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Abstract: This paper considers two-sided matching models with nontransferable utilities, with one
side having homogeneous preferences over the other side. When one observes only one or several
large matchings, despite the large number of agents involved, asymptotic inference is difficult
because the observed matching involves the preferences of all the agents on both sides in a complex
way, and creates a complicated form of cross-sectional dependence across observed matches.
When we assume that the observed matching is a consequence of a stable matching mechanism
with homogeneous preferences on one side, and the preferences are drawn from a parametric
distribution conditional on observables, the large observed matching follows a parametric distribution.
This paper shows in such a situation how the method of Monte Carlo inference can be a viable option.
Being a finite sample inference method, it does not require independence or local dependence among
the observations which are often used to obtain asymptotic validity. Results from a Monte Carlo
simulation study are presented and discussed.

Keywords: two-sided matching; monte carlo inference; one-side homogeneous preferences;
serial dictatorship mechanism
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1. Introduction

Two-sided matching models have been widely used to study various interactions among people
and firms. Examples are many, including medical residency match (Roth and Sotomayor (1990);
Agarwal (2015), among many others), marriage/dating markets (Choo and Siow (2006);
Hitsch et al. (2010); Chiappori et al. (2012)), loan markets (Chen and Song (2013)), venture capitals
(Sørensen (2007)), merger markets in the mutual fund industry (Park (2013)), auction analysis
(Fox and Bajari (2013)), and teacher assignments (Boyd et al. (2013)).

Large matching data pose challenges for econometric inference. Consider a matching between
colleges and students. When a college and a group of students prefer to be matched more than their
alternatives, this match limits the set of students available to other colleges and the set of colleges
available to other students. This strategic interdependence potentially creates a nonstandard pattern of
stochastic dependence among matches and makes asymptotic inference difficult, because the stochastic
dependence is not in the form of weak spatial dependence or conditional independence much studied
in the literature of asymptotic inference with cross-sectionally dependent data.

A popular approach to econometric modeling of matching markets is to model them as matching
with transferable utility, where transfer of payoff between agents is allowed. (See Choo and Siow (2006);
Galichon and Salanié (2012); Graham et al. (2014); Fox (2018); Fox and Bajari (2013).) However, there are
many forms of matching markets such as marriage markets or medical residency matching, where
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payoff transfer does not constitute a realistic feature. A recent body of literature develops empirical
models of nontransferable utility. (See Menzel (2015) and Diamond and Agarwal (2017).)

This paper proposes a new approach of analyzing data from a large matching market. Here we
consider a large, two-sided, many-to-one matching market with nontransferable utilities, where
we allow agents to care about both observed and unobserved heterogeneities of the agents on the
other side, but restrict one side of the market to have homogenous preferences.1 The assumption
of one-sided homogeneity of preferences in this paper is made mainly to ensure an explicit form of
a unique stable matching mechanism that underlies the matching data. When the matching mechanism
that is implemented in practice is known (such as in empirical examples of medical residents’ matching
with hospitals or students assigned to schools (e.g., Agarwal and Somaini (2018)), one can still apply the
Monte Carlo inference approach of this paper without assuming one-sided homogeneity of preferences.

The main departure of this paper from the literature is that this paper develops a finite sample
inference procedure for the payoff parameters in the matching market. The main idea is as follows.
First, we note that the preference homogeneity on one side implies the existence of a unique stable
matching which can be implemented as a form of a serial dictatorship mechanism. This mechanism
has an explicit form where the student ranked first by the colleges is matched to his most preferred
college and the student ranked second matched to his most preferred college among those colleges
whose quota is not filled, etc. This characterization determines the exact distribution of the observed
matching up to an unknown parameter, when the unobserved heterogeneities are from a parametric
family of distributions. Thus, one can construct a test statistic and invert the test to perform finite
sample inference on structural parameters.

The approach of Monte Carlo inference can be viewed as an extension of randomized tests of
R. A. Fisher. Randomized tests achieve finite sample validity using a test statistic whose conditional
distribution given data (i.e., the permutation distribution) is fully known. Similarly, the approach of
Monte Carlo tests also focuses on a situation where the test statistic’s distribution given the true
parameter value is fully known. The Monte Carlo inference approach was developed to implement
a permutation test (Dwass (1957)); Besag and Clifford (1989); Hope (1968), and introduced to
econometrics and extended to various econometric models in work by Jean-Marie Dufour and his
coauthors. (Dufour (2006). Also see Dufour and Khalaf (2003) for an overview of this approach in the
context of econometric models.)

While this paper’s approach provides a useful, alternative way to analyze matching data, there are
limitations. The major limitation of this paper’s approach is the assumption that we observe the entire
set of players in the large matching game. This assumption is frequently used in many game-theoretic
models, and hard to remove, because without this assumption, the payoff specification involves actions
or characteristics of players that are not observed by the econometrician and one needs to assume
a particular way the players are sampled in each game.2 Nevertheless, assuming full observation of
players in a game is restrictive in modeling the interactions among many agents. Second, as mentioned
previously, this paper uses the one-sided homogeneity of preferences in this paper mainly to ensure an
explicit form of a unique stable matching mechanism. It would be good to relax this requirement so
that multiple stable matchings are potentially allowed in the model.

1 This assumption of homogeneity in preferences of one side is certainly restrictive, and yet this asymmetry of preference
heterogeneity between the two sides reflects various many-to-one matching markets in practice. For example, colleges
mostly agree on who the best students are whereas many students face tradeoff between the distance from their homes
to a college and the college’s quality. This assumption of homogeneous preference on one side is not unprecedented
in the literature either. See for example Agarwal (2015) who used this assumption in the analysis of medical residents’
matching market.

2 Canen et al. (2018) for an empirical model of linear interactions over a large network. Using a set of behavioral
assumptions, they produce best responses that exhibit local dependence, and permit partial observation of the players by
the econometrician for inference.
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We performed Monte Carlo simulation studies using a simple many-to-one matching model
between students and colleges. Due to the nature of finite sample inference, any deviation from
the nominal size stems from the Monte Carlo simulation errors. With the number of Monte Carlo
replications equal to 1000, the Monte Carlo inference exhibit reasonably good size properties. However,
we have found that the power properties are uneven across different directions in which the parameter
deviates from the true parameter. When we increase the number of the students, the power improves
yet again unevenly across different directions of deviations.

The paper is organized as follows. The next section gives a general overview of the Monte Carlo
inference approach. In Section 3, we introduce a two-sided many-to-one random matching model
based on a college admission model in Roth and Sotomayor (1990). Section 4 presents an approach of
Monte Carlo inference, explaining ways to construct test statistics and critical values. Section 5 gives
results from a small-scale Monte Carlo simulation experiment and discusses them. In Section 6 we
conclude. In Appendix A, we provide a simple algorithm that generates a matching based on a serial
dictatorship mechanism.

2. Monte Carlo Inference: Overview

2.1. Monte Carlo Inference

In this section, we provide a general overview of the finite sample inference approach that we
employ in this paper. Suppose that Y is an n-dimensional endogenous random vector and X is an
exogenous random vector. Suppose further that the conditional distribution of Y given X = x follows
a parametric family of distributions, say,

F (x) ≡ {Fθ(·|x) : θ ∈ Θ}.

In our context, Y represents the matching outcomes between two sides of agents (e.g., students
and colleges). Please note that such a parametric family assumption underlies maximum likelihood
estimation, where the random map θ → fθ(Y|X) refers to the likelihood function, when fθ(·|x) denotes
the conditional density function corresponding to Fθ(·|x).

Let us first consider a finite sample inference on θ0, where θ0 denotes the true parameter such that
Fθ0(·|x) = F(·|x), where F(·|x) denotes the conditional distribution function of Y given X = x. First, we
construct a test statistic Tn(Y, X, θ). A standard way to construct a test statistic usually involves a sum
of independent or locally dependent observations to facilitate asymptotic theory. However, in our
case, it is hard to write the test statistic as a function of the sum of random variables for the inference
procedure to exhibit finite sample validity. As we shall see, our matching data is such that each match
between a student and a college involves all the other agents’ payoff components nonlinearly.

A confidence set is generated in the following way. First, for each θ ∈ Θ, we draw by simulation

Y1(θ), ..., YR(θ) ∼ i.i.d. Fθ(·|X).

We construct t1(θ), ..., tR(θ), where tr(θ) = Tn(Yr(θ), X, θ), with r = 1, ..., R. Let cα(θ) be such that

cα(θ) = inf

{
c ∈ R :

1
R

R

∑
r=1

1{tr(θ) ≤ c} ≥ 1− α

}
.

Then the finite sample confidence set is defined to be

Cα = {θ ∈ Θ : Tn(Y, X, θ) ≤ cα(θ)}.
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By construction, the confidence set is valid in finite samples. This approach to inference is
called the Monte Carlo inference approach. This approach is generally applicable in a set-up where
observations are from a parametric family of distributions and random draws from these distributions
can be obtained by simulation, i.e., a situation where one applies maximum likelihood estimation.
In contrast to maximum likelihood estimation, Monte Carlo inference is valid in finite sample inference,
and hence does not require assumptions that are used to ensure asymptotic validity of inference.
Such asymptotic validity is obtained by assuming that the observations are independent or locally
(or weakly) dependent along a certain known dependence ordering. Such local dependence is hard to
verify in our context of a large matching market, because the matching outcomes involve all agents’
idiosyncratic payoff components. The Monte Carlo inference approach offers a viable solution in
this situation.

While the choice of a test statistic does not influence the finite sample validity of the inference,
it affects the power properties. One way to construct a test statistic is to compare some features of the
observed outcomes and those of predicted outcomes, where the predicted outcomes are generated by
simulations. More specifically, suppose that gn(Y, X) denotes a vector where each entry captures some
aspect of the data (Y, X). Using the simulated draws Yr(θ), r = 1, ..., R, we can construct

Tn(Y, X, θ) =
1
R

R

∑
r=1

δ(gn(Y, X), gn(Yr(θ), X)), (1)

where δ(gn(Y, X), gn(Yr(θ), X)) is a scalar measure of discrepancy between gn(Y, X) and gn(Yr(θ), X).
If this discrepancy gets larger fast as θ moves away from θ0, θ will be less likely to be included in the
confidence set.

The Monte Carlo confidence set is obtained by inverting the test statistic, and hence can be
computationally intensive when the parameter dimension is large.

2.2. Subvector Inference

When the parameter of interest is a subvector of θ0, we can construct a confidence set for the
subvector by projecting the confidence set of θ0 onto the subvector. More generally, suppose that our
parameter of interest takes the following form:

β = ψ(θ) ∈ B,

where ψ is a map known to the econometrician, taking values in a set B. For example, we may have
β = θj, where θj is the j-th element of θ. The projection approach suggests that we may construct
a confidence set consisting of β’s such that there exists θ in the confidence set of θ0 such that β = ψ(θ).
This way of doing subvector inference is called the projection approach.

An alternative way is a profiling approach. (See Barndorff-Nielsen (1983), Romano and Shaikh (2008),
and Bugni et al. (2017)). We fix θ and let Y1(θ), ..., YR(θ) be given as before through simulations.
Let γα(β) be such that

γα(β) = inf

c ∈ R :
1
R

R

∑
r=1

1

 inf
θ∈Θ: ψ(θ)=β

sup
θ̃∈Θ: ψ(θ̃)=β

Tn(Yr(θ̃), X; θ) ≤ c

 ≥ 1− α

 .

Then the finite sample confidence set is defined to be

C̃PF
α,R =

{
β ∈ B : inf

θ∈Θ: ψ(θ)=β
Tn(Y, X; θ) ≤ γα(β)

}
.
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It is not hard to see that this confidence set for the subvector β is valid in finite samples. This Monte
Carlo inference version of subvector inference has some differences from the standard profiling
approach. First, note that the distribution of Y is equal to that of Yr(θ0), but not necessarily equal to
the distribution of Yr(θ) for all θ such that β0 = ψ(θ). To cover this discrepancy in finite samples,
we take the supremum over θ̃ ∈ Θ in the computation of critical values to ensure finite sample validity.
Second, one of the main challenges in the subvector inference literature is that it is hard to approximate
the distribution of infθ∈Θ: ψ(θ)=β Tn(Y, X; θ). This approximation often requires a careful choice of
tuning parameters as well. However, being a finite sample inference method by nature, the Monte
Carlo-based subvector inference does not suffer from this difficulty. Third, the computational cost of
doing subvector inference through profiling may not be reduced substantially relative to the projection
method, especially when the evaluation of Tn(Yr(θ̃), X; θ) is computationally costly.3

3. A Two-Sided Random Matching Model

3.1. A College Admissions Model

We begin with a standard college admissions model as in Chapter 5 of Roth and Sotomayor (1990)
using different notation that is suitable for our purpose. Then we introduce a random preference
profile, and make explicit the distribution of the observed matching.

Suppose that we have a set of students indexed by Ns = {1, ..., ns} and that of colleges indexed by
Nc = {1, ..., nc}. In many situations, the colleges are capacity-constrained for various reasons. For each
college j, let qj be a positive integer that represents the quota of college j. To accommodate the possibility
of students or colleges unmatched, define N′s = Ns ∪ {0} and N′c = Nc ∪ {0}, so that unmatched
student (or college) is viewed as being matched to 0. (When we need to view N′s and N′c as an ordered
set, according to the ordering of natural numbers, we take 0 to be the last element of N′s and N′c.) A
(many-to-one) matching under (the capacity constraint) q = (qj)j∈Nc is defined as a (point-valued) map
µ : N′s → N′c such that |µ−1(j) ∩ Ns| ≤ qj for each j ∈ Nc, i.e., the number of the students assigned to
each college does not exceed its capacity.

The matching result depends on a preference profile of agents. In this paper, we allow for only
strict preferences so that each student is never indifferent between choices from N′c and the same with
each college. It is convenient if we represent each preference ordering with a permutation of the agent
indices. Let Πc and Πs be the collections of permutations over N′s and N′c respectively, so that each
permutation is associated with a preference ordering. (A word of caution with subscripts: Πc represents
the set of preferences of colleges over students.) For example, suppose that N′c = (0, 1, 2, 3, 4).
If a student has preference ordering π ∈ Πs over colleges N′c such that π = (3, 2, 0, 4, 1) (or equivalently,
π(1) = 3, π(2) = 2, π(3) = 0, etc., this means the student ranks college 3 as highest, and college 1 as
lowest (even lower than being unmatched.)

More formally, for given π ∈ Πs, we write i1 �π i2 if π−1(i1) < π−1(i2), i.e., i1 is ranked higher
than i2 by preference π. Given preference π ∈ Πs of student i over colleges, we say that college j is
acceptable by student i if j �π 0. We make similar definitions for college preferences. For two sets S1

and S2 of students and a preference ordering π of a college, we write S1 �π S2, if for all i1 ∈ S1 and
i2 ∈ S2, i1 �π i2.

The collection of preference ordering profiles, π = (πs, πc), is given by

Π = Πns
s ×Πnc

c ,

3 Schwartz (2018) used the Monte Carlo subvector inference approach following this paper’s proposal. However, his setting
permits using standard inference on part of the parameter vector as a first step, applying Monte Carlo inference for the
remaining parameters. This two-step approach no longer ensures finite sample validity. Nevertheless, it sharpens the
inference results and reduces the computational costs.
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where πs ∈ Πns
s and πc ∈ Πnc

c . Given a quota vector q, we call any map µ : N′s ×Π→ N′c a matching
mechanism under q, if for each π ∈ Π, µ(·; π) is a matching under q.4

In modeling a predicted outcome of matching in economics, it is standard in the literature to
focus on (pairwise) stable matchings (Roth and Sotomayor (1990)).5

Definition 1.
(i) A matching µ : N′s → N′c is stable with respect to π = (πs, πc) ∈ Π, if the following two conditions
are satisfied.

(a) There is no i ∈ Ns such that 0 �πi µ(i) and no j ∈ Nc such that 0 �πj i′ for some i′ ∈ µ−1(j).
(b) There is no pair (i, j) ∈ Ns × Nc such that both j �πi µ(i) and i �πj i′ for some i′ ∈ µ−1(j).

(ii) A matching mechanism µ : N′s ×Π→ N′c is stable if µ(·; π) is stable with respect to each π ∈ Π.

Definition 1 says that a matching is stable with respect to π, if (a) each student matched with
a college prefers to be matched with the college than to remain unmatched, and each college matched
with a student prefers to be matched with the student than to remain unmatched, and (b) there is no
unmatched pair of a student and a college both of whom prefer to be matched with each other than
with their current matches.

3.2. Random Preferences

3.2.1. Students’ Heterogeneous Preferences

Let us introduce random preferences for students with a view to an econometric modeling. It is
convenient to introduce notation that turns a vector of real numbers into a permutation according to
the ordering of the numbers.

Definition 2. Given a = (ai)i∈N′c ∈ Rnc+1, let ps(a) ∈ Πs be such that p−1
s (a)(i) denotes the rank of ai.

For example, suppose that a = (−0.9, 0.2, 0.7,−0.2). Then ps(a) = (2, 1, 3, 0). Hence the third entry of a
(we start with zero so 2 represents the third entry) is ranked first. We define similarly pc ∈ Πc.

The students’ preferences are drawn in the following way. First, each student i is given
a heterogeneous single index over colleges

vs(i, j; εi,j, β0) = fs(xs,i, xc,j, εi,j; β0),

which represents student i’s “score” of college j, where xs,i denotes the characteristics of student i
and xc,j those colleges j that are observed by the econometrician, εi,j, unobserved taste component
associated with the match between student i and college j, and fs(·, ·, ·; β0) denotes a certain parametric
function known up to a true parameter vector β0.

For example, one may consider the following single-index specification with an additive error:6

fs(xs,i, xc,j, εi,j; β0) = x′c,jβ0,1 + xs,ix′c,jβ0,2 + εi,j.

4 By the definition of a matching mechanism as a map on N′s ×Π, it is anonymous in the sense that the matching mechanism
remains invariant to the relabeling of the agents’ indices.

5 A proper development will require defining preferences over sets of students by colleges, and defining stability of a matching
in terms of these preferences. When the preferences are so-called responsive, the group stability is equivalent to
pairwise stability. As we make use of pairwise stability for econometric inference, we refer the reader to Chapter 5
of Roth and Sotomayor (1990) for further details.

6 Adding an additive term whose covariate depends only on xs,i instead of the interaction term xc,j is superfluous for
“identification”, because variations in xs,i do not change the ranking of the colleges by the student i.
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However, this paper’s procedure does not require this particular structure; all that is required is
that the function fs is assumed to be known to the econometrician.

To characterize the preference for being unmatched (i.e., an outside option), we also define

vs(i, 0; εi,0, β̄0) = fs,0(xs,i, εi,0; β̄0),

for some parameter β̄0. Throughout this paper, we often write simply vs(i, j; εi,j) suppressing the
notation for β0. Also define vs(i; εi) = (vs(i, j; εi,j))j∈N′c , i.e., the vector of the scores given to the
colleges (by student i).

Let us assume that the preference profile for the students is given as follows:

πs(ε) ≡ (πs,i(εi))
ns
i=1, where πs,i(εi) ≡ ps(vs(i; εi)), for all i ∈ Ns.

Therefore, for each i ∈ Ns, the random preference πs,i(εi) places a college j as first when vs(i, j; εi,j)

is largest.

3.2.2. Colleges’ Homogeneous Preferences

Throughout this paper, we assume that the colleges have the same preference over the students.
Again, let xs,i be a vector of student i’s observable characteristics. Let

vc(i; ηi, γ0) = gc(xs,i, ηi; γ0)

be student i’s single index, where ηi represents student i’s unobserved quality and gc is a function
known up to the parameter γ0. As for an outside option, define

vc(0; η0, γ̄0) = gc,0(η0; γ̄0).

From here on, we often write vc(i; ηi) simply, suppressing the notation for γ0. The colleges’
preference over students is not solely determined by the students’ observable characteristics.
The common random preference of each college j for each student i is given as follows:

πc(η) ≡ pc(vc(η)),

where vc(η) = (vc(i; ηi))i∈N′s . Thus, each college j ranks a student i as highest if vs(i; ηi) is highest.

3.3. The Joint Distribution of a Large Observed Matching

In this section, we obtain an explicit expression of the distribution of the observed matching when
the matching arises from a stable matching mechanism. Throughout this paper, we regard xs,i and
xc,j as non-stochastic, which means that all other unobserved random components such as η and ε are
independently drawn from these observed characteristics. Recall that the preference profile of students
and colleges are given by π(ε, η) = (πc(η), πs(ε)), where we simply write the preference profile of
colleges as πc(η) because it is the same across the colleges.

Let Y denote the observed matching which is generated by a stable matching mechanism, say,
µ(·; π(ε, η)).7 In other words,

Y(·) = µ(·; π(ε, η)).

This is a reduced form for the observed matching. The randomness of the observed matching comes
from the randomness of the students’ and colleges’ preferences (i.e., η and ε).

7 Our choice of notation for matching as Y is to emphasize that matching is an endogenous outcome.
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We make the following assumptions regarding the random preferences for students and colleges.

Assumption 1. (vc(η), (vs(i; εi))i∈Ns)) is a continuous random vector.

The continuity assumption is made to generate strict preferences. Later we assume that the
distributions of ηi’s and εi,j’s are independently drawn from certain parametric families of distributions.

Let us define

Ns(η) = {i ∈ Ns : vc(i; ηi, γ0) > vc(0; η0, γ0)},

which is the set of students that colleges prefer to match than to stay unmatched with any student.
The stability of matching µ requires that µ(i) = 0 for all i /∈ Ns(η) that is, students not preferred
by any of the colleges (to the alternative of staying unmatched) are not matched with any colleges
under µ. If Ns(η) = ∅, there is no college-student pair that is matched under a stable matching µ.
Thus, it suffices to determine the match between colleges with students in Ns(η) when Ns(η) is not
empty. Let us enumerate the student indexes in Ns(η) as {S(1), ..., S(n′s)} with ns′ = |Ns(η)|, so that
S : {1, ..., n′s} → Ns is a (random) map depending on η.

As we shall see now, the stability of matching yields a useful distributional characterization of the
observed matching. For each S(i) ∈ Ns(η), and for any set A ⊂ N′c, let

ρi(A; πs) = min
j∈A

π−1
s,S(i)(j).

In other words, ρi(A; πs) is the ranking of a college that is most preferred among colleges j in A
by student S(i). Hence

πs,S(i) (ρi(A; πs))

denotes the college among A that is most preferred by student S(i).
Suppose that the colleges’ homogeneous preference is given by πc(η)(1) = S(1), πc(η)(2) =

S(2),...,πc(η)(n′s) = S(n′s). In other words, the colleges prefer student S(i) to S(j) in Ns(η) if and only
if i < j. Thus, let us simply write πc(η) as Ns(η). In the stable matching with this πc(η), student S(1)
is ranked highest by all the colleges and chooses his most preferred college first. Then student S(2)
chooses his most preferred college among the colleges whose quota is not filled yet, etc.8 To formalize
this matching mechanism, let us define for each student S(i) ∈ Ns(η),

τ ([i]; πs) ≡ πs,S(i)

(
ρi(N[i−1](πs); πs)

)
,

where N[0](πs) = N′c, (setting qj = ∞ if j ∈ N′c is 0),9

N[i−1](πs) ≡ {j ∈ N′c : q̃j([i− 1]; πs) < qj},

and

q̃j([i− 1]; πs) = |{i′ ∈ Ns : τ([i′ − 1]; πs) = j, S(i′) ≤ S(i)}|. (2)

8 In the literature of mechanism design, this mechanism is called a serial dictatorship mechanism.
(See Satterthwaite and Sonnenschein (1981)).

9 Using the notation [i] instead of i is meant as a reminder that the quantity depends on the “history” [i] = (1, 2, ..., i− 1, i),
rather the current agent index i.
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The college τ([1]; πs) is one that student S(1) prefers most among all the colleges in N′c.
Then τ([2]; πs) is a college that student S(2) prefers most among all the colleges whose quota is
not yet filled once student S(1) is assigned to college τ([1]; πs). Now τ([3]; πs) is a college that student
S(3) prefers most among all the colleges whose quota is not yet filled once students S(1) and S(2) are
assigned to colleges τ([1]; πs) and τ([2]; πs) respectively.

Please note that the assignment of each student S(i) to a college τ([i]; πs) is fully known up to
the students’ preference profile πs. Thus, the matching of each student S(i) to a college τ([i]; πs) is
a unique stable matching that is explicitly represented as a function of random preferences. In other
words, for each S(i) ∈ Ns(η),

µ(S(i); πs(ε), Ns(η)) = τ([i]; πs) (3)

Please note that τ([i]; πs) depends on the history of choices of students S(1), S(2), ..., S(i),
not merely that of the last student S(i).

It is straightforward to extend this result to a general case where πc(η)(i) 6= S(i) for some
i = 1, ..., n′s. We begin with student π−1

c (η)(1) (i.e., ranked highest by the colleges according to πc(η))
and let him choose his best choice among all the colleges. Then we move onto student π−1

c (η)(2)
(ranked second highest by the colleges).

To see its major implication for the distribution of the observed matching, note that

Y(S(i)) = µ (S(i); πs(ε), πc(η)) (4)

= µ
(
(S ◦ π−1

c (η) ◦ S)(i); πs(ε, η), Ns(η)
)

,

where πs(ε, η) is a profile of students’ preferences over colleges with the S(i)-th student’s preference
over the colleges equal to

πs,(S◦π−1
c (η)◦S)(i)(ε),

for each S(i) ∈ Ns(η). The second equality in (4) follows because the matching mechanism is
anonymous. In other words, college Y(S(i)) matched by student S(i) should be the same college
matched by the same student after relabeling the student S(i) as S(π−1

c (η)(S(i))). (Recall that
π−1

c (η)(S(i)) represents the ranking of student S(i).) After this relabeling, the colleges’ preference
ordering over the students becomes: S(i) �πc S(j) if and only if i < j. Then from (3), we obtain the
following result.

Theorem 1. Suppose that the matching mechanism µ is stable, and that Assumption 2.1 holds. Then for each
S(i) ∈ Ns(η),

Y(S(i)) = τ
(
[(π−1

c (η) ◦ S)(i)]; πs(ε, η)
)

,

where [(π−1
c (η) ◦ S)(i)] = (1, 2, ..., (π−1

c (η) ◦ S)(i)).

The expression in the theorem provides an explicit reduced form for the matching Y. It shows
how the randomness of the observed matching Y depends on the random preferences. It shows that
each single match Y(S(i)) of student S(i) is a complex function of the preferences of all the students
and colleges. While incorporating this interdependence is crucial to properly take into account the
inherent endogeneity of observed matching, it hampers the use of standard asymptotic theory. Thus,
this paper pursues an approach of finite sample inference. Indeed, Theorem 1 shows that once we
parametrize the distribution of εi,j and ηi, we can obtain the full joint distribution of the observed
matching up to a parametrization. Comparing the sorting pattern of observed characteristics implied



Econometrics 2019, 7, 16 10 of 15

by this predicted distribution and the observed sorting pattern, we seek to ’perform inference on the
structural parameters in finite samples.

4. Monte Carlo Inference

Let us formalize the data generating process. First, the nature draws εi,j’s, i.i.d., i = 1, ..., ns,
and j = 1, ..., nc, from a parametric distribution, say, Fθ , and ηi’s, i.i.d., from a parametric distribution,
say, Gθ . Please note that the inference procedure also allows the error term to be involved in the single
indices nonseparably, as in the case of random coefficient models.

4.1. Test Statistics, Critical Values and Confidence Sets

We explain a general method of constructing a test statistic and a confidence set. We define
θ = (β, β̄, γ, γ̄). First, for b = 1, ..., B, we let η∗i,b be the b-th simulated draw from Gθ and ε∗i,j,b from Fθ .
We construct simulated matchings: for Ns(η∗b ) with η∗b = (η∗i,b)i∈Ns , and S(i) ∈ Ns(η∗b ),

Y∗b(S(i); θ) = τ
(
[πc(η

∗
b )
−1(S(i))]; πs(ε

∗
b, η∗b )

)
,

where ε∗b = (ε∗i,j,b)(i,j)∈Ns×N′c . We also draw for r = 1, ..., R, ηi,r’s and εi,j,r’s i.i.d. from Gθ and from Fθ ,
respectively, independently of η∗i,b’s and ε∗i,j,b. We construct simulated matchings:

Yr(S(i); θ) = τ
(
[πc(ηr)

−1(S(i))]; πs(εr, ηr)
)

,

where ηr = (ηi,r)i∈Ns and εr = (εi,j,r)(i,j)∈Ns×N′c . Hence conditional on X, Y∗b(si; θ)’s and Yr(i; θ)’s are
independent. We set Y∗b(i; θ) = 0 for all i /∈ Ns(η∗) and Yr(si; θ) = 0 for all i /∈ Ns(ηr). An algorithm
for computing the matching this way is provided in the appendix. Let us define

Yr(θ) ≡ {Yr(i; θ) : i ∈ Ns}, and

Ỹ∗B(θ) ≡ {Y∗b(i; θ) : i ∈ Ns, b = 1, ..., B}.

Then we can construct a test statistic as a function of the observed matching Y, the simulated
matchings Ỹ∗B(θ), and the observed characteristics , X, say,

T(θ) = fn(Y, Ỹ∗B(θ), X),

for some function fn. (Some examples of the test statistics are given below.)
As for the critical values, we simulate the test statistic using simulated matching Yr(θ) in place of

observed matching Y:

Tr(θ) = fn(Yr(θ), Ỹ∗B(θ), X), r = 1, ..., R,

where the simulations of Yr(θ) and take cα(θ) to be the 1− α percentile of the empirical distribution of
the simulated test statistics Tr(θ), r = 1, ..., R. Then the confidence set is given by

Cα = {θ ∈ Θ : T(θ) ≤ cα(θ)} .

The finite sample validity of the confidence set (up to a simulation error) immediately follows
from Theorem 1.

One may choose R and B differently. Choosing a large R will reduce the Monte Carlo error in
the coverage probabilities, and choosing a large B will improve the power properties (i.e., shrink the
size of the confidence interval), not affecting the finite sample validity of the inference. This power
improvement will be attenuated after a large enough B. When the computational cost of matching
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Y∗b(i; θ) is substantial, it is practical to use only minimal B as long as it ensures decent power
properties of the inference.

4.2. Constructing Test Statistics

In this section, we discuss ways to construct a test statistic which is based on comparing features of
observed matching outcomes and those of predicted ones. More specifically, we define

fn(Y, Ỹ∗B(θ), X) = mn(Y, Ỹ∗B(θ), X), (5)

where

mn(Y, Ỹ∗B(θ), X) =
1
B

B

∑
b=1

max
xs ,xc

∣∣P̂(xs, xc; Y, X)− P̂(x1, x2; Y∗b(θ), X)
∣∣ ,

and

P̂(xs, xc; Y, X) =
1
ns

∑
i∈Ns

1{Xi,s = xs, XY(i),c = xc}. (6)

Here P̂(xs, xc; Y, X) measures the proportion of students with characteristic xs which are matched
with colleges with characteristic xc through matching Y. (See Diamond and Agarwal (2017) and
Schwartz (2018) for the use of similar test statistics.) One may use some other features of the matchings.
For example, following Diamond and Agarwal (2017), we may consider

m̃n(Y, Ỹ∗B(θ), X) =
1
B

B

∑
b=1

∣∣∆̂(Y, X)− ∆̂(Y∗b(θ), X)
∣∣ ,

where

∆̂(Y, X) =
1
ns

∑
i∈Ns

(
Xi,s − XY−1(Y(i)),s

)2

and

XY−1(Y(i)),s =
1

|Y−1(Y(i))| ∑
`∈Y−1(Y(i))

X`,s.

The quantity ∆̂(Y, X) measures the dispersion of the observed characteristics of the students who
are matched with the same college as student i. Then, we may take

fn(Y, Ỹ∗B(θ), X) = mn(Y, Ỹ∗B(θ), X) + m̃n(Y, Ỹ∗B(θ), X). (7)

This combination of two criteria attempts to capture potential deviation of θ from θ0 on two fronts:
comparison between observed characteristics of matches and predicted characteristics and comparison
between observed within-match characteristic dispersion and its predicted version. It is important
to note that it is not a priori ensured that using the two criteria instead of one improves the power
properties of the inference. However, Diamond and Agarwal (2017) demonstrated through simulations
that using a combination of criteria such as in (7) can sharpen the accuracy of inference.

5. Monte Carlo Simulation Studies

In this section, we investigate size and power properties of our simulation-based inference
procedure. We wish to infer the preference parameters of agents, θ = (θc, θs). For simplicity,
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our simulation design is such that every student and every college is acceptable to each other’s
side. Recall that the value of the college j to student i is given as

vs(i, j; εi,j, θc) = θcxj,c + εij,

and the value of a student j to the colleges’ is given as

vc(i; ηi, θs) = θsxi,s + ηi.

In the simulations, we choose xs,i and xc,j to be discrete, scalar random variables, drawing them
i.i.d. from the uniform distribution on {1, 2, 3}. The variables εij and ηi are drawn i.i.d. from N(0, 1)
and independently of one another and of the covariates. We consider the case that each college
has an equal number of positions, K and consider the performance of the inference procedure for
K ∈ {5, 10, 20}. For the simulations, we set the true value of the preference parameter to θ0 = (1, 1).
The simulation numbers R and B are chosen from {100, 500} and Monte Carlo simulation number is
set to be 1000.

We consider the test statistics in (5):

1
B

B

∑
b=1

max
xs ,xc

∣∣P̂(xs, xc; Y, X)− P̂(xs, xc; Y∗b(θ), X)
∣∣ ,

where
P̂(xs, xc; Y, X) =

1
ns

∑
i∈Ns

1{xi,s = xs, XY(i),c = xc}.

The test statistic compares the observed and predicted joint distribution of covariates between
matched agents.

The results are reported in Tables 1 and 2. The results in Table 1 are from using R = B = 100 and
those in Table 2 are from using R = B = 500. In general, the size and power properties of the inference
procedure are acceptable. There is little size distortion (particularly for K = 10 and K = 20), and the
rejection probabilities increase in the sample size for alternatives away from the true parameter value.
It is interesting to note that the results are not very different between the two tables. This means that
considering the substantial increase in the computational cost using a higher value of R, B, it appears
using R = B = 100 is just enough for practical purposes.

Table 1. Empirical Rejection Probabilities for Monte Carlo Inference on Preferences, R = B = 100.

θs θc
K = 5 K = 10 K = 20

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

0.5 n = 200 0.9870 0.8720 0.8180 0.9700 0.8340 0.7620 0.9470 0.7840 0.6680
n = 400 1.0000 0.9990 0.9920 1.0000 1.0000 0.9960 1.0000 0.9980 0.9810
n = 600 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.0 n = 200 0.2320 0.0640 0.1040 0.2430 0.0620 0.0830 0.2500 0.0470 0.1150
n = 400 0.4170 0.0340 0.0770 0.4360 0.0450 0.0970 0.5100 0.0500 0.1010
n = 600 0.6170 0.0580 0.0910 0.6290 0.0460 0.1040 0.6590 0.0510 0.1110

1.5 n = 200 0.0700 0.6820 0.9340 0.0790 0.6380 0.9210 0.0840 0.5890 0.9100
n = 400 0.1040 0.9660 0.9980 0.1350 0.9520 1.0000 0.1570 0.9150 0.9960
n = 600 0.1590 0.9990 1.0000 0.1810 0.9960 1.0000 0.2300 0.9940 1.0000

Notes: This table explores the size and power properties for the inference on student and college preferences
when each college has the same number of positions, K. The true value of the parameter is θs0 = θc0 = 1.
The simulation number is 1000. In each iteration of the simulation loop, we use 100 random draws to compute
the critical value.
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Table 2. Empirical Rejection Probabilities for Monte Carlo Inference on Preferences: R = B = 500.

θs θc
K = 5 K = 10 K = 20

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

0.5 n = 200 0.9860 0.8850 0.8300 0.9760 0.8370 0.7470 0.9520 0.7820 0.6670
n = 400 1.0000 0.9990 0.9960 1.0000 0.9990 0.9960 1.0000 0.9980 0.9860
n = 600 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.0 n = 200 0.2280 0.0610 0.0870 0.2530 0.0510 0.0910 0.2400 0.0490 0.1110
n = 400 0.4230 0.0310 0.0690 0.4470 0.0530 0.0960 0.4940 0.0510 0.0920
n = 600 0.6280 0.0570 0.0880 0.6250 0.0470 0.0960 0.6640 0.0450 0.1110

1.5 n = 200 0.0650 0.6820 0.9510 0.0710 0.6500 0.9210 0.0910 0.5990 0.9200
n = 400 0.1010 0.9650 0.9980 0.1260 0.9520 1.0000 0.1590 0.9150 0.9960
n = 600 0.1540 0.9990 1.0000 0.1710 0.9950 1.0000 0.2100 0.9930 1.0000

Notes: This table explores the size and power properties for inferring student and college preferences
when each college has the same number of positions, K. The true value of the parameter is θs0 = θc0 = 1.
The simulation number is 1000. In each iteration of the simulation loop, we use 500 random draws to compute
the critical value.

6. Conclusions

This paper proposes Monte Carlo inference for a large matching model. The main challenge for
inference in a large matching model is to deal with a complex form of cross-sectional dependence
created by strategic interdependence between agents. Being a finite sample inference method, Monte
Carlo inference can be used to deal with this difficulty, when the matching mechanism is explicitly
known to the econometrician. Although we do not prove the power properties of the inference as
the number of the agents grows, our Monte Carlo simulation suggest that the confidence intervals
will shrink as the sample sign grows, which would indicate an accumulation of information as the
number of agents grows.

Monte Carlo inference exhibits some limitations. First, the inference works only when the
matching process is fully parametrized. When the parameter is high dimensional, Monte Carlo
inference can be computationally costly. Second, it only applies to a situation where the econometrician
knows precisely the underlying matching mechanism. One may take a known stable matching
mechanism such as a Deferred-Acceptance mechanism as part of econometric specifications. However,
it would be desirable to pursue an empirical model which does not require a full specification of
a matching mechanism. This direction of research appears promising and is left to future work.
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Appendix A. Serial Dictatorship Algorithm

In this section, we provide a MATLAB code for serial dictatorship algorithm which returns a serial
dictatorship matching of students to college positions given heterogeneous student preferences and
homogeneous college preferences. Let us introduce the definition of variables.

• x_s, x_c: ns × 1 vector of student characteristics and nc × 1 vector of college characteristics.
• theta_s, theta_c: scalar student and college preference parameters.
• N_s, N_c: number of students and colleges.
• student_score: ns × 1 vector of college preferences over students, based on theta_s, x_s and

standard normal random variables.
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• coll_rank: The indices associated with the preferred students of colleges. For example,
coll_rank(1) is the index of the most preferred student according to colleges.

• val_ji: nc × ns matrix whose (j, i) element is associated with the value that student i places on
college j based on theta_c, x_c and standard normal random variables.

• pos_vec: ns × 1 vector whose ith element says the college associated with the ith college position.
For example, if pos_vec= [1, 1, 2, 2, 3]′, it means that there are three colleges, where college 1 and
2 each have two positions and college 3 has 1.

• val_ji_pos is an ns × ns matrix whose(j, i) element is the value that student i has for position j.
• val_fv: ns × ns matrix whose (j, r) value is the value that the student ranked r highest according

to coll_rank has for college position j.
• matching: ns × 1 vector, where matching(i)= j means student i ∈ {1, ..., ns} is matched with

college position j ∈ {1, ..., ns}.

The following MATLAB code of function serial_dictatorship returns matching given theta_s
theta_c, x_c, x_s, N_s, N_c, and pos_vec when the colleges’ ranking of students is based on students’
score generated from a model with additive normal errors. One can change this specification in the
code for alternative specification of the way colleges rank students.

function matching =serial_dictatorship(theta_s, theta_c, x_c, x_s, N_s, N_c,pos_vec)

student_score = theta_s*x_s + normrnd(0,1,N_s,1);
[~,coll_rank] = sort(student_score,’descend’);

val_ji=repmat((theta_c*x_c),[1 N_s]) + normrnd(0,1,N_c,N_s);
val_ji_pos=val_ji(pos_vec,:);
val_fv=val_ji_pos(:,coll_rank);
inverse_matching=zeros(N_s,1);
matching=inverse_matching;
id=1:N_s;

for i=1:N_s
[~,index]=max(val_fv(:,i));
inverse_matching(coll_rank(i))=index;
val_fv(index,:)=-inf;

end

matching(inverse_matching)=id;
end
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