAR(p)] model, the most coherent procedure is
to use joint M-S tests based on auxiliary regressions relating to the first two conditional
moments; see Spanos (2018, 2019). The auxiliary regressions for testing the validity of
assumptions [1]–[5] are written in terms of the standardized residuals of the seven observ-
able variables. For instance, in the case of a single estimated equation based on Yt whose
residuals are denoted by ût, the auxiliary regressions take the generic forms:

ût = b0 + b1ŷt + b2ŷ2
t + b3ût−1 + b4ût−2 + b5t + b6t2 + v1t, (6)

û2
t = c0 + c1ŷt + c2ŷ2

t + c3ŷ2
t−1 + c4ŷ2

t−2 + c5t + c6t2 + v2t (7)

The form of the auxiliary regressions being used for joint M-S testing depends on a
number of different factors, and the robustness of its results is evaluated by examining
several alternative formulations. The hypotheses being tested for different joint M-S tests
are given in Table 5. The M-S test for Normality is the (Anderson and Darling 1952) test be-
cause it is more robust to a few outliers than the Skewness-Kurtosis or the Kolmogorov test;
see (Spanos 1990). The results of the joint M-S tests in Table 5, reported in Tables 6 and 7
[p-values in square brackets] indicate that the N-VAR(2) and N-VAR(3) models are statis-
tically misspecified; only the assumptions [2] Linearity and [4] Markov (2) dependence are
valid for data Z0. Also, the decision to leave out the MA component on statistical adequacy
grounds, stems from the fact that, after thorough M-S testing, the estimated VAR(2) model
fully accounts for the temporal dependence in data Z0. If one needed an MA error term to
account for that dependence, then the Markov (2) assumption would have been rejected by
data Z0. As shown below, however, [1] Normality, [3] homoskedasticity and [5] t-invariance
are invalid for the VAR(p) model, for both values p = 2 (Table 6) and p = 3 (Table 7), giving
rise to statistically misspecified models.

Table 5. Joint M-S tests for the N-VAR probabilistic assumptions.

Null Hypotheses

[1] Normality (Anderson-Darling) Zt v N(., .)

[2] Linearity: F(228,1) H0: b2 = 0

[3] (i) Homoskedasticity: F(228,2) H0: c1 = c2 = 0

[3] (ii) Dynamic Heterosk/sticity: F(228,2) H0: c3 = c4 = 0

[4] Markov (2): F(228,2) H0: b3 = b4 = 0

[5] (i) 1st moment t-invariance: F(228,2) H0: b5 = b6 = 0

[5] (ii) 2nd moment t-invariance: F(228,2) H0: c5 = c6 = 0
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Table 6. M-S testing results for N-VAR(2).

ĉt ît ŷt l̂t π̂t ŵt r̂t

Linearity 0.116[0.734] 2.963[0.087] 0.082[0.774] 3.597[0.059] 1.653[0.2] 2.112[0.148] 0.406[0.525]
1st-depend 0.045[0.956] 0.096[0.909] 0.303[0.739] 1.404[0.248] 0.328[0.721] 0.032[0.968] 5.520[0.005]

1st-invar 0.177[0.838] 0.601[0.549] 0.067[0.935] 1.638[0.197] 0.887[0.413] 0.150[0.861] 0.623[0.537]
Homosk/city 5.947[0.003] 8.005[0.000] 1.397[0.249] 2.694[0.070] 0.265[0.767] 1.593[0.206] 0.021[0.979]

2nd-depen 0.591[0.555] 0.080[0.923] 0.068[0.934] 1.012[0.365] 0.697[0.499] 0.696[0.500] 11.115[0.000]
2nd t-invar 3.643[0.028] 3.434[0.034] 11.428[0.000] 2.272[0.106] 8.652[0.000] 0.218[0.804] 0.927[0.397]

A-D test 0.960[0.015] 1.355[0.002] 0.610[0.111] 0.435[0.298] 3.315[0.000] 1.155[0.005] 8.053[0.000]

Table 7. M-S testing results for N-VAR(3).

ĉt ît ŷt l̂t π̂t ŵt r̂t

Linearity 0.251[0.617] 1.994[0.159] 0.107[0.744] 1.905[0.169] 0.699[0.404] 3.293[0.071] 0.067[0.796]
1st-dependence 0.043[0.958] 0.065[0.937] 0.522[0.594] 0.191[0.826] 0.828[0.439] 0.057[0.945] 0.290[0.749]

1st-t-invar 0.512[0.600] 0.569[0.567] 0.437[0.647] 0.609[0.545] 0.763[0.467] 0.074[0.929] 1.187[0.307]
Homosk/city 8.245[0.000] 9.869[0.000] 0.976[0.378] 2.315[0.101] 1.757[0.175] 0.317[0.728] 0.035[0.966]

2nd-dependence 1.090[0.338] 0.242[0.785] 0.054[0.948] 0.960[0.384] 3.080[0.048] 0.637[0.530] 5.940[0.003]
2nd-t-invar 3.595[0.029] 2.102[0.125] 1.547[0.000] 1.856[0.159] 8.613[0.000] 0.477[0.621] 0.842[0.432]

A-Darling test 0.780[0.042] 1.113[0.006] 0.631[0.099] 0.142[0.972] 2.423[0.000] 1.222[0.003] 7.316[0.000]

Hence, no reliable inferences can be drawn based on a calibrated or an estimated
N-VAR(p), for p = 2, 3, which also includes testing the validity of the DSGE restrictions in
light of that, any inference, including forecasting, based on the estimated/calibrated DSGE
model will give rise to spurious/untrustworthy results.

3.3.2. Respecifying the Implicit Statistical Model

In light of the above detected statistical misspecification, the next step is to respecify
the original N-VAR(2) model to account for the statistical information that lingers on in the
residuals. The departures indicating non-Normality, Heteroskedasticity, and second-order
temporal dependence in conjunction with the validity of the linearity assumption suggest
that the best way to respecify the N-VAR(2) model is to replace the Normality with another
distribution from the Elliptically Symmetric (ES) family. This family retains the bell-shape
symmetry and the linearity of the autoregression, but allows for heteroskedasticity and
second-order temporal dependence. This is because within the ES family, homoskedasticity
characterizes the Normal distribution; see (Spanos 2019), chp. 7. Hence, an obvious choice
is to assume that the process {Zt, t∈N} is Student’s t, Markov (p), covariance stationary
but mean trending. This gives rise to the Student’s t VAR(p) [St-VAR(p)] model with ν
degrees of freedom in Table 8.

Table 8. Student’s t VAR(p) model.

Statistical GM: Zt = a0(t) + ∑
p
i=1 A>i Zt−i + ut, t∈N,

[1] Student’s t: (Zt|Z0
t−1), Z0

t−1:=(Zt−1, . . . Z1), is Student’s t with ν + kp d.f.
[2] Linearity: E(Zt|σ(Z0

t−1)) = a0(t) + ∑
p
i=1 A>i Zt−i,

[3] Heterosk/city.: Var(Zt|σ(Z0
t−1))=q(Z0

t−1) depends on Z0
t−1,

q(Z0
t−1) =

(
ν

ν+kp−2

)
V [1 + 1

ν ∑
p
i=1(Zt−i−µ(t))Q−1

i (Zt−i−µ(t))]
[4] Markov (p): {Zt, t∈N} is a Markov(p) process
[5] t-invariance: θ:=(a0, µ, A1, . . . , Ap, V , Q1, . . . , Qp) are constant for t∈N.

There are two key differences between the N-VAR(2) (Table 4) and St-VAR(2) (Table 8)
models. The first is that the St-VAR(2) allows for trends µ(t) to account for the mean hetero-
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geneity in the data series. The second is that the St-VAR(2) is heteroskedastic [Var(Zt|σ(Z0
t−1))

is a function of Z0
t−1] and its conditional variance is heterogeneous [Var(Zt|σ(Z0

t−1)) is a
function of t via the unconditional mean µ(t)]. In relation to this distinction, it is important
to note that (Primiceri and Justiniano 2008) model the volatility in the context of DSGE
models using conditional variance heterogeneity and not heteroskedasticity. As shown
below, both play a very important role in accounting for the volatility in the data series. It
is important to note that to reach a statistically adequate model with p = 2, and ν = 5, the
interest rate term (rt) had to be replaced with (zt:=∆ ln rt).

In Tables 9 and 10, the estimates of the autoregressive functions of the St-VAR(2) and
N-VAR(2) models are compared and contrasted. First, there are significant differences
between the estimates corresponding to the same coefficients even though their respective
autoregressive functions are identical; significant differences are indicated by the sign
(�). Second, the trend polynomials for the St-VAR(2) model are very significant and their
absence from the N-VAR(2) model gives rise to misleading results because the coefficients
are based on deviations from the ‘wrong’ mean, calling into question the use of the steady-
state. In relation to the trend polynomials, it is important to emphasize that filtering the
data using the H-P filter does not eliminate potential departures from the t-invariance of
the conditional variance. Instead, it distorts the mean heterogeneity as well as the temporal
dependence in data Z0. Third, the most crucial difference is that the homoskedasticity
assumption for the N-VAR(p) model is clearly invalid (see Tables 6 and 7).

Table 9. Estimation results for St-VAR(p = 2).

ct it yt lt πt wt zt

const 0.832[0.000] 1.017[0.001] 0.587[0.000] 0.004[0.954] −0.001[0.979] 0.356[0.000] −0.043[0.015]
t −0.343[0.397] −2.006[0.051] −1.583[0.001] −0.192[0.326] 0.098[0.449] −1.201[0.001] −0.291[0.000]

ct−1 −0.227[0.000] −0.022[0.905] 0.147[0.064] 0.135[0.014] 0.104[0.001]� 0.018[0.754] 0.008[0.468]
it−1 0.025[0.222] 0.382[0.000] 0.111[0.000]� 0.040[0.550] −0.009[0.359] −0.004[0.837] 0.016[0.000]
yt−1 0.179[0.005] 0.215[0.239] −0.056[0.457] 0.094[0.072] −0.042[0.179] 0.044[0.453] 0.012[0.262]
lt−1 −0.041[0.669]� −0.319[0.259] −0.074[0.533] 1.046[0.000] 0.008[0.867] 0.037[0.672] 0.015[0.386]

πt−1 −0.369[0.001] 0.377[0.188] 0.101[0.451] 0.167[0.096] 0.571[0.000] 0.126[0.246] 0.043[0.036]
wt−1 −0.053[0.415] 0.240[0.214] −0.067[0.412] −0.001[0.992] 0.070[0.039] 0.013[0.829] 0.004[0.755]
zt−1 −0.389[0.219] 0.036[0.970] 0.000[0.999] 0.585[0.035] 0.330[0.044] −0.855[0.003] 0.303[0.000]
ct−2 0.010[0.898] −0.141[0.553] 0.043[0.667] −0.052[0.483] 0.037[0.387] 0.041[0.602] −0.020[0.163]
it−2 −0.024[0.324] 0.050[0.488] −0.021[0.456] −0.010[0.646] 0.026[0.050] −0.007[0.749] −0.005[0.235]
yt−2 0.059[0.411] −0.331[0.074] 0.014[0.861] −0.039[0.516] −0.057[0.129] 0.006[0.922] 0.013[0.288]
lt−2 0.007[0.943]� 0.210[0.466]� 0.065[0.588] −0.080[0.299] −0.024[0.621] −0.003[0.970] −0.007[0.692]

πt−2 0.030[0.819] −0.996[0.003] −0.262[0.092] −0.248[0.025] 0.308[0.000] −0.129[0.308] 0.004[0.755]
wt−2 0.040[0.550] −0.210[0.284] −0.096[0.240] −0.062[0.275]� 0.054[0.163]� 0.120[0.071] −0.006[0.657]
zt−2 −0.441[0.251] −1.002[0.375] −1.532[0.001] −0.540[0.116] 0.050[0.800] 0.291[0.393] −0.206[0.003]

(�) significant differences are indicated by the sign.
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Table 10. Estimation results for the N-VAR(2) model.

ct it yt lt πt wt rt

const. 1.101[0.000] 1.891[0.000] 0.952[0.000] 0.161[0.191] −0.130[0.146] 0.534[0.000] −0.003[0.947]
ct−1 −0.398[0.000] −0.287[0.265] 0.145[0.179] 0.072[0.294] 0.03[0.544] 0.030[0.685] 0.029[0.247]
it−1 0.025[0.386] 0.327[0.000] 0.053[0.135] 0.027[0.231] 0.018[0.262] −0.010[0.671] 0.022[0.008]
yt−1 0.182[0.024] 0.245[0.297] 0.001[0.992] 0.167[0.008] 0.003[0.944] 0.004[0.954] −0.018[0.429]
lt−1 0.196[0.091] 0.492[0.145] 0.218[0.124] 1.083[0.000] −0.084[0.197] 0.050[0.606] 0.050[0.130]

πt−1 −0.463[0.000] 0.436[0.227] 0.192[0.204] 0.155[0.109] 0.539[0.000] 0.060[0.563] 0.034[0.339]
wt−1 0.018[0.849] 0.360[0.197] −0.081[0.488] 0.017[0.817] 0.084[0.121] −0.082[0.303] 0.006[0.837]
rt−1 −0.585[0.018] −1.047[0.145] −0.376[0.212] 0.090[0.639] 0.195[0.161] −0.324[0.115] 1.093[0.000]
ct−2 0.031[0.717] 0.161[0.519] 0.117[0.264] 0.018[0.783] 0.085[0.079] 0 .095[0.182] −0.013[0.581]
it−2 −0.012[0.650] 0.004[0.958] −0.030[0.372] 0.004[0.832] 0.026[0.088] −0.023[0.314] −0.012[0.121]
yt−2 0.068[0.343] −0.313[0.137] 0.047[0.591] 0.026[0.641] −0.047[0.247] −0.036[0.546] 0.017[0.418]
lt−2 −0.271[0.020] −0.750[0.027] −0.281[0.048] −0.156[0.085] 0.070[0.282] −0.007[0.940] −0.047[0.157]

πt−2 −0.078[0.555] −0.944[0.015] −0.122[0.450] −0.233[0.025] 0.243[0.001] 0.008[0.945] 0.044[0.242]
wt−2 0.001[0.986] −0.337[0.177] −0.178[0.090] −0.169[0.012] 0.111[0.022] 0.115[0.108] −0.008[0.730]
rt−2 0.542[0.031] 0.301[0.681] −0.043[0.888] −0.242[0.217] −0.080[0.572] 0.207[0.323] −0.149[0.039]

Table 11. The estimated St-VAR(2) conditional variance St-VAR V̂ar(ct|Z0
t−1).
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(0.469)

π̃t−1r̃t−1

−0.019
(0.022)

π̃t−1 c̃t−2 − 0.000
(0.999)

π̃t−1 ı̃t−2 + 0.000
(0.957)

π̃t−1ỹt−2 + 0.007
(0.433)

π̃t−1 l̃t−2 − 0.208
(0.000)

π̃t−1π̃t−2 − 0.026
(0.001)

π̃t−1w̃t−2

−0.078
(0.033)

π̃t−1r̃t−2 + 0.017
(0.415)

w̃t−1r̃t−1 − 0.011
(0.033)

w̃t−1 c̃t−2 + 0.001
(0.545)

w̃t−1 ı̃t−2 − 0.007
(0.108)

w̃t−1ỹt−2 − 0.054
(0.000)

π̃t−1 l̃t−2

−0.042
(0.000)

w̃t−1π̃t−2 − 0.002
(0.644)

w̃t−1w̃t−2 + 0.021
(0.353)

w̃t−1r̃t−2 − 0.026
(0.283)

r̃t−1 c̃t−2 − 0.022
(0.006)

r̃t−1 ı̃t−2 − 0.011
(0.591)

r̃t−1ỹt−2

+0.089
(0.003)

r̃t−1 l̃t−2 − 0.106
(0.009)

r̃t−1π̃t−2 − 0.014
(0.523)

r̃t−1w̃t−2−0.511
(0.000)

r̃t−1r̃t−2 − 0.003
(0.046)

c̃t−2 ı̃t−2−0.041
(0.000)

c̃t−2ỹt−2

+ 0.019
(0.003)

c̃t−2 l̃t−2 + 0.051
(0.000)

c̃t−2π̃t−2−0.005
(0.220)

c̃t−2w̃t−2 + 0.009
(0.641)

c̃t−2r̃t−2 − 0.012
(0.000)

ı̃t−2ỹt−2 − 0.002
(0.216)

ı̃t−2 l̃t−2

+0.003
(0.216)

ı̃t−2π̃t−2 + 0.001
(0.446)

ı̃t−2w̃t−2 − 0.028
(0.000)

ı̃t−2r̃t−2 + 0.017
(0.005)

ỹt−2 l̃t−2 − 0.001
(0.860)

ỹt−2π̃t−2 − 0.008
(0.028)

ỹt−2w̃t−2

−0.049
(0.006)

ỹt−2r̃t−2 + 0.012
(0.205)

l̃t−2π̃t−2 − 0.008
(0.145)

l̃t−2w̃t−2 − 0.012
(0.647)

l̃t−2r̃t−2 + 0.036
(0.000)

π̃t−2w̃t−2 + 0.048
(0.006)

w̃t−2r̃t−2

The inappropriateness of the constant conditional variance-covariance associated with
the N-VAR(2) model is illustrated in Figures 1 and 2, where the squared residuals from
N-VAR(2) that exhibit great volatility are plotted with V̂ar(yt|Z0

t−1) and V̂ar(ct|Z0
t−1) based

on the St-VAR(2) model (Table 11), indicating that they capture most of the volatility. Note
that all seven conditional variances are scaled versions of each other.
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In tables 9 and 10, the estimates of the autoregressive functions of the St-VAR(2)

and N-VAR(2) models are compared and contrasted. First, there are significant

differences between the estimates corresponding to the same coefficients despite the

fact that their respective autoregressive functions are identical; significant differences

are indicated by the sign (¨). Second, the trend polynomials in St-VAR(2) model are
very significant and their absence from the N-VAR(2) model gives rise to misleading

results because the coefficients are based on deviations from the wrong mean. In

relation to the trend polynomials, it is important to emphasize that filtering the data

using the H-P filter does not eliminate the departures from the t-invariance of the

conditional variance, and it distorts the dynamics. Third, the key difference is the

conditional variance assumed to be homoskedastic in the case of the N-VAR(2) model,

which is clearly invalid (see tables 4, 6-7).

Table 10: N-VAR(2)
      

const. 1.101[.000] 1.891[.000] .952[.000] .161[.191] -.130[.146] .534[.000] -.003[.947]
−1 -.398[.000] -.287[.265] .145[.179] .072[.294] .03[.544] .030[.685] .029[.247]
−1 .025[.386] .327[.000] .053[.135] .027[.231] .018[.262] -.010[.671] .022[.008]
−1 .182[.024] .245[.297] .001[.992] .167[.008] .003[.944] .004[.954] -.018[.429]
−1 .196[.091] .492[.145] .218[.124] 1.083[.000] -.084[.197] .050[.606] .050[.130]
−1 -.463[.000] .436[.227] .192[.204] .155[.109] .539[.000] .060[.563] .034[.339]
−1 .018[.849] .360[.197] -.081[.488] .017[.817] .084[.121] -.082[.303] .006[.837]
−1 -.585[.018] -1.047[.145] -.376[.212] .090[.639] .195[.161] -.324[.115] 1.093[.000]
−2 .031[.717] .161[.519] .117[.264] .018[.783] .085[.079] .095[.182] -.013[.581]
−2 -.012[.650] .004[.958] -.030[.372] .004[.832] .026[.088] -.023[.314] -.012[.121]
−2 .068[.343] -.313[.137] .047[.591] .026[.641] -.047[.247] -.036[.546] .017[.418]
−2 -.271[.020] -.750[.027] -.281[.048] -.156[.085] .070[.282] -.007[.940] -.047[.157]
−2 -.078[.555] -.944[.015] -.122[.450] -.233[.025] .243[.001] .008[.945] .044[.242]
−2 .001[.986] -.337[.177] -.178[.090] -.169[.012] .111[.022] .115[.108] -.008[.730]
−2 .542[.031] .301[.681] -.043[.888] -.242[.217] -.080[.572] .207[.323] -.149[.039]

The inappropriateness of a constant conditional variances associated with the N-

VAR(2) model is illustrated in figures 1-2, where the squared residuals fromN-VAR(2)

that exhibit great volatility are plotted with d (|Z0−1) and d (|Z0−1) based on
the St-VAR(2) model (table 11), indicating that they capture most of the volatility.

Note that all seven conditional variances are scaled versions of each other.

Fig. 1: N-VAR residuals (b2 ) vs. St-VAR d (|Z0−1)
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Figure 1. N-VAR residuals (û2
t ) vs. St-VAR V̂ar(yt|Z0

t−1).

Fig. 2: N-VAR residuals (b2 ) vs. St-VAR d (|Z0−1)
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Using the tilde notation to denote mean deviations, e:=(−[()) the esti-
mated d (|Z0−1) reported in Table 11 indicates that there is strong heteroskedas-
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Figure 2. N-VAR residuals (û2
t ) vs. St-VAR V̂ar(ct|Z0

t−1).

3.3.3. Evaluating the Statistical Adequacy of the St-VAR(2) Model

To take into account the heteroskedastic conditional variance-covariance, one needs
to reconsider the notion of what constitutes the ‘relevant residuals’ for M-S testing pur-
poses. In the case of the St-VAR(p) model the relevant residuals are the standardized ones
defined by:

ût = L−1
t (Zt − Ẑt) (8)

where LtL>t = V̂ar(Zt|σ(Z0
t−1)), Ẑt = δ̂0 + δ̂1t + Â>1 Zt−1 + Â>2 Zt−2. Here, Lt is changing

with t and Z0
t−1 as opposed to being constant in the N-VAR(2) model. An indicative pair of

auxiliary regressions based on these residuals is:

ût = a0 + a1ŷt + b3ŷ2
t + b1ût−1 + b2ût−2 + b4t2 + b5t3 + v1t,

û2
t = γ0 + γ1σ̂2

t + c1ŷ2
t + c2σ̂2

t−1 + c3σ̂2
t−2 + c4t + c5t2 + v2t,

where ŷt denotes the fitted values and σ̂2
t = V̂ar(yt|σ(Z0

t−1)). The hypotheses being tested
are directly analogous to those in Table 5 above.

The results of the M-S testing for the estimated Student’s VAR(2) model, reported in
Table 12, indicate no departures from its assumptions [1]–[5]. In assessing these results it
is important to note that the p-values decrease with the sample size n, implying that one
needs to decrease the appropriate threshold as n increases. For n = 231, a more appropriate
threshold is α = 0.01; see (Spanos 2014).
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Table 12. M-S Testing results for St-VAR(2).

ct it yt lt πt wt zt

[2] Linearity 1.598[0.208] 2.312[0.130] 0.844[0.359] 0.003[0.957] 1.244[0.266] 0.000[0.986] 6.337[0.013]
[4] 1st depend 0.316[0.575] 0.249[0.619] 0.610[0.436] 1.888[0.171] 0.627[0.429] 0.146[0.703] 0.905[0.342]
[5] 1st-invar 0.697[0.499] 1.157[0.316] 1.398[0.249] 0.972[0.380] 1.548[0.215] 1.268[0.284] 0.206[0.814]
[3] Heterosked 0.009[0.925] 0.250[0.617] 1.320[0.252] 0.009[0.926] 3.085[0.080] 0.009[0.924] 0.075[0.785]
[4] 2nd depend 0.199[0.820] 0.748[0.475] 0.666[0.515] 0.384[0.682] 1.308[0.273] 0.447[0.640] 0.303[0.739]
[5] 2nd t-invar 0.388[0.679] 0.153[0.858] 0.537[0.585] 0.010[0.990] 1.706[0.184] 3.339[0.037] 5.142[0.010]
[1] A-D test 0.763[0.508] 0.961[0.378] 0.823[0.465] 0.841[0.452] 1.666[0.141] 1.130[0.296] 1.790[0.120]

The statistical adequacy of the St-VAR(2) is also reflected by the constancy of the
variation around a constant mean, exhibited by its residuals in Figure 3.

Fig. 3: Scaled St-VAR(2) residuals Fig. 4: Normal-VAR(2) residuals

This calls for a re-interpretation of the hypothesis known as the ‘great moderation’

(Stock and Watson, 2002) based on Figure 3, since the residuals from the N-VAR(2)

model are systematically different from white-noise. The relevant residuals from

a statistically adequate St-VAR(2) model in figure 3 represent a realization of a

Student’s t Martingale Difference process as they should.

3.4 Evaluating the Smets and Wouters DSGE model
3.4.1 Testing the over-identifying restrictions

In light of the fact that the Student’s t VAR(2) is a statistically adequate model, one

can proceed to probe the empirical adequacy of the DSGE model, knowing that the

actual error probabilities provide a close approximation to the nominal (assumed)

ones. This includes testing the DSGE over-identifying restrictions:

0: G(θϕ)=0 vs. 1: G(θϕ)6=0 for θ∈Θ ϕ∈Φ
The relevant test is based on the likelihood ratio statistic:

(Z)=
max∈Φ (;Z)

max∈Θ (;Z)
=

(;Z)
(;Z) ⇒ −2 ln(Z) 0v


2() (8)

For =98, for =01 =684 the observed test statistic yields:

−2 ln(Z0)501653[00000000]
The near-zero p-value provides indisputably strong evidence against the DSGEmodel.

Hence, when a DSGE modelM(z) is tested against reliable evidence in the form

of a statistically adequateM(z) [Student’s t VAR(2)],M(z) is strongly rejected.

The natural way forward for DSGE modeling is to find ways to modify DSGE models

with a view to account for the empirical regularities in the data brought out by the

Student’s t VAR(2). These regularities include the leptokurticity as well as the second

order dependence exemplified by the heteroskedastic  (y|Z0−1)
It is important to note that the Del Negro et al. (2007) substantive misspecifi-

cation analysis based on the DSGE-VAR() model, although similar in spirit, differs

in nature from the above frequentist over-identifying restrictions test; see Consolo et

al. (2009). Apart from the fact that the former uses a Bayesian approach, the key

difference is that the probabilistic assumptions underlying the VAR() specification

are presumed valid, and the above evidence suggest that the VAR() is invariably

statistically misspecified, rendering any evidence based on it untrustworthy.

18

Figure 3. Scaled St-VAR(2) residuals.

This should be contrasted with the N-VAR(2) residuals in Figure 4 which seem to
indicate a shift in both the mean and variance between the period 1983–2000 and after-
ward. This, however, is misleading since Figure 4 represents the residuals of a statistically
misspecified model. On the other hand, Figure 3 represents the residuals of a statistically
adequate model and suggests that the lower volatility arises as an inherent chance regular-
ity stemming from {Zt, t∈N} being a Student’s t Markov (2) process. Indeed, the sequence
of successive periods of large and small volatility represents a chance regularity pattern
reflecting second-order temporal dependence, initially noted by (Mandelbrot 1963):

“. . . large changes tend to be followed by large changes-of either sign-and small
changes tend to be followed by small changes”. (p. 418).

This calls into question the hypothesis known as the ‘great moderation’ (Stock and
Watson 2002) based on Figure 4, since the residuals from the N-VAR(2) model do not
account for the second-order dependence. That is, the ‘great moderation’ hypothesis
stems form an erroneous interpretation based on statistical misspecification. The relevant
residuals from a statistically adequate St-VAR(2) model in Figure 3 represent a realization
of a Student’s t Martingale Difference process as they should.
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Fig. 3: Scaled St-VAR(2) residuals Fig. 4: Normal-VAR(2) residuals

This calls for a re-interpretation of the hypothesis known as the ‘great moderation’

(Stock and Watson, 2002) based on Figure 3, since the residuals from the N-VAR(2)

model are systematically different from white-noise. The relevant residuals from

a statistically adequate St-VAR(2) model in figure 3 represent a realization of a

Student’s t Martingale Difference process as they should.

3.4 Evaluating the Smets and Wouters DSGE model
3.4.1 Testing the over-identifying restrictions

In light of the fact that the Student’s t VAR(2) is a statistically adequate model, one

can proceed to probe the empirical adequacy of the DSGE model, knowing that the

actual error probabilities provide a close approximation to the nominal (assumed)

ones. This includes testing the DSGE over-identifying restrictions:

0: G(θϕ)=0 vs. 1: G(θϕ)6=0 for θ∈Θ ϕ∈Φ
The relevant test is based on the likelihood ratio statistic:

(Z)=
max∈Φ (;Z)

max∈Θ (;Z)
=

(;Z)
(;Z) ⇒ −2 ln(Z) 0v


2() (8)

For =98, for =01 =684 the observed test statistic yields:

−2 ln(Z0)501653[00000000]
The near-zero p-value provides indisputably strong evidence against the DSGEmodel.

Hence, when a DSGE modelM(z) is tested against reliable evidence in the form

of a statistically adequateM(z) [Student’s t VAR(2)],M(z) is strongly rejected.

The natural way forward for DSGE modeling is to find ways to modify DSGE models

with a view to account for the empirical regularities in the data brought out by the

Student’s t VAR(2). These regularities include the leptokurticity as well as the second

order dependence exemplified by the heteroskedastic  (y|Z0−1)
It is important to note that the Del Negro et al. (2007) substantive misspecifi-

cation analysis based on the DSGE-VAR() model, although similar in spirit, differs

in nature from the above frequentist over-identifying restrictions test; see Consolo et

al. (2009). Apart from the fact that the former uses a Bayesian approach, the key

difference is that the probabilistic assumptions underlying the VAR() specification

are presumed valid, and the above evidence suggest that the VAR() is invariably

statistically misspecified, rendering any evidence based on it untrustworthy.
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Figure 4. Normal-VAR(2) residuals.

4. Evaluating the Smets and Wouters DSGE Model
4.1. Testing the Over-Identifying Restrictions

In light of the fact that the Student’s t VAR(2) is a statistically adequate model, one can
proceed to probe the empirical adequacy of the DSGE model, knowing that the actual error
probabilities provide a close approximation to the nominal (assumed) ones. This includes
testing the DSGE over-identifying restrictions:

H0: G(θ,ϕ) = 0, vs. H1: G(θ,ϕ) 6=0, for θ∈Θ, ϕ∈Φ,

The relevant test is based on the likelihood ratio statistic:

λn(Z)=
maxϕ∈Φ L(ϕ;Z)
maxθ∈Θ L(θ;Z)=

L(ϕ̃;Z)
L(θ̂;Z)

⇒ −2 ln λn(Z)
H0v
a

χ2(m). (9)

For m = 98, for α = 0.01, cα = 68.4, the observed test statistic yields:

−2 ln λn(Z0)>50165.3[0.00000000].

The tiny p-value provides indisputably strong evidence against the DSGE model.
Hence, when a DSGE modelMϕ(z) is tested against reliable statistical evidence in

the form of a statistically adequateMθ(z) [Student’s t VAR(2)],Mϕ(z) is strongly rejected.
The natural way forward for DSGE modeling is to find ways to modify DSGE models with
a view to account for the statistical regularities in the data brought out by the Student’s t
VAR(2). These regularities include the leptokurticity as well as the second-order temporal
dependence exemplified by the heteroskedastic Var(Yt|Z0

t−1).
It is important to note that the (Del Negro et al. 2007) substantive misspecification anal-

ysis based on the DSGE-VAR(λ) model differs from the above frequentist over-identifying
restrictions test; see (Consolo et al. 2009). Apart from the fact that the former uses a Bayesian
approach, the key difference is that the probabilistic assumptions underlying the VAR(λ)
specification are presumed valid and are not tested against the data.

4.2. Forecasting Performance

Typical examples of out-of-sample forecasting capacity of both the DSGE and the
Student’s t VAR(2) models for 8 periods ahead [2003Q1-2004Q4; estimation period 1947Q2-
2002Q4] is shown in Figures 5 and 6 for wages and consumption growth, with the actual
data denoted by a solid line.
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Figures 5 and 6 are typical cases of the forecasting performance of the Smets and
Wouters DSGE model and illustrate a good and a bad case. In general, the forecast line of
the DSGE model tends to be over smoothed in a way that largely ignores the systematic
temporal dependence/heterogeneity in the data. When the forecast line happens to overlap
with the actual data, it appears to track the trend reasonably well but not the cycles; see
Figure 6.

When the forecast line misses the actual data line (see Figure 6), the forecasts are
particularly bad because the DSGE model over or under predicts systematically, giving rise
to systematic (non-white noise) prediction errors. This pattern is symptomatic of statistical
msisspecification. In relation to this, it is very important to emphasize that when the
forecasts errors are statistically systematic—they exhibit over or under prediction—the
Root Mean Square Error (RMSE) can be highly misleading as a measure of forecasting
capacity. The RMSE is a reliable measure only when the forecast errors are statistically
non-systematic. In that sense, Figures 5 and 6 show that the performance of the St-VAR(2)
model is much better than that of the DSGE model, irrespective of the RMSEs.

Note that in the case of the St-VAR model, statistically non-systematic means that its
residuals and forecast errors constitute realizations of martingale difference processes.

Interestingly, the poor forecasting performance of DSGE models is well-known, but it
is rendered acceptable by comparing it to that of N-VAR models:

“. . . we find that the benchmark estimated medium scale DSGE model forecasts
inflation and GDP growth very poorly, although statistical and judgemental forecasts
do equally poorly”. (Edge and Gurkaynak 2010, p. 209)

This claim fails to recognize that the poor forecasting performance stems primarily
from the statistical inadequacy of the underlying estimated model; see Tables 6 and 7.

4.3. Potentially Misleading Impulse Response Analysis

The statistical inadequacy of the underlying statistical model also affects the reliability
of its impulse response analysis, giving rise to misleading results about the reaction to
exogenous shocks over time. Indeed, the estimated V̂ar(yt|Z0

t−1) brings out the poten-
tial unreliability of any impulse response and variance decomposition analysis based on
assuming a constant conditional variance.

Figure 7 compares the impulse responses of a 1% increase in labor hours (lt) on
inflation (πt) from the Normal and Student’s t VAR models. The statistically adequate
St-VAR(2) model produces a sharp and big decline and a slow recovery in the rate of
inflation. However, the Normal VAR model produces a different impulse response. The
rate of inflation decreases sharply first, and then sharply increases before falling again and
rising slowly.

Figure 8 compares the impulse responses of a 1% increase in labor hours rate (lt) on
output (yt) from the Normal and Student’s t VAR models. The heterogeneous St-VAR model
produces a mild decline and a slow recovery in the growth rate of per-capita real GDP. But
the effects produced by the stationary Normal VAR model are completely different. The
growth rate increases first, falls and recovers slowly.
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3.4.3 Forecasting performance

Typical examples of out-of-sample forecasting capacity of both the DSGE and the

Student’s t VAR(2) models for 8 periods ahead [2003Q1-2004Q4; estimation period

1947Q2-2002Q4] is shown in figures 6 and 7 for wages and consumption growth, with

the actual data denoted by a solid line.

Fig. 6: Forecasting wages growth Fig. 7: Forecasting consumption growth

Figures 6 and 7 are typical cases of the forecasting performance of the Smets and

Wouters DSGE model and illustrate a good and a bad case. In general, the forecast

line of the DSGE model tends to be oversmoothed in a way that largely ignores the

systematic temporal dependence/heterogeneity in the data. When the forecast line

happens to overlap with the actual data, it appears to track the trend reasonably

well but not the cycles; see figure 6. When the forecast line misses the actual data

line (see figure 7), the forecasts are particularly bad because the DSGE model over or

under predicts systematically, giving rise to systematic (non-white noise) prediction

errors. This pattern is symptomatic of statistical inadequacy. In relation to this,

it is very important to emphasize that when the forecasts errors are statistically

systematic — they exhibit over or under prediction — the Root Mean Square Error

(RMSE) can be highly misleading as a measure of forecasting capacity. The RMSE

is a reliable measure only when the forecast errors are statistically non-systematic.

In that sense, figures 6-7 show that performance of the St-VAR is much better than

that of the DSGE model, irrespective of the RMSEs. Note that in the case of the St-

VAR model, statistically non-systematic means that its residuals and forecast errors

constitute realizations of martingale difference processes.

Interestingly, the poor forecasting performance of DSGE models is well-known,

but it is rendered acceptable by comparing it to that of N-VAR models:

“... we find that the benchmark estimated medium scale DSGE model forecasts

inflation and GDP growth very poorly, although statistical and judgemental forecasts do

equally poorly .” (Edge and Gurkaynak, 2010, p. 209)

This claim fails to recognize that the poor forecasts were primarily due to the fact

that they were based on statistically misspecified models; see tables 6 and 7.
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3.4.4 Potentially misleading impulse response analysis

The statistical inadequacy of the underlying statistical model also affects the reli-

ability of its impulse response analysis, giving rise to misleading results about the

reaction to exogenous shocks over time. Indeed, the estimated d (|Z0−1) brings
out the potential unreliability of any impulse response and variance decomposition

analysis based on assuming a constant conditional variance.

Fig. 8: 1% increase in labor hours

() on inflation ()
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Figure 8 compares the impulse responses of a 1% increase in labor hours ()

on inflation () from the Normal and Student’s t VAR models. The statistically

adequate St-VAR(2) model produces a sharp and big decline and a slow recovery in

the rate of inflation. However, the Normal VAR model produces a different impulse

response. The rate of inflation decreases sharply first, and then sharply increases

before falling again and rising slowly.

Figure 9 compares the impulse responses of a 1% increase in labor hours rate ()

on output () from the Normal and Student’s t VAR models. The heterogeneous

St-VAR model produces a mild decline and a slow recovery in the growth rate of

per-capita real GDP. But the effects produced by the stationary Normal VAR model

is completely different. The growth rate increases sharply first, sharply falls and

recovers slowly.

3.4.5 Substantive vs. Statistical adequacy

Lucas’s (1980) argument: “Any model that is well enough articulated to give clear an-

swers to the questions we put to it will necessarily be artificial, abstract, patently ‘unreal’”

(p. 696), is misleading because it blurs the distinction between substantive and sta-

tistical adequacy. There is nothing wrong with constructing a simple, abstract and

idealized theory-model M(z) aiming to capture key features of the phenomenon

of interest, with a view to shed light on (understand, explain, forecast) economic

phenomena of interest, as well as gain insight concerning alternative policies. Un-

reliability of inference problems arise when the statistical model M(z) implicitly

specified byM(z) is statistically misspecified, and no attempt is made to reliably
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Figure 8 compares the impulse responses of a 1% increase in labor hours ()

on inflation () from the Normal and Student’s t VAR models. The statistically
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the rate of inflation. However, the Normal VAR model produces a different impulse
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Figure 9 compares the impulse responses of a 1% increase in labor hours rate ()

on output () from the Normal and Student’s t VAR models. The heterogeneous

St-VAR model produces a mild decline and a slow recovery in the growth rate of
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4.4. Identification of the ‘Deep’ Structural Parameters

A crucial issue raised in the DSGE literature is the identification of the structural
parameters; see (Canova 2007; Iskrev 2010). The problem is that there is often no direct way
to relate the statistical parameters (θ) to the structural parameters (ϕ) because the implicit
function G(θ,ϕ) = 0 is not only highly non-linear, but it also involves algorithms like the
Schur decomposition of the structural matrices involved.

An indirect way to probe the identification of the above DSGE model is to use the
estimated statistical model, St-VAR(2) to generate, say N, faithful (true to the probabilistic
structure of Z0) replications of the original data Z0. The statistical adequacy of the estimated
St-VAR(2) ensures that it accounts for the statistical regularities in the data, and thus the
simulated data will have the same probabilistic structure as the original observations. This
enables the modeler to learn about the identifiability of the deep parameters using these
faithful replicas of the original data to estimate the structural DSGE model.

The N simulated data series can be used to estimate the structural parameters (ϕ)
using the original ‘quantification’ procedures in (Smets and Wouters 2007). When the
histogram of each ϕ̂i, for i = 1, 2, . . . , p, is concentrated around a particular value, with a
narrow interval of support, then ϕi can be regarded as identifiable. When the histogram
exhibits a large range of values or/and multiple modes, it indicates that the parameter in
question is non-identifiable.

Out of 36 parameters, simulation is applied to 27 keeping the rest of the parameters
(7 of them are the variance of the shocks) constant. The 27 histograms in Figures 9 and 10
were generated using N = 3000 replications of the original data of sample size n = 230
based on the estimated statistical model, St-VAR(2); increasing N does not change the above
results. Looking at these histograms we can distinguish between three different groups of
identified/non-identified parameters.
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Figure 10. Histograms of the estimated/calibrated key parameters 2.

First is the group where the estimated/calibrated value is close to the mode of the
histogram. In this case, the parameters

(
π, µp, σc, Φ, ρp, ρg

)
are potentially identifiable vis-a-

vis the data.
Second is the group where the estimated/calibrated values are significantly dif-

ferent from the mode of the histogram. In such a case, the parameters in question(
l, α, ϕ, h, ιw, ιp, σl , rπ , ρ, ρa, ρr, ρw

)
are likely to be unidentifiable.

Third is the group where the estimated/calibrated value lies outside the actual range
of values of the histogram. The parameters in question

(
ρga, µw, ξw, ξp, ry, ρi, ρb, ρp

)
are

clearly non-identifiable.
Taken together, only six of the twenty-seven parameters have estimated or calibrated

values that are potentially identifiable vis-a-vis the data.
This simulation exercise indicates that, in contrast to the statistical parameters of the

St-VAR(2) which are inherently identifiable, the identification and constancy of the ‘deep’
DSGE parameters is called into question. The results also question the appropriateness of
the ‘estimation’ of these deep parameters using traditional methods such as the method of



Econometrics 2022, 10, 17 20 of 25

moments, maximum likelihood, and Bayesian techniques; see (Smets and Wouters 2003,
2005, 2007; Ireland 2004, 2011). A question that needs to be addressed is whether the
Bayesian techniques narrow down the range of values of the deep parameters to render
them “artificially” identifiable. Indeed, the broader question which naturally arises when
one is dealing with a calibrated model is: what is one calibrating/evaluating when the
structural parameters are non-identifiable?

4.5. Substantive vs. Statistical Adequacy

Lucas’s (Lucas 1980) argument that: “Any model that is well enough articulated to give
clear answers to the questions we put to it will necessarily be artificial, abstract, patently
‘unreal’” (p. 696), is highly misleading because it blurs the distinction between substantive
and statistical adequacy. There is nothing wrong with constructing a simple, abstract,
and idealized theory-modelMϕ(z) aiming to capture key features of the phenomenon of
interest, to shed light on (understand, explain, forecast) economic phenomena of interest, as
well as gain insight concerning alternative policies. Unreliability of inference problems arise
when the statistical modelMθ(z) implicitly specified byMϕ(z) is statistically misspecified,
and no attempt is made to reliably assess whetherMϕ(z) does, indeed, capture the key
features of the phenomenon of interest; see (Spanos 2009b). That is, the strategy ‘theory or
bust’ makes no sense in empirical modeling. As argued by Hendry (Hendry 2009):

“This implication is not a tract for mindless modeling of data in the absence of
economic analysis, but instead suggests formulating more general initial models
that embed the available economic theory as a special case, consistent with
our knowledge of the institutional framework, historical record, and the data
properties. . . Applied econometrics cannot be conducted without an economic
theoretical framework to guide its endeavors and help interpret its findings.
Nevertheless, since economic theory is not complete, correct, and immutable, and
never will be, one also cannot justify an insistence on deriving empirical models
from theory alone”. (pp. 56–57)

Statistical misspecification is not the inevitable result of abstraction and simplification
but stems from imposing invalid probabilistic assumptions on the data. Moreover, the latter
goes a long way toward explaining the poor forecasting performance of the traditional
macroeconometric models in the 1970s (Nelson 1972) and can explain the poor forecasting
performance of DSGE models.

Unfortunately, the current literature on DSGE modeling adopts the (Kydland and
Prescott 1991) view that misspecification is inevitable. For instance, (Canova 2007) goes
further by arguing: “DSGE models are misspecified in the sense that they are, in general, too
simple to capture the complex probabilistic nature of the data. Hence, it may be fruitless to
compare their outcomes with the data . . . Both academic economists and policy makers use
DSGE models to tell stories about how the economy responds to unexpected movements in
the exogenous variables”. (p. 160)

There is nothing complicated about the probabilistic nature of economic time series
data. The probabilistic assumptions needed to account for the chance regularity patterns in
such data come from three broad categories, (D) Distribution, (M) Dependence, and (H)
Heterogeneity, with simple generic ways to account for (M) and (H) using lags and trend
polynomials. Moreover, when any of the probabilistic assumptions are found wanting,
they can be easily replaced with more appropriate ones (respecification); see Spanos (2019).
Regarding the use of empirical modeling as ‘story-telling’, it should noted that when an
estimated DSGE model (Mψ(z)) is statistically misspecified, then the stories based on it
have nothing to do with the economy that gave rise to the data since the empirical evidence
invoked are untrustworthy. It will be better for the scientific reputation of macroecono-
metrics to skip the ‘data’ part and just tell the stories associated with simulatingMψ(z)
using parameter values that seem ‘appropriate’ to a DSGE modeler. Why pretend that
these values stem from the data?
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5. Summary and Conclusions

The literature on DSGE modeling rightly points out that reliance on chance regularities
for statistical inference purposes, as in the case of the traditional VAR(p) model, is not
sufficient to represent substantively meaningful (structural) models that can be used to
forecast and evaluate different macroeconomic policies. On the other hand, estimating
structural models that belie the chance regularities in the data would only give rise to
untrustworthy inference results.

Estimating the structural model directly often leads to an impasse since the estimated
model is often both statistically and substantively inadequate. This renders any proposed
substantive respecifications of the original structural model (Del Negro and Schorfeide
2009; Del Negro et al. 2007) questionable since the respecified model is declared ‘better’
or ‘worse’ on the basis of untrustworthy evidence when the estimated statistical model is
misspecified.

A way to address this quandary is to separate, ab initio, the structural modelMϕ(z)
from the statistical model Mθ(z), and establish statistical adequacy before posing any
substantive questions of interest. An estimated DSGE model Mϕ(z) whose statistical
premisesMθ(z) are misspecified constitutes an unreliable basis for any form of inference.
From a purely probabilistic perspective, Mθ(z) is viewed as a parameterization of the
process {Zt, t∈N} underlying data Z0, chosen so that it (parametrically) nestsMϕ(z) via
G(θ,ϕ) = 0. The crucial distinction between statistical and substantive premises suggests
that various traditional conundrums, such as theory-driven vs. data-driven, realistic vs.
unrealistic, and policy-oriented vs. non-policy-oriented models, are largely false dilemmas.
Statistical adequacy ofMθ(z) is a necessary precondition for securing the reliability of any
form of inference.

Using quarterly US data for the period 1947:2–2004:4, the confrontation of the (Smets
and Wouters 2007) DSGE modelMϕ(z) with a statistically adequateMθ(z) [Student’s t
VAR(2)] strongly rejectsMϕ(z), and calls into question the reliability of any inferences
based on it. The Bayesian estimation techniques used by the authors are likely to be
equally unreliable because the implicit likelihood function is invalid. Indeed, in light of the
unidentifiability of most of the structural parameters shown in Section 4.4, questions arise
about the role of the priors in quantifying such parameters. Based on the above discussion,
a way forward for DSGE modeling is to engage in the following recommendations.

(a) The modeler needs to bring out the statistical modelMθ(z) implicitly specified by
the structural modelMϕ(z), with the former specified in terms of a complete set of
testable probabilistic assumptions, as in Tables 1, 4 and 8.

(b) When a DSGE model Mϕ(z) is estimated directly, the statistical reliability of any
inferences drawn is questionable. Before any reliable inferences can be drawn, the
modeler needs to test the validity of the assumptions of the statistical model.

(c) When the statistical model Mθ(z) is found to be misspecified, the modeler needs
to respecify it to account for the statistical information in the data. Only when the
statistical adequacy ofMθ(z) is established, one should proceed to the inference stage.

(d) The evaluation of the empirical validity of the structural modelMϕ(z) begins with
testing the validity of the over-identifying restrictions G(θ,ϕ) = 0, in the context of a
statistically adequateMθ(z).

(e) In cases where the overidentifying restrictions are rejected, the modeler needs to return
toMϕ(z) in order to respecify it substantively, to account for the statistical regularities
summarized by the statistically adequateMθ(z). The misspecification/respecification
scenarios proposed by (Del Negro et al. 2007) and (Del Negro and Schorfeide 2009)
enter the modeling at this stage, and not before.
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Appendix A. Miscellaneous Results

Appendix A.1. Derivation of Reduced Form Structural Model

The system in (5) can be decomposed into two subsystems by defining a vector of 7
observables dt = (ĉt, ît, ŷt, l̂t, π̂t, ŵt, r̂t) and a vector of remaining 33 variables Yt as follows:

dt = DY t−1 + Edt−1+Fεt, Yt = GY t−1 + Hdt−1 + Kεt, (A1)

D, E, G, H are formed by the partitioning of A1 and F, K by the partitioning of A2 :

Π(40×40) =

[
E(7×7) D

H G33×33

]
Assuming that D−1 exists, elimination of Yt from (A1) yields:

dt =
[

DGD−1 + E
]
dt−1 + D(H−GD−1E)dt−2 + B(DBF + K)εt−1+Fεt. (A2)

Note that when the inverse does not exist, the generalized inverse (Rao and Mitra
1972) is used.

By relaxing all the structural restrictions imposed in (9), the statistical model in the
form of Normal VAR(2) in Table 2 is obtained. From a purely probabilistic construal the
VAR(2) model can now be viewed as a parameterization of a Normal, Markov(2), stationary
process {Zt, t∈N} assumed to underlie data Z0.

Appendix A.2. Multivariate Student’s t

For X vSt(µ, Σ; ν),where X : p× 1, the joint density function is:

f (x;ϕ) = (νπ)−
p
2

Γ( p+ν
2 )

Γ( ν
2 )

(det Σ)−
1
2 {1 + 1

ν (x− µ)′Σ−1(x− µ)}−(
p+ν

2 ),

where ϕ = (µ, Σ) E(X) = µ, Var(X)= ν
ν−2 Σ.

Student’s t VAR (St-VAR) Model

Let {Zt, t = 1, 2, . . . } be a vector Student’s t with ν df, Markov(p) and stationary
process. The joint distribution of Xt:=(Zt, Zt−1, . . . , Zt−p) is denoted by:

Xt ∼ St(µ, Σ; ν)

Xt:=


Zt

Zt−1
Zt−2
. . .

Zt−p

 ∼ St




µz
µz
µz
..
µz

,


Σ11 Σ12 Σ13 . . . Σ1p+1
Σ>12 Σ11 Σ12 . . . Σ1p
Σ>13 Σ>12 Σ11 . . . Σ1p−1
. . . . . . . . . . . . . . .

Σ>1p+1 Σ>1p Σ>1p−1 . . . Σ11

; ν


where Zt: (k × 1), Σ ij: (k × k), µz: (k × 1), µ: (p × 1), Σ: (p × p), p = (p + 1)k-
number of variables in Xt, k-number of variables in Zt, p-number of lags.

Joint, Conditional and Marginal Distributions

Let us partitione the vectors Xt and µ, and the matrix Σ as follows:

Xt=

[
Zt(k× 1)

Z0
t−1(pk× 1)

]
, µ=

[
µz(k× 1)

µpk(pk× 1)

]
, Σ =

[
Σ11(k× k) Σ12(k× pk)

Σ>12(pk× k) Q(pk× pk)

]
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where, µpk(pk× 1) is a vector of pk µz’s. The relevant distributions for all t∈N are:

D(Zt, Z0
t−1; θ)=D(Zt|Z0

t−1; θ1)·D(Z0
t−1; θ2) ∼ St(µ, Σ; ν)

D(Zt|Z0
t−1; θ1)∼St(a0 + A>Z0

t−1, Ωq(Z0
t−1); ν + pk) D(Z0

t−1; θ2)∼St(µpk, Q; ν)

q(Z0
t−1)=

[
1+ 1

ν (Z0
t−1−µpk)

>Q−1(Z0
t−1−µpk)

]
A> = Σ12Q−1

a0 = µz−A>µpk, Ω = Σ11−Σ12Q−1Σ>12

Z0
t−1:=(Zt−1, . . . , Zt−p), θ1={a0, A, Ω, Q, µ}, θ2={µ, Q}. The lack of variation freeness

(Spanos 1994) calls for defining the likelihood function in terms of the joint distribution,
but reparameterized in terms of the conditional and marginal distribution parameters θ1
and θ2, respectively.

This can be easily extended to a heterogeneous St-VAR model where the mean is
assumed to be: µz(t) = µ0 + µ1t + µ2t2. This makes the autoregressive function a quadratic
function of t: a0 = µz(t)−AT

1 µz(t−1)−AT
2 µz(t−2)−AT

3 µz(t−3) = δ0 + δ1t + δ2t2. One
important aspect of this model is that although heterogeneity is assumed only for the
mean of the joint distribution, both the mean and the variance-covariance matrix of the
conditional distribution change with t.

Appendix A.3. Software

An R package is available for estimating the St-VAR model using a maximum like-
lihood procedure where the practitioner can choose the number of variables, the trend
polynomial, the highest lag length and the degrees of freedom. The function in R is:

StVAR(Data, Trend, lag, v, maxiter, meth , hes, init)

where Data refers to the data matrix with observations in rows, lag refers to the maximum
number of lags, v refers the degrees of freedom, maxiter refers to the number of iterations
to be performed by the optimization algorithm, meth refers to the optimization method used
by the optim function in R, hes if “TRUE” calls the hessian matrix to evaluate the standard
errors and the p-values of the estimators, init refers to the initial values, Trend denotes a
matrix with columns representing deterministic variables like trends and dummies.

The function StVAR(.) returns the following inference results:
The estimated coefficients of the autoregressive and autoskedastic functions with

standard errors and p-values, the conditional variance covariance matrix, the fitted values,
the residuals, and the estimated likelihood value.
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