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Abstract: This paper considers methods of estimating a static correlated random coefficient model
with panel data. We mainly focus on comparing two approaches of estimating unconditional mean
of the coefficients for the correlated random coefficients models, the group mean estimator and
the generalized least squares estimator. For the group mean estimator, we show that it achieves
Chamberlain (1992) semi-parametric efficiency bound asymptotically. For the generalized least
squares estimator, we show that when T is large, a generalized least squares estimator that ignores
the correlation between the individual coefficients and regressors is asymptotically equivalent to
the group mean estimator. In addition, we give conditions where the standard within estimator
of the mean of the coefficients is consistent. Moreover, with additional assumptions on the
known correlation pattern, we derive the asymptotic properties of panel least squares estimators.
Simulations are used to examine the finite sample performances of different estimators.
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JEL Classification: C13; C33

1. Introduction

One useful tool for reducing real-world details for econometric modeling is through “suitable”
aggregations of micro data. For aggregation not to distort the fundamental behavioral relationships
between the micro data and aggregate data, certain “homogeneity” conditions must hold between the
micro units (e.g., Hsiao et al. 2005; Pesaran 2003; Stoker 1993; Theil 1954). However, the “homogeneity”
assumption is often rejected by empirical investigators (e.g., Kuh 1963; Hsiao and Tahmiscioglu 1997).
On the other hand, most policy makers are only interested in the average relationships of the
population, not the individual relationship. Random coefficients formulation can be a useful tool to
accommodate the “heterogeneity” among micro units and policy makers’ desire to find the average
relationship (e.g., Hsiao et al. 1993).

Standard random coefficients models assume the variation of coefficients are independent of
the variation of regressors (e.g., Hsiao 1996; Hsiao and Pesaran 2008). In recent years, a great deal
of attention has been devoted to the correlated random coefficients model. For instance, in the
human capital literature, let the dependent variable y denote the logarithm of earnings and the
explanatory variable x denote the years of schooling; the coefficient β denotes the rate of return. It is
possible that the return to schooling declines with the level of schooling. It is also plausible that
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there are unmeasured ability or motivational factors that affect the return to schooling and are also
correlated with the level of schooling (e.g., Card 1995; Heckman and Vytlacil 1998; Heckman et al. 2006;
Heckman et al. 2010). Particularly, Heckman and Vytlacil (1998) propose an instrumental variable
method for the population mean of slope coefficients but not the intercept in the cross sectional
correlated random coefficients model. They require the existence of both instrumental variables for the
regressors and random coefficients.

Many people have worked on correlated random coefficients panel data models. For instance,
Chamberlain (1992) showed how to apply his general result on the semiparametric efficiency bound to
a random coefficients panel model as an example. The model considered in Chamberlain (1992) also
allows for time varying parameters, which is more general than our model. However, the expression
of efficient bound obtained using Chamberlain (1992)’s formulas are different from the expression
obtained using the direct derivation. We show, in this paper, that they are, indeed, exactly the same.
Due to the inclusion of the time varying parameters, Chamberlain (1992) requires the number of time
periods T is greater than the number of random coefficients K. Otherwise, the information matrix of the
time varying coefficients is singular. Graham and Powell (2012) further considered the situation when
T = K, and proposed a novel “irregular” method that leads to consistent estimation. Their approach
assumes the existence of panel data with two subpopulations, where one corresponds to units whose
regressor values do not change across periods and the other changes across periods. Arellano and
Bonhomme (2012) discuss the identification of the distribution of random coefficients conditional on
the values of the regressors, extending the idea from Chamberlain (1992). Chernozhukov et al. (2013)
consider more general nonseparable panel models that allow for correlated random coefficients model
as a special case.

In this paper, we consider the parametric identification and estimation of the unconditional mean
of the random coefficients using panel data when the regularity conditions hold. Two approaches are
considered; the approach of ignoring the correlations between the coefficients and regressors and the
approach of explicitly modeling the correlations between the coefficients and regressors.

The rest of the paper is organized as follows. We discuss the estimation of the unconditional
mean of the random coefficients with panel data in Sections 2 and 3. Section 2 considers the approach
without explicitly modeling the pattern of correlations. Section 3 considers the approach with explicit
assumption about the correlations between the coefficients and regressors. Section 4 provides Monte
Carlo results of the different estimators in a finite sample. Concluding remarks are in Section 5.

2. Panel Parametric Approaches without Explicit Assumption about the Correlations between
Coefficients and Regressors

When only cross-sectional data are available, the identification conditions of average effects for a
correlated random coefficients model require the existence of instrumental variables, which are very
stringent and may not be satisfied for many data sets. However, when panel data are available, it is
possible to obtain a consistent estimator of the population mean of random coefficients without the
existence of instrumental variables.

Suppose there are T time series observations of (yit, xit)t=1,...,T for each individual i. Let yi and
xi be T× 1 vector and T× K matrix with typical row elements given by yit and x>it = (xit,1, . . . , xit,K),
respectively, for i = 1, 2, . . . , N. Also, let βi = (βi1, . . . , βiK)

>. We have

yi = xiβi + ui, i = 1, . . . , N. (1)

Let ui = (ui1, . . . , uiT)
>, and we assume ui is iid across i, with E(ui|xi) = 0 and E(uiu>i |xi) = Σxi

(a T × T matrix). We assume that βi is iid with mean β and variance Var(βi) = ∆. Then we can write

βi = β + αi, (2)
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where
E(αi) = E(βi − β) = 0,

and

Cov(βi, β j) = E(αiα
>
j ) =

{
∆, if i = j,
0, if i 6= j.

(3)

Substituting βi = β + αi into (1) yields

yi = xiβ + xiαi + ui = xiβ + vi, (4)

where vi = ui + xiαi.
The standard random coefficients model assumes that αi is a random draw from a population

with E(αi|xi) = 0. Then

E(vi|xi) = E(xiαi + ui|xi) = 0, (5)

and

E(viv>i |xi) = xi∆x>i + σ2
u . (6)

Therefore, a consistent estimator of β can be obtained by simply regressing Y on X, where Y
and X are of dimensions N × 1 and N × K, respectively. An efficient estimator of β can be obtained
by applying the generalized least squares estimator (GLS) (or feasible GLS) (e.g., Hsiao 2003, chp. 6;
Swamy 1970).

When E(αi|xi) = 0 is violated, which is very common in practice, there exist the correlations
between the coefficients and regressors, which is our main focus in the paper. We discuss different
conditions and estimations in the following subsections.

2.1. Group Mean Estimator

In this subsection we impose the following mild conditional moment restriction:

E(ui|xi) = 0. (7)

Note that (7) is weaker than E(ui|xi, βi) = 0 as we do not require that αi and ui are orthogonal
with each other. Equation (7) implies the following unconditional moment condition

E((x>i xi)
−1x>i ui) = 0. (8)

When (x>i xi) is invertible (which requires that T ≥ K), then from (1) one obtains (x>i xi)
−1x>i ui =

(x>i xi)
−1x>i yi − βi. Taking expectation yields the unconditional moment condition,

E[(x>i xi)
−1x>i yi − β] = 0. (9)

Moment condition (9) leads to the estimator of β given by

β̂GM =
1
N

N

∑
i=1

β̂i. (10)

where β̂i = (x>i xi)
−1x>i yi. Estimator (10) is the group mean (GM) estimator of Pesaran and Smith

(1995) or Hsiao et al. (1999).
Under certain regularity conditions, we show that the GM estimator achieves the semiparametric

efficiency bound derived in Chamberlain (1992). Note that (αi = βi − β)

β̂i − β = αi + (x>i xi)
−1x>i ui. (11)
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Then

Var(β̂i) = Var(αi) + E[(x>i xi)
−1x>i Σxi xi(x>i xi)

−1] + E[αiu>i xi(x>i xi)
−1] + E[(x>i xi)

−1x>i uiα
>
i ]

≡ Ω. (12)

Particularly, in the uncorrelated case, we impose the restriction that

E(ui|xi, αi) = 0. (13)

Then the covariance term in (12) drops out. Moreover, if we further impose the conditional
homoskedastic error assumption:

Var(ui|xi) = Var(ui) = σ2
u IT . (14)

Then Var(β̂i) is simplified to

∆ + σ2
uE[(x>i xi)

−1], (15)

where ∆ = Var(αi).
The following proposition describes the asymptotic behavior of β̂GM.

Proposition 1. If E(ui|xi) = 0 and T ≥ K, then

(i) The group mean estimator defined in (10) is
√

N-consistent and asymptotically normally distributed,
specifically, we have √

N(β̂GM − β)
d→ N(0, Ω), (16)

where Ω is defined in (12).
(ii) β̂GM is semiparametrically efficient.
(iii) If conditions (13) and (14) also hold, then the asymptotic variance Ω can be simplified to Ω = ∆ +

σ2
uE[(x>i xi)

−1].

Proof. (i) β̂GM = β + 1
N ∑N

i=1[αi + (x>i xi)
−1x>i ui]. Hence

√
N(β̂GM − β) = 1√

N ∑N
i=1 wi, where wi =

αi + (x>i xi)
−1x>i ui is i.i.d. with mean zero and finite variance Ω. Proposition 1(i) follows from the

Lindeberg’s central limit theorem. (iii) follows from (i), (13) and (14) directly. We postpone the proof
for (ii) to the Appendix A.

Remark 1. Note that (16) holds without imposing any restriction on the correlations between xi and αi, and ui
and αi. The random coefficient αi can be correlated with both xi and ui with arbitrary correlation patterns. Also,
since xi can contain a constant (an intercept), the conventional fixed effects model is included in the correlated
random coefficient model as a special case.

2.2. Generalized Least Squares Estimator

In this subsection we consider a generalized least squares (GLS) estimator of β under the
assumption that Cov(βi, xi) = 0 and compare the relative efficiency of the group mean estimator
and the GLS estimator. Under the assumption that

E(αi|xi) = 0. (17)

and the assumptions of (13) and (14), i.e., E(ui|xi, αi) = 0 and Var(ui|xi) = σ2
u IT , then the best linear

unbiased estimator (BLUE) of β is the generalized least squares estimator (e.g., Hsiao 2003, chp. 6):
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β̂GLS =

(
N

∑
i=1

x>i (xi∆x>i + σ2
u IT)

−1xi

)−1( N

∑
i=1

x>i (xi∆x>i + σ2
u IT)

−1yi

)

=
N

∑
i=1

Wi β̂i, (18)

where

Wi =

{
N

∑
i=1

[∆ + σ2
u(x>i xi)

−1]−1

}−1

[∆ + σ2
u(x>i xi)

−1]−1

is a positive definite weight matrix satisfying ∑N
i=1 Wi = 1.

Contrary to the group mean estimator (10) that takes the simple average of the individual least
squares estimator, β̂i, the GLS estimator takes the weighted average of β̂i.

By noting that yi = xiβi + ui = xiβ + εi, where εi = xiαi + ui, we define Y(NT)×1 = (y>1 , ..., y>N)
>,

X(NT)×K = (x>1 , ..., x>N)
> and ε(NT)×1 = (ε>1 , ..., ε>N)

>. Then we have Var(ε) = Ω(NT)×(NT) = Block−
diag(Σi) is a block-diagonal matrix with the ith block diagonal element Σi = xi∆x>i + σ2

u IT . Hence,

β̂GLS = (X>Ω−1X)−1X>Ω−1Y

=

(
N

∑
i=1

x>i (xi∆x>i + σ2
u IT)

−1xi

)−1( N

∑
i=1

x>i (xi∆x>i + σ2
u IT)

−1yi

)

= β +

(
N−1

N

∑
i=1

x>i (xi∆x>i + σ2
u IT)

−1xi

)−1(
N−1

N

∑
i=1

x>i (xi∆x>i + σ2
u IT)

−1εi

)
. (19)

Then by the law of large numbers and the central limit theorem arguments and by noting that
Var(εi|xi) = xi∆x>i + σ2

u IT , we obtain

√
N(β̂GLS − β)

d→ AN(0, A−1) = N(0, A), (20)

where
A = {E[x>i (xi∆x>i + σ2

u IT)
−1xi]}−1. (21)

Clearly, β̂GLS is not feasible. A feasible GLS estimator is given with ∆ and σ2
u replaced by

∆̂ = N−1
N

∑
i=1

(β̂i − β̂GM)(β̂i − β̂GM)> − σ̂2
u

N

N

∑
i=1

(x>i xi)
−1,

σ̂2
u = N−1(T − K)−1

N

∑
i=1

T

∑
t=1

(yit − x>it β̂i)
2,

where β̂i is given in (10). The consistency of ∆̂ and σ̂2
u can be proved similarly as that of ∆̂∗ and σ̃2

u in
the Appendix A.

Remark 2. Note that without condition that E(αi|xi) = 0 of (17), β̂GM is still a root-N consistent estimator for
β as shown in Proposition 1 while β̂GLS becomes inconsistent when T is finite due to E(εi|xi) = xiE(αi|xi) 6= 0.
However, when T is large, by noting that x>i xi/T = E(xitx>it )+Op(1/

√
T) under the strong mixing condition

and the conditions given in Theorem 24.6 in Davidson (1994), the weight matrix Wi is close to a constant matrix:
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Wi =

{
1
N

N

∑
i=1

[∆ +
1
T

σ2
u(x>i xi/T)−1]−1

}−1
1
N
[∆ +

1
T

σ2
u(x>i xi/T)−1]−1

=

{
1
N

N

∑
i=1

[∆ +
1
T

σ2
u [E(xitx>it )]

−1]−1

}−1
1
N
[∆ +

1
T

σ2
u [E(xitx>it )]

−1]−1 + Op

(
1

NT3/2

)
≡ 1

N
+ Op

(
1

NT

)
. (22)

It is easy to see that β̂GLS = N−1 ∑N
i=1 β̂i +Op((NT)−1 ∑N

i=1 β̂i) is a consistent estimate for β = E(βi).

The next proposition compares the relative efficiency of β̂GLS and β̂GM by comparing their
asymptotic variances: Avar(

√
Nβ̂GLS) = {E[x>i (xi∆x>i + σ2

u IT)
−1xi]}−1 and Avar(

√
Nβ̂GM) = Ω =

∆ + σ2
uE[(x>i xi)

−1].

Proposition 2. Assuming that T is small (but still T ≥ K) and that conditions (13), (14) and (17) hold.
Then Avar(

√
Nβ̂GLS) ≤ Avar(

√
Nβ̂GM).

The proof of Proposition 2 is given in the Appendix A.
Proposition 2 says that, under some additional assumptions, β̂GLS is asymptotically more efficient

than β̂GM. This is in no contradiction with Proposition 1(ii) because the result of Proposition 1 does
not require any of the conditions (13), (14) and (17) to hold. With additional conditions, β̂GM is no
longer a semiparametric efficient estimator of β. However, these additional conditions, especially
condition (17), are quite restrictive.

It was shown by Hsiao et al. (1999) that when T is large, β̂GLS becomes a consistent estimator for
β without needing the restrictive condition (17).

Proposition 3. Under conditions (13) and (14), if both N, T → ∞ and N1/2/T → 0,
√

N(β̂GLS − β̂GM) =

op(1).

In other words, if both N and T are large and if limN,T→∞(N1/2/T)→ 0, contrary to the case of
only cross-sectional data are available, one can ignore the issue of possible correlations between αi
and xi (i.e., we allow for E(αi|xi) 6= 0) and simply treat the model as if βi and xi are uncorrelated and
apply the conventional GLS (e.g., Hsiao 2003, eq. (6.2.6)).

2.3. Within Estimator

If T < K, neither the GM, nor the GLS can be implemented. However, the standard within
estimator can still yield a consistent estimator of β in certain cases. Let ȳi· =

1
T ∑t yit and x̄i· =

1
T ∑t xit.

The within estimator (or fixed effects estimator) first takes the deviation of each observation from its
time series mean, then regress (yit − ȳi·) on (xit − x̄i·) (e.g., Hsiao 2003, chp. 3)). Model (1) leads to

(yit − ȳi·) = (xit − x̄i·)
>β + (xit − x̄i·)

>αi + (uit − ūi·), i = 1, . . . , N, t = 1, . . . , T, (23)

where ūi· = T−1 ∑t uit. The fixed effects (FE) estimator of β is the least squares estimator of (23).
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β̂FE =

[
∑

i
∑

t
(xit − x̄i·)(xit − x̄i·)

>
]−1 [

∑
i

∑
t
(xit − x̄i·)(yit − ȳi·)

]

= β +

[
∑

i
∑

t
(xit − x̄i·)(xit − x̄i·)

>
]−1

×
[
∑

i
∑

t
(xit − x̄i·)(xit − x̄i·)

>αi + ∑
i

∑
t
(xit − x̄i·)(uit − ūi·)

]
. (24)

In general, (24) is inconsistent. However, if the data generating process of xit takes the form:

xit = µi + ∑
j

Bjεi,t−j, ∑ ‖Bj‖ < ∞, (25)

where µi is iid with mean a and variance Σµ and εit is iid across both i and over t with

E(εit|αi) = E(εis|αi) ≡ di for all t, s = 1, . . . , T. (26)

Then (23) is consistent. To see this, note that under (25) and (26), we have

E(xit|αi) = E(µi|αi) + ∑
j

BjE(εi,t−j|αi) = δi + di ∑
j

Bj ≡ µ∗i , (27)

where δi = E(µi|αi) and di = E(εi,t−j|αi).
Let

xit = E(xit|αi) + ηit ≡ µ∗i + ηit, (28)

where ηit = xit − µ∗i = (µi − E(µi|αi)) + ∑j Bj(εi,t−j − E(εi,t−j|αi)). Then xit − x̄i· = ηit − η̄i·, where
m̄i· =

1
T ∑T

t=1 mit (m can be x or η). Also, from E(ηit − η̄i·|αi) = 0, we know that E(xit − x̄i·|αi) ≡
E(ηit − η̄i·|αi) = 0. If in addition the following conditional homoskedastic error assumption holds:

E[(xit − x̄i·)(xit − x̄i·)
>|αi] = E[(ηit − η̄i·)(ηit − η̄i·)

>|αi] = C, (29)

where C = E[(ηit − η̄i·)(ηit − η̄i·)
>] is a K× K nonsingular constant matrix. Then

1
NT ∑

i
∑

t
(xit − x̄i·)(xit − x̄i·)

>αi
p→ C E[αi] = 0 (30)

as N → ∞. Therefore

Proposition 4. Under (25) and (29), the conventional fixed effects estimator is
√

N-consistent and
asymptotically normally distributed as N → ∞. The asymptotic covariance matrix of (24) can be approximated
using Newey-West heteroscedasticity-autocorrelation consistent formula.

When (xit, αi) has a joint elliptical distribution, the conditional homoscedasticity of E[(xit −
x̄i·)(xit − x̄i·)

>|αi] = C also holds (e.g., Fang and Zhang 1990; Gupta et al. 1993). Therefore,

Proposition 5. When (xit, αi) are jointly elliptically distributed, or conditional homoscedasticity of (xit − x̄i·)

of (29) holds, the FE estimator (24) is
√

N-consistent and asymptotically normally distributed.

Another case where the fixed effects estimator can be consistent is that (xit, αi) are jointly
symmetrically distributed. Since xit − x̄i· has mean equal to zero, (xit − x̄i·, αi) will be symmetrically

distributed around (0, 0), then 1
NT ∑i ∑t(xit− x̄i·)(xit− x̄i·)

>αi
p→ 0 even though xit has mean different

from zero. We have
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Proposition 6. Under (25), (26) and if (xit, αi) are symmetrically distributed, the fixed effects estimator (24) is√
N consistent and asymptotically normally distributed.

Wooldridge (2005) also discussed conditions for the validity of the fixed effects estimator.
Although the conventional FE estimator (24) can yield a consistent estimator of β, if xit contains
time-invariant variables, the mean effects of time-invariant variables cannot be identified by the
conventional fixed effects estimator. Moreover, the FE estimator only makes use of the within (group)
variation. Since, in general, the between group variation is much larger than within group variation,
the FE estimator could also mean a loss of efficiency.

3. Panel Least Squares or Generalized Least Squares Estimator

If αi is correlated with xi, i.e., E(αi|xi) 6= 0, we can re-write (1) as

yit = x>it β + x>it E(αi|xi) + vit, (31)

where vit = uit + x>it wi, wi = αi − E(αi|xi). Equation (31) is no longer a linear function of xit.
For instance, suppose

E(αi|xi) = a + Bvec(x>i ), (32)

as assumed by Mundlak (1978). Noting that

E(αi) = E[E(αi|xi)] = a + BE(vec(x>i )) = 0, (33)

which implies that a = −BE(vec(x>i )). Hence, (32) can be written as

E(αi|xi) = B(vec(x>i )− E(vec(x>i ))). (34)

Equation (31) then becomes

yit = x>it β + x>it Bvec(x>i − E(x>i )) + vit, i = 1, . . . , N, t = 1, . . . , T. (35)

Let vi = (vi1, . . . , viT)
>. Then E(vi|xi) = 0 and E(viv>i ) = E(xi∆∗x>i ) + σ2

u IT where ∆∗ =

E(wiw>i ) = E(wiw>i |xi). Therefore, the least squares or the generalized least squares estimator of β is√
N consistent provided

1
N

N

∑
i=1

E

(
x>i xi x>i (xi ⊗ (vec((xi − x̄·)>))>)

(x>i ⊗ vec((xi − x̄·)>))xi (x>i ⊗ vec((xi − x̄·)>))(xi ⊗ (vec((xi − x̄·)>))>)

)
(36)

is a full rank matrix, where x̄· = N−1 ∑N
i=1 xi.

Similar reasoning can be applied if E(αi|xi) is a higher order polynomial of xi, say,

E(αi|xi) = a + Bvec(x>i ) + Cvec(x>i ⊗ x>i ). (37)

Then from E[E(αi|xi)] = 0, we get a = −BE(vec(x>i ))− CE[vec(x>i ⊗ x>i )], it follows that

E(αi|xi) = B[vec(x>i − E(x>i ))] + C[vec(x>i ⊗ x>i − E(x>i ⊗ x>i ))]. (38)

Substituting (38) into (31) we have

yit = x>it β + (x>it ⊗ (vec((xi − E(xi))
>))>)vec(B>) + (x>it ⊗ (vec([(xi ⊗ xi)− E(xi ⊗ xi)]

>))>)vec(C>) + vit, (39)
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where vit = x>it ωi + uit and ωi = αi − E(αi|xi). By construction, vit is uncorrelated with the regressor.
Therefore, the least squares (LS) or the feasible generalized least squares (FGLS) estimator of (39) yields
a
√

N consistent and asymptotically normally distributed estimator of β when x̄· and N−1 ∑N
i=1 xi ⊗ xi

are substituted in lieu of E(xi) and E(xi ⊗ xi) in (39).
Next, we derive the asymptotic distribution of β̂M,PLS which is the estimator for β in (35).

The feasible GLS type estimator β̂M,PLS of β in (35) can be constructed as

β̂M,PLS

=
(

X>Ω̂−1X− X>Ω̂−1X1(X1Ω̂−1X1)
−1X>1 Ω̂−1X

)−1 (
X>Ω̂−1Y− X>Ω̂−1X1(X1Ω̂−1X1)

−1X>1 Ω̂−1Y
)

,

X1 = (x>1 ⊗ vec((x1 − x̄·)>), . . . , x>N ⊗ vec((xN − x̄·)>))>, x̄· = N−1
N

∑
i=1

xi,

Ω̂ = diag{Σ̂1, . . . , Σ̂N}, Σ̂i = xi∆̂
∗x>i + σ̃2

u IT ,

where X and Y are defined in (19), and

σ̃2
u =

[
σ̃2

GM − (NT)−1
N

∑
i=1

T

∑
t=1

x>it ṼGMxit

]
/

{
1− (NT)−1

N

∑
i=1

T

∑
t=1

x>it Ê[(x>i xi)
−1]xit

}
,

Ê[(x>i xi)
−1] = N−1

N

∑
i=1

(x>i xi)
−1,

σ̃2
GM = (NT)−1

N

∑
i=1

T

∑
t=1

(yit − x>it β̂GM)2, ṼGM = N−1
N

∑
i=1

(β̂i − β̂GM)(β̂i − β̂GM)>,

∆̂∗ = ṼGM −
σ̃2

u
N

N

∑
i=1

(x>i xi)
−1 − B̂2 1

N

N

∑
i=1

(
vec

(
x>i −

1
N

N

∑
i=1

x>i

))2

,

β̂i is given in (10), and B̂ is the OLS estimator of B in (35).
We have the following proposition

Proposition 7. Under conditions (13), (14) and (34), we obtain

√
N(β̂M,PLS − β)

d→ N(0, VM,PLS), (40)

where

VM,PLS = Var[E(αi |xi)] +

(
E[x>i Σ−1

i xi ]− E[x>i Σ−1
i (xi ⊗ (vec((xi − Exi)

>))>)]

×
(

E[(xi ⊗ (vec((xi − Exi)
>))>)>Σ−1

i (xi ⊗ (vec((xi − Exi)
>))>)]

)−1
E[(xi ⊗ (vec((xi − Exi)

>))>)>Σ−1
i xi ]

)−1

,

Σi = xi∆∗x>i + σ2
u IT , ∆∗ = E(wiw>i ), wi = αi − E(αi |xi).

The proof is given in the Appendix A.

Remark 3. From the total variance decomposition,

∆ = Var(αi) = Var[E(αi|xi)] + E[Var(αi|xi)].

Furthermore,

Var[E(αi|xi)] + E[Var(αi|xi)] = Var[E(αi|xi)] + E[∆∗]
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under the assumption that E(αi|xi) has a known functional form, for example as given by (34) or (38). Therefore,
the asymptotic variance in Proposition 1(iii) can be rewritten as

Ω = ∆ + σ2
uE[(x>i xi)

−1] = Var[E(αi|xi)] + E[∆∗] + σ2
uE[(x>i xi)

−1].

By contrast, from Proposition 7 with some algebraic operations,

VM,PLS = Var[E(αi |xi)] +

(
E[x>i Σ−1

i xi ]− E[x>i Σ−1
i (xi ⊗ (vec((xi − Exi)

>))>)]

×
(

E[(xi ⊗ (vec((xi − Exi)
>))>)>Σ−1

i (xi ⊗ (vec((xi − Exi)
>))>)]

)−1
E[(xi ⊗ (vec((xi − Exi)

>))>)>Σ−1
i xi ]

)−1

≥ Var[E(αi |xi)] +
(

E[x>i Σ−1
i xi ]

)−1
= Var[E(αi |xi)] + {E[∆∗ + σ2

u(x>i xi)
−1]−1}−1,

since E[x>i Σ−1
i (xi ⊗ (vec((xi − Exi)

>))>)]
(

E[(xi ⊗ (vec((xi − Exi)
>))>)>Σ−1

i (xi ⊗ (vec((xi − Exi)
>))>)]

)−1

E[(xi ⊗ (vec((xi − Exi)
>))>)>Σ−1

i xi] is positive definite. Compared with the group mean estimator, it is not

clear which estimator is more efficient, even though
(

E[x>i Σ−1
i xi]

)−1
= {E[∆∗ + σ2

u(x>i xi)
−1]−1}−1 ≤

E[∆∗] + σ2
uE[(x>i xi)

−1].

4. Monte Carlo Studies

We consider several data generating designs for the following correlated random
coefficients model

yit = βixit + uit, i = 1, . . . , N, t = 1, ..., T, (41)

βi = β + αi, β = 1, (42)

and uit is a random draw from the standard normal distribution, and is independent with (xit, αi) for
all simulation designs. The regressor xit and the random coefficient αi are correlated with each other
and are generated according to the following sample designs:

Design 1: Randomly draw
αi
vi0
vi1
vi2
vi3

 ∼ N




0
0
0
0
0

 ,


1 0.2 0.2 0.2 0.2

0.2 0.5 0 0 0
0.2 0 0.5 0 0
0.2 0 0 0.5 0
0.2 0 0 0 0.5



 , (43)

then generate xit = vit + 0.3vi,t−1.

Design 2: Randomly draw (αi, vi0, vi1, vi2, vi3) from independent multivariate normal as in (43),
then generate xit = 2 + vit + vi,t−1.

Design 3: Randomly draw αi from a uniform distribution (−0.75, 0.75). Then generate

xit = αi + wit, (44)

where wit = 1 + χ2(5), where χ2(5) is a random draw from a chi-square distribution with five degrees
of freedom.

Design 4: Randomly draw αi from uniform distribution (−0.75, 0.75) and wit from 1 + χ2(5) where
χ2(5) is chi-square distribution with five degrees of freedom. Then generate

xit = αi + wit + 0.3wi,t−1. (45)
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Designs 5 and 6: Generate αi from Gamma(1,1), then generate xit according to (44) and (45),
respectively.1

Designs 7 and 8: Generate αi from Beta(1,3), then generate xit according to (44) and (45), respectively.

Designs 9 and 10: Generate xit = 1 + αiwit, where αi is from Gamma(1,1) and Beta(1,3), respectively.

Designs 1 and 2 generate βi and xit from uniformly jointly symmetric distribution with mean
(1,0), and mean (1,2), respectively. Designs 3–8 generate βi and xit from correlated but not symmetrical
distributions. Designs 9 and 10 yield nonlinearly correlated βi and xit.

We examine the finite sample performances of the least squares estimator (LS), the conventional
fixed effects estimator, (24), (FE), the panel least squares estimator, (35), (PLS1), (39), (PLS2), the group
mean estimator, (10), (GM), and the generalized least squares estimator, (18), (GLS).

We consider a case where T = 3 and 20, and N = 50, 100, and 200, respectively. We replicate the
experiments two thousand times. The simulation results are consistent with the theoretical results.
Because the results for T = 3 or T = 20 are similar, we only report the results for T = 3. The results
for T = 20 are available upon request. Tables 1 and 2 provide the bias and mean squared errors of
our estimators. As expected, when (αi and xit) are generated from symmetric distribution with mean
(0,0) (Design 1), the LS estimator yields unbiased estimator. However, if (αi and xit) are generated from
symmetric distribution with mean (0,2) (Design 2) or nonsymmetric distribution (Design 3), the LS
estimator yields biased estimates of β(=1). Most other estimators will work well if there exhibits linear
correlations between the coefficients and regressors except the LS estimator. Performances under
nonlinear correlations (Designs 9 and 10) will tell them apart. The GM always enjoys the highest
efficiency, which is consistent with our theories. The panel least squares estimators PLS1 and PLS2
could pick up the linear correlations well but fail to do so in the nonlinear cases. Also, they create larger
biases to achieve smaller mean squared errors compared with the FE estimator. The GLS ignoring
the correlations between the coefficients and regressors would work when there are no correlations
or linear correlations, but fails when the correlation is nonlinear and T is small which can be seen
from the results of Designs 9 and 10. The conventional FE estimator is nearly unbiased if αi and xit
are symmetric (Designs 1 to 8), but is not consistent when the condition is not satisfied, and yields
larger mean squared errors than that of GM or GLS. From Table 2 we see that for design 9, only GM
estimator exhibits consistency result, while all other estimators’ estimation MSEs do not decrease as
sample size N increases.

Table 1. The Bias of the LS, FE, PLS1, PLS2, GM and GLS.

N LS FE PLS1 PLS2 GM GLS

Design 1
50 −0.0114 −0.0115 −0.0095 −0.0090 −0.0076 −0.0115

100 0.0048 0.0029 0.0033 0.0032 0.0057 0.0043
200 −0.0021 −0.0005 −0.0015 −0.0015 0.0004 −0.0015

Design 2
50 0.3084 −0.0087 −0.0031 −0.0054 −0.0031 0.1613

100 0.3213 0.0034 0.0054 0.0039 0.0043 0.1835
200 0.3198 −0.0011 0.0016 −0.0002 −0.0003 0.1845

Design 3
50 0.0452 −0.0043 −0.0006 −0.0006 −0.0020 0.0185

100 0.0485 −0.0004 0.0038 0.0036 −0.0001 0.0235
200 0.0477 −0.0016 0.0039 0.0036 −0.0007 0.0222

1 Note that when αi is generated from Gamma(1,1) and Beta(1,3), the mean of αi is 1 and 0.25, respectively. Therefore, β in
these cases will be 2 and 1.25, respectively.
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Table 1. Cont.

N LS FE PLS1 PLS2 GM GLS

Design 4
50 0.0376 −0.0012 0.0028 0.0022 −0.0021 0.0150

100 0.0396 −0.0017 0.0054 0.0051 −0.0002 0.0173
200 0.0397 −0.0007 0.0059 0.0054 −0.0007 0.0182

Design 5
50 0.2600 0.0040 −0.0482 −0.0459 −0.0004 −0.0205

100 0.2610 −0.0020 −0.0518 −0.0516 −0.0022 0.0103
200 0.2669 0.0054 −0.0524 −0.0523 0.0002 0.0417

Design 6
50 0.2143 −0.0023 −0.0240 −0.0243 −0.0005 −0.0315

100 0.2149 −0.0008 −0.0252 −0.0265 −0.0022 0.0059
200 0.2191 0.0015 −0.0233 −0.0249 0.0002 0.0310

Design 7
50 0.0094 −0.0007 0.0011 0.0010 0.0005 0.0025

100 0.0102 0.0002 0.0013 0.0012 0.0006 0.0050
200 0.0097 0.0001 0.0011 0.0010 0.0001 0.0057

Design 8
50 0.0075 −0.0021 0.0014 0.0013 0.0005 0.0016

100 0.0082 −0.0003 0.0016 0.0015 0.0006 0.0038
200 0.0080 0.0001 0.0013 0.0012 0.0002 0.0046

Design 9
50 1.6667 1.6889 0.1461 0.1086 0.0004 0.0252

100 1.7484 1.7963 0.1763 0.1490 −0.0025 0.0262
200 1.8039 1.8913 0.2183 0.1856 0.0006 0.0237

Design 10
50 0.1782 0.2316 0.0263 0.0218 0.0011 0.0899

100 0.1830 0.2446 0.0296 0.0254 −0.0002 0.0918
200 0.1846 0.2472 0.0329 0.0296 −0.0002 0.0923

Table 2. The Mean Squared Errors of the LS, FE, PLS1, PLS2, GM and GLS.

N LS FE PLS1 PLS2 GM GLS

Design 1
50 0.0622 0.0636 0.0423 0.0420 0.0564 0.0542

100 0.0322 0.0304 0.0208 0.0208 0.0281 0.0283
200 0.0168 0.0162 0.0108 0.0107 0.0148 0.0148

Design 2
50 0.1231 0.0586 0.0235 0.0233 0.0215 0.0550

100 0.1178 0.0287 0.0119 0.0118 0.0113 0.0482
200 0.1097 0.0154 0.0061 0.0061 0.0055 0.0416

Design 3
50 0.0073 0.0109 0.0045 0.0044 0.0040 0.0071

100 0.0051 0.0054 0.0024 0.0024 0.0021 0.0041
200 0.0036 0.0028 0.0011 0.0011 0.0010 0.0023

Design 4
50 0.0063 0.0106 0.0043 0.0042 0.0039 0.0066

100 0.0042 0.0056 0.0023 0.0022 0.0020 0.0038
200 0.0029 0.0029 0.0011 0.0011 0.0009 0.0021

Design 5
50 0.1344 0.0579 0.0236 0.0228 0.0208 0.0360

100 0.1004 0.0282 0.0150 0.0144 0.0105 0.0210
200 0.0877 0.0143 0.0087 0.0085 0.0050 0.0131

Design 6
50 0.1036 0.0549 0.0220 0.0213 0.0207 0.0340

100 0.0739 0.0283 0.0123 0.0120 0.0105 0.0198
200 0.0621 0.0147 0.0062 0.0061 0.0050 0.0121

Design 7
50 0.0014 0.0029 0.0011 0.0011 0.0010 0.0014

100 0.0008 0.0016 0.0005 0.0005 0.0005 0.0008
200 0.0004 0.0007 0.0003 0.0003 0.0002 0.0004

Design 8
50 0.0012 0.0032 0.0010 0.0010 0.0009 0.0013

100 0.0006 0.0015 0.0005 0.0005 0.0004 0.0006
200 0.0003 0.0008 0.0002 0.0002 0.0002 0.0003
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Table 2. Cont.

N LS FE PLS1 PLS2 GM GLS

Design 9
50 3.4034 3.6486 0.1102 0.0695 0.0214 0.0223

100 3.4720 3.7850 0.0943 0.0693 0.0108 0.0113
200 3.4851 3.9348 0.0983 0.0713 0.0051 0.0059

Design 10
50 0.0350 0.0699 0.0034 0.0031 0.0026 0.0100

100 0.0353 0.0678 0.0024 0.0021 0.0014 0.0093
200 0.0349 0.0654 0.0018 0.0016 0.0007 0.0090

5. Concluding Remarks

Parameter heterogeneity among micro units is quite common and a random coefficients model
is a convenient way to take into account unobserved heterogeneity in pooling the panel data
(e.g., Hsiao and Tahmiscioglu 1997; Hsiao et al. 2005). However, as demonstrated by Card (1995),
Heckman and Vytlacil (1998), etc. the parameter variation could often be correlated. When only
cross-sectional data are available, it was shown by Heckman and Vytlacil (1998) that the consistent
estimate of the mean of the coefficients requires very stringent conditions. In this paper, we show that
when panel data are available, there is no need to find separate instruments for xit and βi. As long
as the time series dimension T is no smaller than the number of regressors K, we can accommodate
the correlations between the random coefficients (αi) and regressors (xi). Particularly, the group mean
estimator is consistent and achieves Chamberlain’s semiparametric efficiency bound. We also give
conditions under which the conventional fixed effects estimator and the generalized least squares
estimator lead to consistent estimates of the mean coefficient vector β = E(βi). Simulation results
strongly support our theoretical analysis. In particular, our Monte Carlo studies show that the group
mean estimate is, indeed, robust to a variety of patterns of correlations between the coefficients
and regressors.
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Appendix A

Proof of Proposition 1(ii). Applying Chamberlain (1992)’s result to our case, we have that the
semiparametric lower bound for the asymptotic variance of a regular semiparametric estimator
of β is given by

Vβ = Var[E(βi|xi)] + E[(x>i Var(yi|xi)xi)
−1]

Since E(βi|xi) = β + E(αi|xi), it implies Var[E(βi|xi)] = Var[E(αi|xi)]. Also,
Var(yi|xi) = Var(xiαi + ui|xi) = xiVar(αi|xi)x>i + Var(ui|xi) + xiE(αiu>i |xi) + E(uiα

>
i |xi)x>i because

Cov(αi, ui|xi) = E(αiu>i |xi). Thus, we have

Vβ = Var[E(αi|xi)] + E{(x>i [ xiVar(αi|xi)x>i + Var(ui|xi) + xiE(αiu>i |xi) + E(uiα
>
i |xi)x>i ] xi )

−1}

= Var[E(αi|xi)] + E(Mi), (A1)
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where

Mi =
(

x>i [xiVar(αi|xi)x>i + Var(ui|xi) + xiE(αiu>i |xi) + E(uiα
>
i |xi)x>i ]−1xi

)−1
.

Then from

Mi M−1
i = Mix>i [xiVar(αi|xi)x>i + Var(ui|xi) + xiE(αiu>i |xi) + E(uiα

>
i |xi)x>i ]−1xi = IT ,

post-multiplying both sides of the above equation by x>i (xix>i )−1, we get

Mix>i [xiVar(αi|xi)x>i + Var(ui|xi) + xiE(αiu>i |xi) + E(uiα
>
i |xi)x>i ]−1 = x>i (xix>i )−1.

Pre-multiplying both sides of the above equation by xi gives

xi Mix>i [xiVar(αi|xi)x>i + Var(ui|xi) + xiE(αiu>i |xi) + E(uiα
>
i |xi)x>i ]−1 = IT .

Then post-multiplying both sides of it by [xiVar(αi|xi)x>i + Var(ui|xi) + xiE(αiu>i |xi) +

E(uiα
>
i |xi)x>i ] leads to

xi Mix>i = xiVar(αi|xi)x>i + Var(ui|xi) + xiE(αiu>i |xi) + E(uiα
>
i |xi)x>i .

Pre-multiplying both sides by (x>i xi)
−1x>i leads to

Mix>i = Var(αi|xi)x>i + (x>i xi)
−1x>i Var(ui|xi) + E(αiu>i |xi) + (x>i xi)

−1x>i E(uiα
>
i |xi)x>i .

Post-multiplying both sides by xi(x>i xi)
−1 gives

Mi = Var(αi|xi) + (x>i xi)
−1x>i Var(ui|xi)xi(x>i xi)

−1 + E(αiu>i |xi)xi(x>i xi)
−1 + (x>i xi)

−1x>i E(uiα
>
i |xi). (A2)

Combining (A1) and (A2) we obtain

Vβ = Var[E(αi|xi)] + E(Mi)

= Var[E(αi|xi)] + E[Var(αi|xi)] + E[(x>i xi)
−1x>i Var(ui|xi)xi(x>i xi)

−1] (A3)

+E[ E(αiu>i |xi)xi(x>i xi)
−1 + (x>i xi)

−1x>i E(uiα
>
i |xi) ]

= Var(αi) + E[(x>i xi)
−1x>i Var(ui|xi)xi(x>i xi)

−1] + E[αiu>i xi(x>i xi)
−1] + E[(x>i xi)

−1x>i uiα
>
i ],

which is the same as Avar(
√

Nβ̂GM) = Ω given in (12). This completes the proof of
Proposition 1(ii).

Proof of Proposition 2. Under the condition of Proposition 2, we have Mi = ( x>i (xi∆x>i +

σ2
u IT)

−1xi )
−1. Then from Mi M−1

i = IT , one can show that Mi = ∆ + σ2
u(x>i xi)

−1 (e.g., Hsiao 2003,
p. 325)). Hence, E(Mi) ≡ E{[x>i (xi∆x>i + σ2

u IT)
−1xi]

−1} = ∆ + σ2
uE[(xix>i )−1].

Therefore, our asymptotic variance is Avar(
√

Nβ̂GLS) = A = [E(M−1
i )]−1 ≤ E[Mi] =

Avar(
√

Nβ̂GM) by applying diagonalization and utilizing Jansen’s inequality to each diagonal element.
That is, β̂GLS is asymptotically more efficient than β̂GM. This is because that β̂GLS uses additional
information (17) while β̂GM does not utilize this additional information.

However, if T is large, we have (x>i xi)/T = T−1 ∑T
t=1 xitx>it

p→ E(xitx>it ). Hence, [(x>i xi)/T]−1 =

[E(xitx>it )]
−1 + op(1). We have {E[(x>i xi)/T]−1} = [E(xitx>it ) + o(1)]−1 = [E(xitx>it )]

−1 + o(1) =

E{[(x>i xi)/T]−1}+ o(1). So that we have E(C−1
i ) = [E(Ci)]

−1 + o(1) (for large T), where Ci = x>i xi/T.
This explains why when T → ∞, we have Avar(

√
Nβ̂GLS) = Avar(

√
Nβ̂GM). This gives an intuitive

proof for Proposition 3.
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Proof of Proposition 7. First, we show that σ̃2
u and ∆̂∗ are consistent estimators of σ2

u and E(∆∗),
respectively. Let ũit = yit − x>it β̂GM, then it can be shown that

σ̃2
GM = (NT)−1

N

∑
i=1

T

∑
t=1

ũ2
it

= (NT)−1
N

∑
i=1

T

∑
t=1

[x>it (βi − β̂GM) + uit]
2

= (NT)−1
N

∑
i=1

T

∑
t=1

[x>it (βi − β̂GM)(βi − β̂GM)>xit + u2
it] + op(1)

= (NT)−1
N

∑
i=1

T

∑
t=1

[x>it (βi − β)(βi − β)>xit + u2
it] + op(1) (A4)

= (T)−1
T

∑
t=1

E[x>it (βi − β)(βi − β)>xit] + σ2
u + op(1)

= (T)−1
T

∑
t=1

E{x>it E[(βi − β)(βi − β)>|X]xit}+ σ2
u + op(1)

= (T)−1
T

∑
t=1

E{x>it ∆xit}+ σ2
u + op(1)

where the first op(1) term comes from E(ui|xi) = 0, and others used β̂GM = β + Op(N−1/2) and also
the law of large numbers.

Furthermore, we have

ṼGM = N−1
N

∑
i=1

(β̂i − β̂GM)(β̂i − β̂GM)>

= N−1
N

∑
i=1

[βi + (x>i xi)
−1x>i ui − β̂GM][βi + (x>i xi)

−1x>i ui − β̂GM]>

= N−1
N

∑
i=1

[βi − β + (x′i xi)
−1x>i ui][βi − β + (x>i xi)

−1x>i ui]
> + op(1) (A5)

= N−1
N

∑
i=1
{(βi − β)(βi − β)> + (x>i xi)

−1x>i u2
i xi(x>i xi)

−1] + op(1)

= E[(βi − β)(βi − β)>] + E[(x>i xi)
−1x>i E(u2

i |X)xi(x>i xi)
−1] + op(1)

= ∆ + σ2
uE[(x>i xi)

−1] + op(1) = Var[E(αi|xi)] + E[∆∗] + σ2
uE[(x>i xi)

−1] + op(1).

Combining (A4) and (A5), we have

σ̃2
u

p→ σ2
u , ∆̂∗

p→ E(∆∗).
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Next, we look at β̂M,PLS. We have

β̂M,PLS

=

(
N

∑
i=1

x>i Σ̂−1
i xi −

N

∑
i=1

x>i Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

(
N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

)−1

×
N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i xi

)−1( N

∑
i=1

x>i Σ̂−1
i yi −

N

∑
i=1

x>i Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

×
(

N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

)−1 N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i yi

)

= β +

(
N

∑
i=1

x>i Σ̂−1
i xi −

N

∑
i=1

x>i Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

(
N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

)−1

×
N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i xi

)−1( N

∑
i=1

x>i Σ̂−1
i [(xi ⊗ (vec((xi − E(xi))

>))>)vec(B>)]

−
N

∑
i=1

x>i Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

(
N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

)−1

(A6)

×
N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i [(xi ⊗ (vec((xi − E(xi))

>))>)vec(B>)]

)

+

(
N

∑
i=1

x>i Σ̂−1
i xi −

N

∑
i=1

x>i Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

(
N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

)−1

×
N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i xi

)−1( N

∑
i=1

x>i Σ̂−1
i vi −

N

∑
i=1

x>i Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

×
(

N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

)−1 N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i vi

)
= β + B vec(x̄>· − E(x>i ))

+

(
N

∑
i=1

x>i Σ̂−1
i xi −

N

∑
i=1

x>i Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

(
N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

)−1

×
N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i xi

)−1( N

∑
i=1

x>i Σ̂−1
i vi −

N

∑
i=1

x>i Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

×
(

N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i (xi ⊗ (vec((xi − x̄·)>))>)

)−1 N

∑
i=1

(xi ⊗ (vec((xi − x̄·)>))>)>Σ̂−1
i vi

)
.

Therefore,

VM,PLS

= lim
N→∞

Var(
√

Nβ̂M,GLS) = Var[E(αi |xi)] +

(
E[x>i Σ−1

i xi ]− E[x>i Σ−1
i (xi ⊗ (vec((xi − Exi)

>))>)] (A7)

×
(

E[(xi ⊗ (vec((xi − Exi)
>))>)>Σ−1

i (xi ⊗ (vec((xi − Exi)
>))>)]

)−1
E[(xi ⊗ (vec((xi − Exi)

>))>)>Σ−1
i xi ]

)−1

,

where Σi = xi∆∗x>i + σ2
u IT , ∆∗ = E(wiw>i ) and wi = αi − E(αi|xi), which implies

√
N(β̂M,PLS − β)

d→ N(0, VM,PLS).

This completes the proof of Proposition 7.
Moreover, let M∗i = (x>i Σ−1

i xi)
−1 = ( x>i (xi∆∗x>i + σ2

u IT)
−1xi )

−1. Similar as that in the proof of
Proposition 2(i) above, we have

M∗i = ∆∗ + σ2
u(x>i xi)

−1.
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