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This document contains proofs of all results presented in the paper ”TSLS and LIML estimators in Panels
with Unobserved Shocks”. The proofs are preceded by short review of stable convergence, conditional strong law
of large numbers and conditional central limit theorem.

1 Appendix A: Stable convergence, conditional strong law of large
numbers and conditional central limit theorem

This section briefly reviews concepts and results which are used in the main part of the paper but are not easily
available in the literature. These include the idea of stable convergence and conditional versions of the strong
law of large numbers and the central limit theorem.

The notion of stable convergence of a sequence of random variables was introduced by Rényi (1963): the
sequence of random variables ξi, i = 1, 2, ... defined on a probability space (Ω,A, P ) is stable if for any event B ∈ A
with P (B) > 0 the conditional distribution of ξi given B tends to a limiting distribution, limi→∞ P (ξi < x|B) =
FB (x) for every x which is a continuity point of the distribution function FB (x), written as ξi → X (stably)
(Rényi (1963), p. 294). Stable convergence implies convergence in distribution, and it has been shown that many
central limit theorems imply stable convergence (e.g., Aldous and Eagleson (1978) and Hall and Heyde (1980)).

In the panel data model considered in the paper, all random variables are defined on the space (Ω,A, P ) but
the conditioning sets we consider are in the sigma-algebra generated by the factors, F ⊆ A. Thus, we condition
on the events in F ⊆ A. The notion of stable convergence restricted to these sets is denoted using the terminology
of Daley and Vere-Jones (1988) as F-stability (see also Kuersteiner and Prucha (2013)).

The basis of conditional laws of large numbers and conditional central limit theorems is the notion of condi-
tional independence (e.g. Chow and Teicher (1997)). Let C be a σ-algebra of events and {Cn : n > 1} a sequence
of classes of events. The sequence {Cn : n > 1} is said to be conditionally independent given F if for all choices
of Cm ∈ Ckm , where ki 6= kj for i 6= j, m = 1, 2, ..., n, and n = 2, 3, ...,

P (C1 ∩ C2 ∩ .. ∩ Cn|F) =

n∏
i=1

P (Ci|F), a.s..

A random sequence {Xn : n > 1} is said to be conditionally independent given F or, briefly, F-independent, if
the sequence of classes Cn = σ (Xn), n > 1 is conditionally independent given F . It should be noted that when
F = {∅, Ω} conditional independence reduces to ordinary stochastic independence of random variables.

Conditions under which conditional independence implies unconditional independence are fully discussed by
Phillips (1988). Recent discussions are are given by Majerek et al. (2005), Rao (2009) and Roussas (2008).

The following results are conditional versions of the classical strong laws of large numbers and central limit
theorems. Their proofs are very close to those of the unconditional theorems and are reported in detail in the
supplementary file (they can also be found in the working paper version of this article - see Forchini et al. (2015)).
The conditional central limit theorem can also be seen as a special case of Theorem 3 of Eagleson (1975).

Theorem A.1. Let {Zi : 1 ≤ i ≤ n} be a sequence of F-independent random variables such that

E
[
|Zi|1+δ|F

]
< ∆ for some δ > 0, and ∆ being F-measurable with ∆ < ∞ a.s. Then conditional on F ,

1
n

n∑
i=1

(Zi − E [Zi|F ])→ 0 a.s.

Theorems A.1 is the conditional version of Corollary 3.9 of White (2001). It is slightly weaker than the
conditional strong laws of large numbers by Majerek et al. (2005), Rao (2009).
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Theorem A.2. Let {Zi : 1 ≤ i ≤ n} be a sequence of F-independent random variables with conditional means

E [Zi|F ], conditional variances σ2
i = E

[
(Zi − E [Zi|F ])

2|F
]
, and E

[
|Zi|2+δ|F

]
< ∆ a.s. for i = 1, 2, . . .

and ∆ arbitrary F-measurable, where ∆ < ∞ a.s. and some δ > 0. If there is η F-measurable such

that σ̄2
n = 1

n

n∑
i=1

σ2
i > η > 0 a.s., then conditional on F , 1

σ̄n
√
n

n∑
i=1

(Zi − E [Zi|F ])→DN(0, 1) a.s.. Moreover,

1
σ̄n
√
n

n∑
i=1

(Zi − E (Zi|F))→DN(0, 1) (F-stably).

Theorem A.2 is the conditional version of the Theorem 5.10 of White (2001). It is slightly weaker versions of
the results of Prakasa Rao (2009), Grzenda and Zieba (2008), Yuan, Wei and Lei (2014).

2 Appendix B: Proofs of the results in Sections 3 and 4

Lemma B.1. If Assumption 1.i to 1.vi hold, then the following results hold conditional on F as N →∞:

1. 1
N

N∑
i=1

wi
′wi →W (FT ) a.s.;

2. 1
N

N∑
i=1

xi
′xi → X (FT ) a.s., where

X (FT ) = V (FT ) + lim
N→∞

1

N

N∑
i=1

E
[
Γi
′FT
′FTΓi|F

]
+ v(FT )′FTΓ (FT ) + Γ (FT )

′
FT
′ v(FT );

3. 1
N

N∑
i=1

wi
′xi →WX (FT ) = w(FT )FTΓ (FT ) + lim

N→∞
1
N

N∑
i=1

E [wi
′vi|F ] a.s.;

4. 1
N

N∑
i=1

wi
′ei → w(FT )′FT γ (FT ) a.s.;

5. 1
N

N∑
i=1

xi
′ei → Γ (FT )

′
FT
′FT γ (FT ) + v(FT )′FT γ (FT ) a.s.;

6. 1
N

N∑
i=1

ei
′ei → lim

N→∞
1
N

N∑
i=1

E
[
γi
′FT
′FT γi|F

]
+ Σε (FT ) a.s.;

7. 1
N

N∑
i=1

(wi − w̄)
′
(wi − w̄)→W ∗ (FT ) a.s. where W ∗ (FT ) is defined in (18);

8. 1
N

N∑
i=1

(xi − x̄)
′
(xi − x̄)→ X∗ (FT ) a.s., where X∗ (FT ) is defined in (19);

9. 1
N

N∑
i=1

(wi − w̄)
′
(xi − x̄)→WX∗ (FT ) a.s. ,where WX∗ (FT ) is defined in (20);

10. 1
N

N∑
i=1

(wi − w̄)
′
(ei − ē)→ 0 a.s.;

11. 1
N

N∑
i=1

(xi − x̄)
′
(ei − ē)→ 0 a.s.;

12. 1
N

N∑
i=1

(ei − ē)′ (ei − ē)→ lim
N→∞

1
N

N∑
i=1

E
[
γi
′FT
′FT γi|F

]
− γ (FT )

′
FT
′FT γ (FT ) + Σε (FT ) a.s.

The proof of Lemma B.1 is fairly standard so for the sake of simplicity is not reported here. It is available in
the supplementary file and in the working paper version of this article.

Proof of Lemma 1.
To prove the first part of the lemma, notice that

Π̂ =

(
N∑
i=1

(zi − z̄)′ (zi − z̄)

)−1( N∑
i=1

(zi − z̄)′ (yi − ȳ)

)
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= Π +

(
S′

1

N

N∑
i=1

(
(wi − w̄)

′
(wi − w̄) (wi − w̄)

′
(xi − x̄)

(xi − x̄)
′
(wi − w̄) (xi − x̄)

′
(xi − x̄)

)
S

)−1

S′

(
1

N

N∑
i=1

(
(wi − w̄)

′
(ei − ē)

(xi − x̄)
′
(ei − ē)

))
.

Thus Π̂→ Π a.s. from 7-11 of Lemma A.1, where

1

N

N∑
i=1

(
(wi − w̄)

′
(wi − w̄) (wi − w̄)

′
(xi − x̄)

(xi − x̄)
′
(wi − w̄) (xi − x̄)

′
(xi − x̄)

)
→ Q∗ (FT ) =

(
W ∗ (FT ) WX∗ (FT )

WX∗ (FT )
′

X∗ (FT )

)
a.s.

conditional on F .
To prove the second part let

√
Nvec

(
Π̂−Π

)
= vec

(S′ 1

N

N∑
i=1

(
(wi − w̄)

′
(wi − w̄) (wi − w̄)

′
(xi − x̄)

(xi − x̄)
′
(wi − w̄) (xi − x̄)

′
(xi − x̄)

)
S

)−1

S′
1√
N

N∑
i=1

(
(wi − w̄)

′
(ei − ē)

(xi − x̄)
′
(ei − ē)

)
=

Ip+1 ⊗

(
S′

1

N

N∑
i=1

(
(wi − w̄)

′
(wi − w̄) (wi − w̄)

′
(xi − x̄)

(xi − x̄)
′
(wi − w̄) (xi − x̄)

′
(xi − x̄)

)
S

)−1

S′

×
1√
N

N∑
i=1

vec

(
(wi − w̄)

′
(ei − ē)

(xi − x̄)
′
(ei − ē)

)
.

The term

1√
N

N∑
i=1

vec

(
(wi − w̄)

′
(ei − ē)

(xi − x̄)
′
(ei − ē)

)
can be written as

1√
N

N∑
i=1

vec


 wi

′ − 1
N

N∑
j=1

E [wj |F ]
′

xi
′ − 1

N

N∑
j=1

E [vj |F ]
′ − Γ (FT )

′
FT
′

 (ei − FT γ (FT ))



−vec


 w̄′ − 1

N

N∑
j=1

E [wj |F ]
′

x̄′ − 1
N

N∑
j=1

E [vj |F ]
′ − Γ (FT )

′
FT
′

√N (ē− FT γ (FT ))

.

We will now show that the last term can be neglected. Conditional on F , w̄ − 1
N

N∑
i=1

E [wi|F ] → 0 a.s. and

x̄− 1
N

N∑
i=1

E [vi|F ]−FTΓ (FT )→ 0 a.s. So we just need to prove that
√
N
(
ē− FT ′γ (FT )

)
converges to a random

matrix conditional on F . Let κi = vec (ei − FT γ (FT )) and ζ be an arbitrary T (p+ 1)× 1 vector. We focus on

1√
N

N∑
i=1

ζ ′κi and will now verify that the Liapounov’s conditions given in Theorem A.2 holds a.s. conditional on

F . Notice that

E [ζ ′κi|F ] = 0 a.s. and E
[
(ζ ′κi)

2|F
]

= ζ ′E
[
vec (ei − FT γ (FT )) vec (ei − FT γ (FT ))

′ |F
]
ζ a.s.

Moreover,

E
[
|ζ ′κi|

2+δ|F
]
6 |ζ|2

2+δ
E
[
|vec (ei − FT γ (FT ))|2

2+δ|F
]

= |ζ|2
2+δ

E
[
|ei − FT γ (FT )|2

2+δ|F
]

6 |ζ|2
2+δ

E
[
(|εi|2 + |FT (γi − γ (FT ))|2)

2+δ|F
]

6 |ζ|2
2+δ

21+δ
(
E
[
|εi|2

2+δ|F
]

+ |FT |2
2+δ

E
[
|γi − γ (FT )|2

2+δ|F
])
,
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where the terms in the last expectations are bounded uniformly a.s. Notice that 1
N

N∑
i=1

E
[
|ζ ′κi|2|F

]
is a.s.

convergent because each term can be uniformly bounded from above a.s. Therefore, using the Cramer-Wold
device and Theorem A.2, conditional on F ,

√
Nvec

(
ē− FT ′γ (FT )

)
converges to a random vector and

1√
N

N∑
i=1

vec

(
(wi − w̄)

′
(ei − ē)

(xi − x̄)
′
(ei − ē)

)

=
1√
N

N∑
i=1

vec


 wi

′ − 1
N

N∑
j=1

E [wj |F ]
′

xi
′ − 1

N

N∑
j=1

E [vj |F ]
′ − Γ (FT )

′
FT
′

 (ei − FT γ (FT ))

+ op (1) .

=
1√
N

N∑
i=1

vec


 wi

′ − 1
N

N∑
j=1

E [wj |F ]
′

xi
′ − 1

N

N∑
j=1

E [vj |F ]
′ − Γ (FT )

′
FT
′

 (ei − FT γ (FT ))

+ op (1) .

Let ζ be an arbitrary (k1 + k2) (p+ 1)× 1 vector and

$i = ζ ′vec


 wi

′ − 1
N

N∑
j=1

E [wj |F ]
′

xi
′ − 1

N

N∑
j=1

E [vj |F ]
′ − Γ (FT )

′
FT
′

 (ei − FT γ (FT ))

 .
We can write

1√
N

N∑
i=1

ζ ′vec

(
(wi − w̄)

′
(ei − ē)

(xi − x̄)
′
(ei − ē)

)
=

1√
N

N∑
i=1

$i + op (1) .

Notice that E [$i|F ] = 0 and that E
[
|$i|2+δ|F

]
< ∆ a.s. is bounded uniformly a.s., since

E
[
|$i|2+δ|F

]
6 |ζ|2

2+δ
E


∣∣∣∣∣∣∣∣
 wi

′ − 1
N

N∑
j=1

E [wj |F ]
′

xi
′ − 1

N

N∑
j=1

E [vj
′|F ]− Γ (FT )

′
FT
′

 (ei − FT γ (FT ))

∣∣∣∣∣∣∣∣
2

2+δ

|F


≤ |ζ|2

2+δ
E


∣∣∣∣∣∣wi − 1

N

N∑
j=1

E [wj |F ]

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣xi − 1

N

N∑
j=1

E [vj |F ]− FTΓ (FT )

∣∣∣∣∣∣
2

2+δ

|ei − FT γ (FT )|2
2+δ|F


≤ |ζ|2

2+δ
O (1)E

[
|ei − FT γ (FT )|2

2+δ|F
]

·

E [|wi|22+δ|F
]

+

∣∣∣∣∣ 1

N

N∑
i=1

E [wi|F ]

∣∣∣∣∣
2

2+δ

+ E
[
|xi|2

2+δ|F
]

+ |FTΓ (FT )|2
2+δ

+

∣∣∣∣∣ 1

N

N∑
i=1

E [vi|F ]

∣∣∣∣∣
2

2+δ
 .

Since each term above is bounded uniformly, we can conclude that conditional on F(
1

N

N∑
i=1

E
[
$i

2|F
])−1/2

1√
N

N∑
i=1

$i→DN (0, 1)

so that by using Cramer-Wold device, conditional on F ,

1√
N

N∑
i=1

vec


 wi

′ − 1
N

N∑
j=1

E [wj |F ]
′

xi
′ − 1

N

N∑
j=1

E [vj |F ]
′ − Γ (FT )

′
FT
′

 (ei − FT γ (FT ))

→D(Θ (FT ))
1
2N

(
0, I(h1+h2+h3+h4)(p+1)

)
,

where Θ (FT ) is defined as (21).
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Proof of Lemma 2.
Write

Π̂ = Π +

(
S′

1

N

N∑
i=1

(
(wi − w̄)

′
(wi − w̄) (wi − w̄)

′
(xi − x̄)

(xi − x̄)
′
(wi − w̄) (xi − x̄)

′
(xi − x̄)

)
S

)−1

S′

(
1

N

N∑
i=1

(
(wi − w̄)

′
(ei − ē)

(xi − x̄)
′
(ei − ē)

))
.

We have shown that, conditional on F , the matrix in the inverse converges a.s. to S′Q∗ (FT )S and that

1
N

N∑
i=1

(wi − w̄)
′
(ei − ē)→ 0 a.s. The remaining term is 1

N

N∑
i=1

(xi − x̄)
′
(ei − ē) = 1

N

N∑
i=1

xi
′ei − x̄′ē. The re-

sult follows from the fact that ē→ FT γ (FT ) a.s., x̄−FTΓ (FT )− lim
N→∞

1
N

N∑
i=1

E [vi|F ]→ 0 a.s. and 1
N

N∑
i=1

xi
′ei−

1
N

N∑
i=1

E [vi
′|F ]FT γ (FT )− 1

N

N∑
i=1

E
[
Γi
′FT
′FT γi|F

]
→ 0 a.s.

Proof of Theorem 1.
For the panel TSLS estimator of the structural parameters, we have

β̂TSLS − β0 =
(

Π̂′22ĤΠ̂22

)−1

Π̂′22Ĥ
(
π̂12 − Π̂22β0

)
.

It follows from Lemma 1 that conditional on F , Π̂22 → Π22 a.s. and π̂12 → π12 a.s. Moreover, in the proof of
Lemma 1, we have shown that

1

N

N∑
i=1

(z2,i − z̄2)
′
(z2,i − z̄2)→ S2

′Q∗ (FT )S2 a.s.,

1

N

N∑
i=1

(z1,i − z̄1)
′
(z1,i − z̄1)→ S1

′Q∗ (FT )S1 a.s.,

1

N

N∑
i=1

(z2,i − z̄2)
′
(z1,i − z̄1)→ S2

′Q∗ (FT )S1 a.s.

Thus, Ĥ → H (FT ) a.s. follows immediately.
Notice that the convergence is uniform since it does not involve any of the parameters of the model. The first

result follows noticing that under Assumption 2, π12 = Π22β0.
Now, consider the following term conditional on F ,

√
N
(
π̂12 − Π̂22β0

)
=
√
N
(
π̂12 − π12, Π̂22 −Π22

)( 1
−β0

)
=

√
N (0, Ik2)

(
Π̂−Π

)(
1
−β0

)
=

((
1,−β0

′)⊗ (0, Ik2)
)√

Nvec
(

Π̂−Π
)

→D
((

1,−β0
′)⊗ (0, Ik2)

) (
Ip+1 ⊗ (S′Q∗ (FT )S)

−1
S′
)

(Θ (FT ))
1
2N

(
0, I(h1+h2+h3+h4)(p+1)

)
=

((
1,−β0

′)⊗ ((0, Ik2) (S′Q∗ (FT )S)
−1
)
S′
)

(Θ (FT ))
1
2N

(
0, I(h1+h2+h3+h4)(p+1)

)
.

Thus, conditional on F ,
√
N
(
β̂TSLS − β0

)
→D A (FT )N

(
0, I(h1+h2+h3+h4)(p+1)

)
follows immediately. This

completes the proof of the first part of the theorem.
The proof of the second part of the theorem is established in three steps using the Argmax Theorem (e.g.

Theorem 3.2.2 of van der Vaart and Wellner (1996, p. 286). and Theorem 1 of Stock and Wright (2000)). First
we establish the consistency of the LIML estimator for β0. Then, we establish the rate of convergence for the
LIML estimator, and finally we show that a rescaled version of the criterion function converges in distribution to
a limit process in the space of all uniformly bounded real functions on a compact set for any compact set B.

We have shown that Π̂→ Π a.s. and Ĥ → H a.s. uniformly, so that

(
π̂12, Π̂22

)′
Ĥ
(
π̂12, Π̂22

)
→ (π12,Π22)

′
H (π12,Π22) a.s.
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uniformly. Moreover, Ω̂→ Ω (FT ) a.s. by noting results 7-12 of Lemma B.1. Notice also that the convergence is
uniform in all the parameters. Thus,

LN (β) =
(1,−β′)

(
π̂12, Π̂22

)′
Ĥ
(
π̂12, Π̂22

)
(1,−β′)′

(1,−β′) Ω̂ (1,−β′)′

→ (1,−β′) (π12,Π22)
′
H (π12,Π22) (1,−β′)′

(1,−β′) Ω (FT ) (1,−β′)′
= L0 (β) a.s.

uniformly. Notice that L0 (β) is uniquely minimized at β0 and it is continuous. Thus, for β in a compact set,

Theorem 2.1 of Newey and McFadden (1994) implies that β̂LIML → β0 a.s.
Note that the LIML estimator minimizes

LN (b) =
(1,−b′)

(
π̂12, Π̂22

)′
Ĥ1/2MĤ1/2Π̂22

Ĥ1/2
(
π̂12, Π̂22

)
(1,−b′)′

(1,−b′) Ω̂ (1,−b′)′

+
(1,−b′)

(
π̂12, Π̂22

)′
Ĥ1/2PĤ1/2Π̂22

Ĥ1/2
(
π̂12, Π̂22

)
(1,−b′)′

(1,−b′) Ω̂ (1,−b′)′

where PZ = Z(Z ′Z)
−1
Z ′ and MZ = Im − PZ are idempotent and projection matrices generated by any m × l

full column rank matrix Z. Since

(1,−b′)
(
π̂12, Π̂22

)′
Ĥ1/2PĤ1/2Π̂22

Ĥ1/2
(
π̂12, Π̂22

)
(1,−b′)′

= (1,−b′)
(
β̂′TSLS
Ip

)
Π̂′22ĤΠ̂22

(
β̂TSLS , Ip

)
(1,−b′)′

=
(
β̂TSLS − b

)′
Π̂′22ĤΠ̂22

(
β̂TSLS − b

)
,

we can write

LN (b) =
π̂′12Ĥ

1/2MĤ1/2Π̂22
Ĥ1/2π̂12 +

(
β̂TSLS − b

)′
Π̂′22ĤΠ̂22

(
β̂TSLS − b

)
(1,−b′) Ω̂ (1,−b′)′

(B.1)

Since the LIML estimator minimizes (B.1), we must have

0 > N
(
LN

(
β̂LIML

)
− LN (β0)

)(
1,−β̂′LIML

)
Ω̂
(

1,−β̂′LIML

)′
= N

(
β̂LIML − β0

)′
Π̂′22ĤΠ̂22

(
β̂LIML − β0

)
−2N

(
β̂TSLS − β0

)′
Π̂′22ĤΠ̂22

(
β̂LIML − β0

)
+N

(
β̂TSLS − β0

)′
Π̂′22ĤΠ̂22

(
β̂TSLS − β0

)1−

(
1,−β̂′LIML

)
Ω̂
(

1,−β̂′LIML

)′
(
1,−β0

′) Ω̂
(
1,−β0

′)′


+Nπ̂′12Ĥ
1/2MĤ1/2Π̂22

Ĥ1/2π̂12

1−

(
1,−β̂′LIML

)
Ω̂
(

1,−β̂′LIML

)′
(
1,−β0

′) Ω̂
(
1,−β0

′)′
 .

Since β̂LIML → β0 a.s., it also converges in probability and we have

1−

(
1,−β̂′LIML

)
Ω̂
(

1,−β̂′LIML

)′
(
1,−β0

′) Ω̂
(
1,−β0

′)′ = op (1) ,

6



N
(
β̂TSLS − β0

)′
Π̂′22ĤΠ̂22

(
β̂TSLS − β0

)
= Op (1) ,

Nπ̂′12Ĥ
1/2MĤ1/2Π̂22

Ĥ1/2π̂12 = Op (1) .

Thus,

N
(
β̂LIML − β0

)′
Π̂′22ĤΠ̂22

(
β̂LIML − β0

)
− 2N

(
β̂TSLS − β0

)′
Π̂′22ĤΠ̂22

(
β̂LIML − β0

)
+ op (1) 6 0.

Let λm

(
Π̂′22ĤΠ̂22

)
be the smallest eigenvalue of Π̂′22ĤΠ̂22, and notice that

N
(
β̂LIML − β0

)′
Π̂′22ĤΠ̂22

(
β̂LIML − β0

)
> λm

(
Π̂′22ĤΠ̂22

)∥∥∥√N (β̂LIML − β0

)∥∥∥2

2

and

∣∣∣∣N (β̂LIML − β0

)′
Π̂′22ĤΠ̂22

(
β̂TSLS − β0

)∣∣∣∣
6

∥∥∥√N (β̂LIML − β0

)∥∥∥
2

∥∥∥Π̂′22ĤΠ̂22

∥∥∥
2

∥∥∥√N (β̂TSLS − β0

)∥∥∥
2
.

Using these two inequalities we obtain

0 > N
(
β̂LIML − β0

)′
Π̂′22ĤΠ̂22

(
β̂LIML − β0

)
−2N

(
β̂TSLS − β0

)′
Π̂′22ĤΠ̂22

(
β̂LIML − β0

)
+ op (1)

> λm

(
Π̂′22ĤΠ̂22

)∥∥∥√N (β̂LIML − β0

)∥∥∥2

2

−2
∥∥∥√N (β̂LIML − β0

)∥∥∥
2

∥∥∥Π̂′22ĤΠ̂22

∥∥∥
2

∥∥∥√N (β̂TSLS − β0

)∥∥∥
2

+ op (1) .

This can be rewritten to give

∥∥∥√N (β̂LIML − β0

)∥∥∥
2
6 2 ·

∥∥∥Π̂′22ĤΠ̂22

∥∥∥
2

λm

(
Π̂′22ĤΠ̂22

)∥∥∥√N (β̂TSLS − β0

)∥∥∥
2

+ op (1)

Notice that as N tends to infinity
‖Π̂′

22ĤΠ̂22‖
2

λm(Π̂′
22ĤΠ̂22)

→ ‖Π22
′HΠ22‖

2

λm(Π22
′HΠ22) which is finite and well defined and∥∥∥√N (β̂TSLS − β0

)∥∥∥
2

= Op (1) so that
∥∥∥√N (β̂LIML − β0

)∥∥∥
2

= Op (1). Uniform tightness of

bN =
√
N
(
β̂LIML − β0

)
follows from the fact that bN =

√
N
(
β̂LIML − β0

)
is a weakly convergent sequence.

We regard N × LN
(
β0 +N−1/2b

)
as a function of b on the set B ⊂ Rp, where B is compact. Multiplying N

on both sides of (B.1), we obtain that

N × LN
(
β0 +N−1/2bN

)
=

Nπ̂′12Ĥ
1/2MĤH̃1/2Π̂22

Ĥ1/2π̂12 +
(
bN −N1/2

(
β̂TSLS − β0

))′
Π̂′22ĤΠ̂22

(
bN −N1/2

(
β̂TSLS − β0

))
(
1,−β0

′ −N−1/2bN
′) Ω̂

(
1,−β0

′ −N−1/2bN
′)′

where
√
N
(
β̂TSLS − β0

)
→DA (FT )N

(
0, I(k1+k2)(p+1)

)
by Theorem 1.

Let Ĉ be a matrix such that ĈĈ ′ = MĤ1/2Π̂22
and Ĉ ′Ĉ = Ik2 . By construction, Ĉ ′Ĥ1/2Π̂22 = 0, so

Ĉ ′Ĥ1/2π̂12 = Ĉ ′Ĥ1/2
(
π̂12 − Π̂22β0

)
.

Then
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Nπ̂′12Ĥ
1/2MĤH̃1/2Π̂22

Ĥ1/2π̂12 =
(
Ĉ ′Ĥ1/2

√
N
(
π̂12 − Π̂22β0

))′
Ĉ ′Ĥ1/2

√
N
(
π̂12 − Π̂22β0

)
of which the probability limit (denoted by W ) is uniformly bounded in b ∈ B by noting , and the fact that
Ĉ → Cin which CC ′ = MH1/2Π22

and C ′C = Ik2 .
Then we obtain that

N × LN
(
β0 +N−1/2bN

)
→DL(b) =

W + (b− b1)
′
Π22

′H (FT ) Π22 (b− b1)(
1,−β0

′)Ω
(
1,−β0

′)′ ,

where b1 ≡ A (FT )N
(
0, I(h1+h2+h3+h4)(p+1)

)
. Notice that L(b) is continuous and is minimised at

b = A (FT )N
(
0, I(h1+h2+h3+h4)(p+1)

)
. The proof is then complete. �

Proof of Theorem 2.
The first part follows from the fact that conditional on F , Ĥ → H (FT ) a.s., and

(
π̂11 Π̂21

π̂12 Π̂22

)
→
(
π11 Π21

π12 Π22

)
+

(
∆11 (FT ) ∆21 (FT )
∆12 (FT ) ∆22 (FT )

)
a.s.

To prove the second part notice that the LIML estimator minimizes

(1,−β′)
(
π̂12, Π̂22

)′
Ĥ
(
π̂12, Π̂22

)
(1,−β′)′

(1,−β′) Ω̂ (1,−β′)′
(B.2)

as a function of β on the compact set B ⊂ Rp. Notice that (B.2) is continuous for every β in this compact set
B so that the continuity is also uniform.

By the Lemma B.1 and the proof of Lemma 2, we know (B.2) converges a.s. and uniformly to

(1,−β′) (π12 + ∆12 (FT ) ,Π22 + ∆22 (FT ))
′
H (FT ) (π12 + ∆12 (FT ) ,Π22 + ∆22 (FT )) (1,−β′)′

(1,−β′) Ω (FT ) (1,−β′)′
.

(B.3)

(B.3) has a unique minimizer. Thus, the LIML estimator converges to the minimum of (B.3).
Notice also that (B.3) is equal to zero when H (FT ) (π12 + ∆12 (FT ) ,Π22 + ∆22 (FT )) (1,−β′) = 0. Since

π12 = Π22β0, one has

H (FT ) (Π22 + ∆22 (FT ))β = H (FT ) (Π22β0 + ∆12 (FT )) .

Solving for β completes the proof. �

Proof of Theorem 3.
Conditional almost sure convergence can be easily proved, So, using Lemma 1, it follows that α̂0 = π̂11 −

Π̂21β̂ → π11 −Π21β = α0 a.s. conditional on F .
Since the panel LIML and TSLS estimators of the vector β0 are asymptotically equivalent we prove this result

for the TSLS estimator only. Notice that

α̂TSLS =
((
π̂11, Π̂21

)
− (π11,Π21)

)( 1

−β̂TSLS

)
+ π11 −Π21β̂TSLS

=
((
π̂11, Π̂21

)
− (π11,Π21)

)( 1

−β̂TSLS

)
+ π11 −Π21

(
β̂TSLS − β0

)
−Π21β0

= (Ik1 , 0)
(

Π̂−Π
)( 1

−β̂TSLS

)
−Π21

(
β̂TSLS − β0

)
+ α0

= (Ik1 , 0)
(

Π̂−Π
)( 1

−β̂TSLS

)
−Π21

(
Π̂′22ĤΠ̂22

)−1

Π̂′22Ĥ
(
π̂12 − Π̂22β0

)
+ α0
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=

(
Ik1 , 0

(k1×k2)

)(
Π̂−Π

)( 1

−β̂TSLS

)
−Π21

(
Π̂′22ĤΠ̂22

)−1

Π̂′22Ĥ (0, Ik2)
(

Π̂−Π
)( 1

−β0

)
+ α0.

Thus

√
N (α̂0 − α0) = (Ik1 , 0)

√
N
(

Π̂−Π
)( 1

−β̂TSLS

)
−Π21

(
Π̂′22ĤΠ̂22

)−1

Π̂′22Ĥ (0, Ik2)
√
N
(

Π̂−Π
)( 1

−β0

)

= (Ik1 , 0)
√
N
(

Π̂−Π
)( 0

β0 − β̂TSLS

)

+

(
(Ik1 , 0)−Π21

(
Π̂′22ĤΠ̂22

)−1

Π̂′22Ĥ (0, Ik2)

)√
N
(

Π̂−Π
)( 1
−β0

)
.

Notice that conditional on F , (Ik1 , 0)
√
N
(

Π̂−Π
)( 0

β0 − β̂TSLS

)
→ 0 a.s. and

(Ik1 , 0)−Π21

(
Π̂′22ĤΠ̂22

)−1

Π̂′22Ĥ (0, Ik2)

→ (Ik1 , 0)−Π21

(
Π22

′H (FT ) Π22

)−1
Π22

′H (FT ) (0, Ik2) a.s.

The asymptotic distribution follows from

(
(Ik1 , 0)−Π21

(
Π̂′22ĤΠ̂22

)−1

Π̂′22Ĥ (0, Ik2)

)√
N
(

Π̂−Π
)( 1

−β0

)

= vec

[(
(Ik1 , 0)−Π21

(
Π̂′22ĤΠ̂22

)−1

Π̂′22Ĥ (0, Ik2)

)√
N
(

Π̂−Π
)( 1

−β0

)]

=

((
1,−β0

′)⊗ ((Ik1 , 0)−Π21

(
Π̂′22ĤΠ̂22

)−1

Π̂′22Ĥ (0, Ik2)

))(√
Nvec

[
Π̂−Π

])
.

Theorem 3 follows easily. �

Proof of Theorem 4. In the proofs of Lemma 2 and Theorem 2, we have shown

α̂TSLS → π11 + ∆11 (FT )− (Π21 + ∆21 (FT )) (β0 + b (FT )) a.s.,

α̂LIML → π11 + ∆11 (FT )− (Π21 + ∆21 (FT )) (β0 + b (FT )) a.s.,

conditional on F . Thus, the results follow immediately. �

Proof of Lemma 3
For simplicity let γ = γ (FT ) and notice that

Θ̂ =
1

N

N∑
i=1

vec
[
(zi − z̄)′ (ei − FT γ)

]
vec

[
(zi − z̄)′ (ei − FT γ)

]′
− 1

N

N∑
i=1

vec
[
(zi − z̄)′ (ei − FT γ)

]
vec

[
(zi − z̄)′

((
π̂10, Π̂20

)
− (π10,Π20)− FT γ

)]′
− 1

N

N∑
i=1

vec
[
(zi − z̄)′ (ei − FT γ)

]
vec

[
(zi − z̄)′

(
zi

(
Π̂−Π

))]′
− 1

N

N∑
i=1

vec
[
(zi − z̄)′

((
π̂10, Π̂20

)
− (π10,Π20)− FT γ

)]
vec

[
(zi − z̄)′ (ei − FT γ)

]′
+

1

N

N∑
i=1

vec
[
(zi − z̄)′

((
π̂10, Π̂20

)
− (π10,Π20)− FT γ

)]
vec

[
(zi − z̄)′

((
π̂10, Π̂20

)
− (π10,Π20)− FT γ

)]′
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+
1

N

N∑
i=1

vec
[
(zi − z̄)′

((
π̂10, Π̂20

)
− (π10,Π20)− FT γ

)]
vec

[
(zi − z̄)′ zi

(
Π̂−Π

)]′
− 1

N

N∑
i=1

vec
[
(zi − z̄)′ zi

(
Π̂−Π

)]
vec

[
(zi − z̄)′ (ei − FT γ)

]′
+

1

N

N∑
i=1

vec
[
(zi − z̄)′ zi

(
Π̂−Π

)]
vec

[
(zi − z̄)′

((
π̂10, Π̂20

)
− (π10,Π20)− FT γ

)]′
+

1

N

N∑
i=1

vec
[
(zi − z̄)′ zi

(
Π̂−Π

)]
vec

[
(zi − z̄)′ zi

(
Π̂−Π

)]′
.

Apart from the first, all terms vanish because they involve quantities which go to zero a.s. conditional on F
given Assumpton 1.i-vi. We therefore focus on the first term.

Write

1

N

N∑
i=1

vec
[
(zi − z̄)′ (ei − FT γ)

]
vec

[
(zi − z̄)′ (ei − FT γ)

]′
as

1

N

N∑
i=1

vec

zi − 1

N

N∑
j=1

E [zj |F ]

′ (ei − FT γ)

vec
zi − 1

N

N∑
j=1

E [zj |F ]

′ (ei − FT γ)

′ (B.4)

− 1

N

N∑
i=1

vec

zi − 1

N

N∑
j=1

E [zj |F ]

′ (ei − FT γ)

vec
z̄ − 1

N

N∑
j=1

E [zj |F ]

′ (ei − FT γ)

′ (B.5)

− 1

N

N∑
i=1

vec

z̄ − 1

N

N∑
j=1

E [zj |F ]

′ (ei − FT γ)

vec
zi − 1

N

N∑
j=1

E [zj |F ]

′ (ei − FT γ)

′ (B.6)

+
1

N

N∑
i=1

vec

z̄ − 1

N

N∑
j=1

E [zj |F ]

′ (ei − FT γ)

vec
z̄ − 1

N

N∑
j=1

E [zj |F ]

′ (ei − FT γ)

′ (B.7)

The first term (B.4) converges a.s. to Θ (FT ) since each term involves squares of the components of ei −FT γ
and squares of the components of zi. The expectations of the first quantities are a.s. bounded by Assumption
1.i and 1.iv, while those of the second components are a.s. bounded by Assumption 1.ii, iii and v:

E


∥∥∥∥∥∥∥vec

zi − 1

N

N∑
j=1

E [zj |F ]

′ (ei − FT γ)

 vec
zi − 1

N

N∑
j=1

E [zj |F ]

′ (ei − FT γ)

′
∥∥∥∥∥∥∥

2

|F


= E


∥∥∥∥∥∥
zi − 1

N

N∑
j=1

E [zj |F ]

′ (ei − FT γ)

∥∥∥∥∥∥
2

2

|F


6 E


∥∥∥∥∥∥zi − 1

N

N∑
j=1

E [zj |F ]

∥∥∥∥∥∥
2

2

|F

E [‖ei − FT γ‖22 |F] Subadditivity and conditional independence

where the last quantities are bounded a.s. by Assumption 1.
The term (B.5) converges a.s. to zero. To see this, notice that

vec

z̄ − 1

N

N∑
j=1

E [zj |F ]

′ (ei − FT γ)

 =

Ip+1 ⊗

z̄ − 1

N

N∑
j=1

E [zj |F ]

 vec [ei − FT γ]

So that (B.5) can be written as 1

N

N∑
i=1

vec

zi − 1

N

N∑
j=1

E [zj |F ]

′ (ei − FT γ)

vec [ei − FT γ]
′

Ip+1 ⊗

z̄ − 1

N

N∑
j=1

E [zj |F ]

′ .
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The term z̄ − 1
N

N∑
j=1

E [zj |F ] → 0 a.s.. Moreover, each term in the sum has zero mean and each term involves

products of components of (ei − FT γ) (ei − FT γ)
′

and components of zi − 1
N

N∑
j=1

E [zj |F ]. The moments of these

products are a.s. bounded by Assumption 1.i, iv, ii, iii and v.:

E

∥∥∥∥∥∥vec
zi − 1

N

N∑
j=1

E [zj |F ]

′ (ei − FT γ)

 vec [ei − FT γ]
′

∥∥∥∥∥∥
2

|F


6 E

∥∥∥∥∥∥
zi − 1

N

N∑
j=1

E [zj |F ]

′ (ei − FT γ)

∥∥∥∥∥∥
2

‖ei − FT γ‖2|F

 Cauchy - Schwarz inequality

6 E

∥∥∥∥∥∥zi − 1

N

N∑
j=1

E [zj |F ]

∥∥∥∥∥∥
2

|F

E[‖ei − FT γ‖2|F ]
2

Subadditivity and conditional independence

The two expectations above are bounded uniformly a.s. by Assumption 1.
(B.6) is the transpose of (B.5).
(B.7) can be written asIp+1 ⊗

z̄ − 1

N

N∑
j=1

E [zj |F ]

( 1

N

N∑
i=1

vec [ei − FT γ] vec [ei − FT γ]
′

)Ip+1 ⊗

z̄ − 1

N

N∑
j=1

E [zj |F ]

′ .
Notice that z̄ − 1

N

N∑
j=1

E [zj |F ] → 0 a.s. and the term in the middle is a.s. bounded since it involves only terms

of (ei − FT γ) (ei − FT γ)
′

by Assumption 1.i and iv. Thus, (B.7) converges to zero a.s. conditional on F . �

Appendix C

This file provides the proofs of Theorem A.1, Theorem A.2 and Lemma B.1. The proofs of Theorems A.1 and
A.2 follow the classical proofs and are reported here just for the sake of completeness.

Proposition C.1. (Conditional generalized Kolmogorov inequality, Rao (2009, Theorem 4, p. 449)) Assume
that {Xk : 1 6 k 6 n} is a set of F-independent random variables with E [|Xk|r|F ] < ∞ for each k and some
r > 1 where E [·|F ] denotes the conditional expectation given the sub-σ-algebra F . For any F-measurable

random variable ε > 0 a.s., let Sk =
k∑

n=1
Xn be the partial sum and let event

D =

(
max

16k6n
|Sk − E [Sk|F ]| > ε

)
,

then we have

εrP (D|F) 6 E [|Sk − E (Sk|F)|r · ID|F ] 6 E [|Sk − E [Sk|F ]|r|F ] a.s.,

where ID = 1 when D holds and ID = 0 otherwise.

Proposition C.2. (Conditional Borel-Cantelli lemma, Rao (2009, Theorem 1, pp.444-445); Majerek et al. (2005,
Theorem 3.1, Lemmas 3.2 and 3.3, pp. 149-151)) Suppose that (Ω,A,P ) is a probability space and F is a sub-
σ-algebra of A. We have the following results:

1. Let {An, n > 1} be a sequence of F-independent events such that
∞∑
n=1

P (An) <∞. Then
∞∑
n=1

P (An|F) <∞
a.s..

2. Let {An, n > 1} be a sequence of F-independent events and A =

{
ω :

∞∑
n=1

E [IAn |F ] =∞
}

with P (A) < 1.

Then only finitely many events from the event sequence {An ∩A,n > 1} hold with probability one.
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3. Let {An, n > 1} be a sequence of F-independent events and let A =

{
ω :

∞∑
n=1

E [IAn |F ] =∞
}

. Then it

holds that P

(
lim sup
n→∞

An

)
= P (A).

Proposition C.3. (Kronecker’s lemma, Chow and Teicher (1997, Lemma 2, pp. 114-115)) If {an} and {bn} are

sequences of real numbers where 0 < bn ↑ ∞ and
∞∑
i=1

ai/bi converges, we have

(
n∑
i=1

ai

)
/bn → 0.

Proposition C.4. (Bound on Characteristic Function, Chow and Teicher (1997, Lemma 1, p. 295)) For any
t ∈ (−∞,∞) and arbitrary nonnegative integer n

eit −
n∑
j=0

(it)
k

k!
=

(it)
n+1

n!

∫ 1

0

eitu(1− u)
n
du = in+1

∫ t

0

dtn+1

∫ tn+1

0

dtn · · ·
∫ t2

0

eit1dt1.

Moreover, for each 0 6 δ 6 1, ∣∣∣∣∣∣eit −
n∑
j=0

(it)
k

k!

∣∣∣∣∣∣ 6 21−δ|t|n+δ

(1 + δ)(2 + δ) · · · (n+ δ)
.

Proposition C.5. (Conditional expectation of a product lemma, Chow and Teicher (1997, Corollary 5, p. 234))
Let Xj ∈ L1 be the space of all measurable function with finite mean and B∞ be the class of Borel subsets
of R∞ = R × R × · · · . If the random variables {Xn, n > 1} are conditionally independent given the σ-algebra
F of events, then there exists a regular conditional distribution Pω for X = (X1, X2, . . .) given F such that
for each ω ∈ Ω the coordinate random variable sequence {ζn, n > 1} of the probability space (R∞,B∞, Pω) are
independent. Moreover, if Xj ∈ L1 for every 1 6 j 6 n and E [X1X1 · · ·Xn|F ] exists, then when n > 2 it holds
that

E [X1X1 · · ·Xn|F ] =

n∏
i=1

E [Xi|F ] a.s..

Proposition C.6. (Jensen’s inequality for conditional expectations, Chow and Teicher (1997, Theorem 4, p.
217)) Let g ∈ R→ R be convex. Then for any Y such that g (Y ) is integrable,

E [g (Y ) |F ] > g (E [Y |F ]) a.s..

Theorem C.1. (Conditional Markov strong law of large numbers) Let {Zi : i > 1} be a sequence of F-independent
random variables with conditional means E [Zi|F ] for i = 1, 2, .... If for some scalar 0 < δ 6 1,
∞∑
i=1

1
i1+δ

E
[
|Zi − E [Zi|F ]|1+δ|F

]
<∞ a.s., then conditional on F , 1

n

n∑
i=1

(Zi − E [Zi|F ])→ 0 a.s..

Proof of Theorem C.1:
The proof of this result follows closely the proof of classical (unconditional) case given in Chung (1974, pp.

130-132). Let µi = E [Zi|F ]. First of all, we define for each i,

Yi =

{
Zi − µi |Zi − µi| 6 i,

0 |Zi − µi| > i.

Then,

∞∑
i=1

E
[
i−2Y 2

i |F
]

=

∞∑
i=1

E
[
i−2|Zi − µi|2 · 1 {|Zi − µi| 6 i} |F

]
a.s..

Notice that for any real number |y| 6 i and 0 < δ 6 1, y2/i2 6 y1+δ/i1+δ, so

∞∑
i=1

V ar
[
i−1Yi|F

]
6

∞∑
i=1

E
[
i−2Y 2

i |F
]
6
∞∑
i=1

E
[
i−1−δ|Zi − µi|1+δ · 1 {|Zi − µi| 6 i} |F

]
6

∞∑
i=1

E
[
i−1−δ|Zi − µi|1+δ|F

]
<∞ a.s..
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Moreover, {Yi} is also a F-independent random sequence by construction. Therefore, we can apply the
generalized Kolmogorov inequality. For any F-measurable m > 1

P

(
max
k6j6l

∣∣∣∣∣
j∑
i=k

(
i−1Yi − E

[
i−1Yi|F

])∣∣∣∣∣ 6 m−1|F

)
> 1−m2

l∑
i=k

V ar
[
i−1Yi|F

]
a.s..

Since
∞∑
i=1

V ar
[
i−1Yi|F

]
is convergent a.s., we must have

lim
k→∞

lim
l→∞

P

(
max
k6j6l

∣∣∣∣∣
j∑
i=k

(
i−1Yi − E

[
i−1Yi|F

])∣∣∣∣∣ 6 m−1|F

)
= 1 a.s..

Thus, the tail of
∞∑
i=1

(
i−1Yi − E

[
i−1Yi|F

])
converges to zero a.s. conditional on F and consequently

∞∑
i=1

(
i−1Yi − E

[
i−1Yi|F

])
converges a.s. conditional on F . Second, we prove that

∞∑
i=1

E
[
i−1Yi|F

]
converges

a.s.. Notice that for each real number |y| > i and 0 < δ 6 1, |y| /i 6 y1+δ/i1+δ, so

∞∑
i=1

E
[
i−1Yi|F

]
6

∞∑
i=1

E
[
i−1−δ|Zi − µi|1+δ · 1 {|Zi − µi| < i} |F

]
6

∞∑
i=1

E
[
i−1−δ|Zi − µi|1+δ|F

]
<∞ a.s..

Since
∞∑
i=1

(
i−1Yi − E

[
i−1Yi|F

])
and

∞∑
i=1

E
[
i−1Yi|F

]
converge a.s. conditional on F ,

∞∑
i=1

i−1Yi converges a.s.

conditional on F , too. It remains to show that a.s. convergence of
∞∑
i=1

i−1Yi conditional on F implies a.s.

convergence of
∞∑
i=1

i−1 (Zi − µi) conditional on F . It is easy to check that

∞∑
i=1

P (Yi 6= Zi − µi|F) =

∞∑
i=1

E [1 {|Zi − µi| > i} |F ]

6
∞∑
i=1

E
[
i−1−δ|Zi − µi|1+δ · 1 {|Zi − µi| > i} |F

]
6
∞∑
i=1

E
[
i−1−δ|Zi − µi|1+δ|F

]
<∞ a.s..

If we define a sequence of events Ei = {ω : Yi 6= Zi − µi} for i > 1, we know that Ei is a sequence of F-
independent events. Due to part (3) of the conditional Borel-Cantelli lemma, the conditional probability of the

event that Yi 6= Zi − µi holds infinitely often is zero conditional on F . Thus, conditional on F ,
∞∑
i=1

i−1 (Zi − µi)

converges a.s.. The application of Kronecker’s lemma to
∞∑
i=1

i−1 (Zi − µi) for each ω ∈ Ω, implies that Z̄n−µ̄n → 0

a.s. conditional on F . �

Theorem C.2 (Conditional Lindeberg central limit theorem). Let {Zi : i > 1} be a sequence of F-
independent random variables with conditional means E [Zi|F ] and conditional variances

σ2
i = E

[
(Zi − E [Zi|F ])

2|F
]

for i = 1, 2, .... If there is η F-measurable such that σ̄2
n = 1

n

n∑
i=1

σ2
i > η > 0

a.s. and the following conditional Lindeberg condition holds

lim
n→∞

1

nσ̄2
n

n∑
i=1

E
[
(Zi − E [Zi|F ])

2 · 1
{
|Zi − E [Zi|F ]| >

√
nσ̄nε

}
|F
]

= 0 a.s.

for any F-measurable ε > 0, then conditional on F , 1
σ̄n
√
n

n∑
i=1

(Zi − E [Zi|F ])→DN(0, 1) a.s.. Moreover,

1
σ̄n
√
n

n∑
i=1

(Zi − E [Zi|F ])→DN(0, 1) (F-stably).
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Proof of Theorem C.2:
The theorem is proved similarly to the classical version (see, for example, Chow and Teicher (1997, pp. 314-

315)) with appropriate modifications. Let Xk = Zk−µk√
nσ̄n

, where µi = E [Zi|F ]. For any fixed real number t ∈ R,

write Yk(t) = eitXk − 1 − itXk +
t2X2

k

2 and yk(t) = e−E[X2
k|F]t2/2 − 1 +

E[X2
k|F]t2

2 . Using the bound on the
characteristic function summarized above with δ = 1 and n = 1, 2, one obtains

|Yk(t)| 6
∣∣eitXk − 1− itXk

∣∣+
t2X2

k

2
6
t2X2

k

2
+
t2X2

k

2
= t2X2

k

and

|Yk(t)| =
∣∣∣∣eitXk − 1− itXk +

t2X2
k

2

∣∣∣∣ 6 |tXk|3

6
.

So, |Yk(t)| 6 Min
{
t2X2

k ,
|tXk|3

6

}
. Moreover, |yk(t)| 6 (E[X2

k|F])
2
t4

8 . As a result, for arbitrary F-measurable

ε > 0, noticing that E [Xk|F ] = 0,∣∣∣E [eitXk |F]− e−σ2
kt

2/2
∣∣∣ = |E [Yk(t)|F ]− yk(t)| 6 |E [Yk(t)|F ]|+ |yk(t)|

6 E
[
t2X2

k · 1 {|Xk| > ε}+ |tXk|3 · 1 {|Xk| 6 ε} |F
]

+

(
E
[
X2
k |F

])2
t4

8
a.s..

Notice that for 0 < j 6 n,

E

( j∑
k=1

Xk

)2

|F

 =

j∑
k=1

E
[
X2
k |F

]
6

1

nσ̄2
n

n∑
k=1

E
[
(Zk − µk)

2|F
]

= 1 a.s.,

because the Xk’s are F-independent. Notice that this implies that
n∑
j=1

E
[
X2
j |F

]
= 1 a.s.. Thus,

∣∣∣∣∣E
[

exp

{
it

j∑
k=1

Xk +
1

2
t2

j∑
k=1

E
[
X2
k |F

]}
|F

]
− E

[
exp

{
it

j−1∑
k=1

Xk +
1

2
t2
j−1∑
k=1

E
[
X2
k |F

]}
|F

]∣∣∣∣∣
=

∣∣∣∣∣E
[

exp

{
it

j−1∑
k=1

Xj +
1

2
t2

j∑
k=1

E
[
X2
k |F

]}
|F

]
· E
[
eitXj − e−E[X2

j |F]t2/2|F
]∣∣∣∣∣

=

∣∣∣∣∣E
[

exp

{
it

j−1∑
k=1

Xj

}
|F

]∣∣∣∣∣ exp

{
1

2
t2

j∑
k=1

E
[
X2
k |F

]} ∣∣∣E [eitXj − e−E[X2
j |F]t2/2|F

]∣∣∣
≤ E

[∣∣∣∣∣exp

{
it

j−1∑
k=1

Xj

}∣∣∣∣∣ |F
]
·

∣∣∣∣∣exp

{
1

2
t2

j∑
k=1

E
[
X2
k |F

]}∣∣∣∣∣ · ∣∣∣E [eitXj − e−E[X2
j |F]t2/2|F

]∣∣∣ a.s.,

≤
∣∣∣∣E [exp

{
1

2
t2 · 1

}
|F
]∣∣∣∣ · ∣∣∣E [eitXj − e−E[X2

j |F]t2/2|F
]∣∣∣ a.s.,

≤ et
2/2
∣∣∣E [eitXj − e−E[X2

j |F]t2/2|F
]∣∣∣ a.s.,

≤ et
2/2E

[
t2X2

j · 1 {|Xj | > ε}+ |t|3|Xj |3 · 1 {|Xj | 6 ε} |F
]

+

(
E
[
X2
j |F

])2
t4

8
a.s.,

≤ et
2/2E

[
t2X2

j · 1 {|Xj | > ε}+ ε|t|3|Xj |2 · 1 {|Xj | 6 ε} |F
]

+ E
[
X2
j |F

]
t4 max

16i6n
E
[
X2
i |F

]
a.s.,

Thus, we have∣∣∣∣∣E
[

exp

{
it

n∑
k=1

Xk

}
|F

]
− e−t

2/2

∣∣∣∣∣
=

∣∣∣∣∣∣e−t2/2
n∑
j=1

E

[
exp

(
it

j∑
k=1

Xk +

j∑
k=1

E
[
X2
k |F

] t2
2

)
− exp

(
it

j−1∑
k=1

Xk +

j−1∑
k=1

E
[
X2
k |F

] t2
2

)
|F

]∣∣∣∣∣∣
≤ e−t

2/2
n∑
j=1

∣∣∣∣∣E
[

exp

(
it

j∑
k=1

Xk +

j∑
k=1

E
[
X2
k |F

] t2
2

)
− exp

(
it

j−1∑
k=1

Xk +

j−1∑
k=1

E
[
X2
k |F

] t2
2

)
|F

]∣∣∣∣∣
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≤ t2
n∑
j=1

E
[
X2
j · 1 {|Xj | > ε} |F

]
+ ε|t|3

n∑
j=1

E
[
X2
j · 1 {|Xj | 6 ε} |F

]
+t4 max

16i6n
E
[
X2
i |F

]
·
n∑
j=1

E
[
X2
j |F

]
≤ t2

n∑
j=1

E
[
X2
j · 1 {|Xj | > ε} |F

]
+ ε|t|3

n∑
j=1

E
[
X2
j |F

]
+ t4 max

16i6n
E
[
X2
i |F

]
·
n∑
j=1

E
[
X2
j |F

]
≤ t2

n∑
j=1

E
[
X2
j · 1 {|Xj | > ε} |F

]
+ ε|t|3 + t4 max

16i6n
E
[
X2
i |F

]
.

The last term tends to zero almost surely when n is large since for arbitrarily small F-measurable ε > 0 and
1 6 i 6 n, one has X2

i 6 ε
2 +X2

i · 1 {|Xi| > ε} a.s. implying

E
[
X2
i |F

]
6 ε2 + E

[
X2
i · 1 {|Xi| > ε} |F

]
a.s.,

which entails

E
[
X2
i |F

]
6 ε2 +

n∑
i=1

E
[
X2
i · 1 {|Xi| > ε} |F

]
a.s..

Noticing that the right-hand side does not depend on i and the conditional Lindeberg condition implies that

max
16i6n

E
[
X2
i |F

]
6 ε2 +

n∑
i=1

E
[
X2
i · 1 {|Xi| > ε} |F

]
→ 0 a.s. as n → ∞ and ε → 0. The terms in the middle

converges to zero a.s. as ε → 0 a.s., and the first term also converges to zero a.s. as n → ∞ and ε → 0 a.s.
because of the conditional Lindeberg condition. Therefore, it follows that

E

[
exp

{
it

n∑
k=1

Xk

}
|F

]
= E

[
exp

{
itσ̄−1

n

√
n
(
Z̄n − µ̄n

)}
|F
]
→ e−t

2/2 a.s.,

when n tends to infinity. Hence, the Levy continuity theorem implies that conditionally on F ,√
nσ̄−1

n

(
Z̄n − µ̄n

)
→DN(0, 1). Since the right-hand side above does not depend on the conditioning sigma-

algebra. The result must hold unconditionally. Due to equation (1.5) of Rényi (1963, p. 294) we observe that
this convergence is also F-stable. The result is proved. �

As can be seen, Theorems A.1 and A.2 are in fact special cases of Theorems C.1 and C.2 respectively.
Therefore, the proofs of Theorems A.1 and A.2 can be also easily derived following those of Theorems C.1 and
C.2 and are given as follows.
Proof of Theorem A.1: Notice first that the cr inequality (e.g. White (2001, Proposition 3.8, p. 35)) ensures
that

E
(
|Zi − E (Zi|F)|1+δ|F

)
6 2δ

(
E
(
|Zi|1+δ|F

)
+ |E (Zi|F)|1+δ

)
a.s..

By noting that E
(
|Zi|1+δ|F

)
< ∆ a.s. and applying Jensen’s inequality for conditional expectations, we have

|E (Zi|F)|1+δ 6 E
(
|Zi|1+δ|F

)
< ∆ a.s. so that E

(
|Zi − E (Zi|F)|1+δ|F

)
6 21+δ ·∆ a.s.. Then, the moment

condition given in Theorem C.1 can be easily verified and the proof is complete. �

Proof of Theorem A.2: The proof follows immediately by verifying the conditional Lindeberg condition given
in Theorem C.2. �

Proof of Lemma B.1:
It should be noted that throughout this proof we set 0 < δ < 1 and that all results are conditional on F . We

frequently make use of Cramer-Wold device and Theorem A.1.

1. Let ζ1 and ζ2 be arbitrary (h1 + h3) × 1 vectors. 1
N

N∑
i=1

ζ1
′wi
′wiζ2 is a sum of F-independent random

variables and each term satisfies the following inequality a.s.

E
[∣∣ζ1′wi′wiζ2∣∣1+δ|F

]
6 ‖ζ1‖2

1+δ‖ζ2‖2
1+δ

E
[
‖wi‖2

2+2δ|F
]
.

15



The term on the right-hand side is a.s. uniformly bounded because of Assumption 1. Thus, from the use of the
Cramer-Wold device and Theorem A.1 one has

1

N

N∑
i=1

wi
′wi → lim

N→∞

1

N

N∑
i=1

E [wi
′wi|F ] = W (FT ) a.s..

2. Let ζ1 and ζ2 be arbitrary (h2 + h4) × 1 vectors. 1
N

N∑
i=1

ζ1
′xi
′xiζ2 is a sum of F-independent random

variables and each term satisfies the following inequality a.s.

E
[∣∣ζ1′xi′xiζ2∣∣1+δ|F

]
6 ‖ζ1‖2

1+δ‖ζ2‖2
1+δ

E
[
‖xi‖2

2+2δ|F
]

≤ 21+2δ‖ζ1‖2
1+δ‖ζ2‖2

1+δ
(
E
[
‖vi‖2

2+2δ|F
]

+ ‖FT ‖2
2+2δ

E
[
‖Γi‖2

2+2δ|F
])
,

where the last line follows the cr inequality. The right-hand side is bounded uniformly due to Assumption 1.ii
and v. Therefore,

1

N

N∑
i=1

xi
′xi =

1

N

N∑
i=1

vi
′vi +

1

N

N∑
i=1

Γi
′FT
′FTΓi +

1

N

N∑
i=1

vi
′FTΓi +

1

N

N∑
i=1

Γi
′FT
′vi

→ V (FT ) + lim
N→∞

1

N

N∑
i=1

E
[
Γi
′FT
′FTΓi|F

]
+ lim
N→∞

1

N

N∑
i=1

E [vi
′|F ]FTΓ (FT ) + Γ (FT )

′
FT
′ lim
N→∞

1

N

N∑
i=1

E [vi|F ]

= X (FT )

a.s., which gives the result.

3. Let ζ1 and ζ2 be respectively arbitrary (h1 + h3)× 1 and (h2 + h4)× 1 vectors. 1
N

N∑
i=1

ζ1
′wi
′xiζ2 is a sum

of F-independent random variables and each term satisfies the following inequality a.s.

E
[∣∣ζ1′wi′xiζ2∣∣1+δ|F

]
6 ‖ζ1‖2

1+δ‖ζ2‖2
1+δ

E
[
‖wi‖2

1+δ|F
]
E
[
‖xi‖2

1+δ|F
]

≤ 2δ‖ζ1‖2
1+δ‖ζ2‖2

1+δ
E
[
‖wi‖2

1+δ|F
] (
E
[
‖vi‖2

1+δ|F
]

+ ‖FT ‖2
1+δ

E
[
‖Γi‖2

1+δ|F
])
.

The right-hand side is bounded uniformly due to Assumptions 1.ii, iii and v. Therefore, the result follows from
the use of the Cramer-Wold device and Theorem A.1 by noting that

1

N

N∑
i=1

wi
′xi =

1

N

N∑
i=1

wi
′FTΓi +

1

N

N∑
i=1

wi
′vi

→ lim
N→∞

1

N

N∑
i=1

E [wi
′|F ]FTΓ (FT ) + lim

N→∞

1

N

N∑
i=1

E [wi
′vi|F ] = WX (FT ) a.s..

4. Let ζ1 and ζ2 be respectively arbitrary (h1 + h3)× 1 and (1 + p)× 1 vectors. 1
N

N∑
i=1

ζ1
′wi
′eiζ2 is a sum of

F-independent random variables and each term satisfies the following inequality a.s.

E
[∣∣ζ1′wi′eiζ2∣∣1+δ|F

]
6 ‖ζ1‖2

1+δ‖ζ2‖2
1+δ

E
[
‖wi‖2

1+δ|F
]
E
[
‖ei‖2

1+δ|F
]

6 2δ‖ζ1‖2
1+δ‖ζ2‖2

1+δ
E
[
‖wi‖2

1+δ|F
] (
E
[
‖εi‖2

1+δ|F
]

+ ‖FT ‖2
1+δ

E
[
‖γi‖2

1+δ|F
])
.

The right hand side is bounded uniformly due to Assumptions 1.i, iii and iv. Therefore, the result follows since

1

N

N∑
i=1

wi
′ei =

1

N

N∑
i=1

wi
′FT γi +

1

N

N∑
i=1

wi
′εi → lim

N→∞

1

N

N∑
i=1

E [wi
′|F ]FT γ (FT ) a.s..

16



5. Let ζ1 and ζ2 be respectively arbitrary (h2 + h4)× 1 and (1 + p)× 1 vectors. 1
N

N∑
i=1

ζ1
′xi
′eiζ2 is a sum of

F-independent random variables and each term satisfies the following inequality a.s.

E
[∣∣ζ1′xi′eiζ2∣∣1+δ|F

]
6 ‖ζ1‖2

1+δ‖ζ2‖2
1+δ

E
[
‖xi‖2

1+δ|F
]
E
[
‖ei‖2

1+δ|F
]

6 ‖ζ1‖2
1+δ‖ζ2‖2

1+δ
E
[
(‖vi‖2 + ‖FT ‖2‖Γi‖2)

1+δ|F
]
E
[
(‖εi‖2 + ‖FT ‖2‖γi‖2)

1+δ|F
]

6 4δ‖ζ1‖2
1+δ‖ζ2‖2

1+δ
(
E
[
‖vi‖2

1+δ|F
]

+ ‖FT ‖2
1+δ

E
[
‖Γi‖2

1+δ|F
])

·
(
E
[
‖εi‖2

1+δ|F
]

+ ‖FT ‖2
1+δ

E
[
‖γi‖2

1+δ|F
])
.

The right-hand side is bounded uniformly due to Assumption 1.i, ii, iv and v. Therefore, the result follows from
the use of the Cramer-Wold device and Theorem A.1 by noticing that

1

N

N∑
i=1

xi
′ei =

1

N

N∑
i=1

vi
′εi +

1

N

N∑
i=1

Γi
′FT
′FT γi +

1

N

N∑
i=1

vi
′FT γi +

1

N

N∑
i=1

Γi
′FT
′εi

→ Γ (FT )
′
FT
′FT γ (FT ) + lim

N→∞

1

N

N∑
i=1

E [vi
′|F ]FT γ (FT ) a.s..

6. Let ζ1 and ζ2 be arbitrary (1 + p)× 1 vectors. 1
N

N∑
i=1

ζ1
′ei
′eiζ2 is a sum of F-independent random variables

and each term satisfies the following inequality a.s.

E
[∣∣ζ1′ei′eiζ2∣∣1+δ|F

]
6 ‖ζ1‖2

1+δ‖ζ2‖2
1+δ

E
[
‖ei‖2

2+2δ|F
]

6 21+2δ‖ζ1‖2
1+δ‖ζ2‖2

1+δ
(
E
[
‖εi‖2

2+2δ|F
]

+ ‖FT ‖2
2+2δ

E
[
‖γi‖2

2+2δ|F
])

a.s..

The right-hand side is bounded uniformly due to Assumption 1.i and iv. Therefore, we have

1

N

N∑
i=1

ei
′ei =

1

N

N∑
i=1

εi
′εi +

1

N

N∑
i=1

γi
′FT
′FT γi +

1

N

N∑
i=1

εi
′FT γi +

1

N

N∑
i=1

γi
′FT
′εi

→ Σε (FT ) + lim
N→∞

1

N

N∑
i=1

E
[
γi
′FT
′FT γi|F

]
a.s.

from the use of Cramer-Wold device and Theorem A.1.

7. Let ζ1 and ζ2 be respectively arbitrary T × 1 and (h1 + h3) × 1 vectors. 1
N

N∑
i=1

ζ1
′wiζ2 is a sum of F-

independent random variables and each term satisfies the following inequality a.s.

E
[∣∣ζ1′wiζ2∣∣1+δ|F

]
6 ‖ζ1‖2

1+δ‖ζ2‖2
1+δ

E
[
‖wi‖2

1+δ|F
]
.

The term on the right-hand side is a.s. uniformly bounded because of Assumption 1.iii. Thus,

(B.1.)
1

N

N∑
i=1

wi → lim
N→∞

1

N

N∑
i=1

E [wi|F ] a.s..

Notice that

1

N

N∑
i=1

(wi − w̄)
′
(wi − w̄) =

1

N

N∑
i=1

wi
′wi − w̄′w̄ =

1

N

N∑
i=1

wi
′wi −

1

N

N∑
i=1

wi
′ 1

N

N∑
i=1

wi.

We can use result 1 and (B.1) to conclude that this converges a.s. to

W ∗ (FT ) = lim
N→∞

1

N

N∑
i=1

E [wi
′wi|F ]− lim

N→∞

1

N

N∑
i=1

E [wi
′|F ] lim

N→∞

1

N

N∑
i=1

E [wi|F ].

8. Let ζ1 and ζ2 be respectively arbitrary T × 1 and (h2 + h4) × 1 vectors. 1
N

N∑
i=1

ζ1
′xiζ2 is a sum of F-

independent random variables and each term satisfies the following inequality a.s.

E
[∣∣ζ1′xiζ2∣∣1+δ|F

]
6 ‖ζ1‖2

1+δ‖ζ2‖2
1+δ

E
[
‖xi‖2

1+δ|F
]

6 2δ‖ζ1‖2
1+δ‖ζ2‖2

1+δ
(
E
[
‖vi‖2

1+δ|F
]

+ ‖FT ‖2
1+δ

E
[
‖Γi‖2

1+δ|F
])
.
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The right hand side is bounded uniformly due to Assumption 1.ii and v. Therefore,

(B.2.)
1

N

N∑
i=1

xi → lim
N→∞

1

N

N∑
i=1

E [xi|F ] = FTΓ (FT ) + lim
N→∞

1

N

N∑
i=1

E [vi|F ] a.s..

Write

1

N

N∑
i=1

(xi − x̄)
′
(xi − x̄) =

1

N

N∑
i=1

xi
′xi − x̄′x̄.

The limit for 1
N

N∑
i=1

xi
′xi is given by result 2. Based on the above, the result follows immediately.

9. Write

1

N

N∑
i=1

(wi − w̄)
′
(xi − x̄) =

1

N

N∑
i=1

wi
′xi −

1

N

N∑
i=1

wi
′ 1

N

N∑
i=1

xi.

The a.s. limits for the three terms are given respectively by result 3, and noting (B.1) and (B.2).

10. Let ζ1 and ζ2 be respectively arbitrary T×1 and (1 + p)×1 vectors. 1
N

N∑
i=1

ζ1
′eiζ2 is a sum of F-independent

random variables and each term satisfies the following inequality a.s.

E
[∣∣ζ1′eiζ2∣∣1+δ|F

]
6 ‖ζ1‖2

1+δ‖ζ2‖2
1+δ

E
[
‖ei‖2

1+δ|F
]

6 2δ‖ζ1‖2
1+δ‖ζ2‖2

1+δ
(
E
[
‖εi‖2

1+δ|F
]

+ ‖FT ‖2
1+δ

E
[
‖γi‖2

1+δ|F
])
.

The right hand side is bounded uniformly due to Assumption 1.i and iv. Therefore,

(B.3.)
1

N

N∑
i=1

ei → lim
N→∞

1

N

N∑
i=1

E [ei|F ] = FT lim
N→∞

1

N

N∑
i=1

E [γi|F ] = FT γ (FT ) a.s..

Then the result holds because of result 4, (B.1) and (B.3).
11. Similarly to 10, we can write

1

N

N∑
i=1

(xi − x̄)
′
(ei − ē) =

1

N

N∑
i=1

xi
′ei −

1

N

N∑
i=1

xi
′ 1

N

N∑
i=1

ei

→ Γ (FT )
′
FT
′FT γ (FT )− lim

N→∞

1

N

N∑
i=1

E
[
Γi
′|F
]
FT
′FT γ (FT ) = 0 a.s.

because of result 5, (B.2) and (B.3).
12. Similar to result 10 and 11 of this lemma,
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