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Abstract: For modeling count time series data, one class of models is generalized integer
autoregressive of order p based on thinning operators. It is shown how numerical maximum
likelihood estimation is possible by inverting the probability generating function of the conditional
distribution of an observation given the past p observations. Two data examples are included
and show that thinning operators based on compounding can substantially improve the model fit
compared with the commonly used binomial thinning operator.
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1. Introduction

Modeling of count times series has been an active area of research (see Davis et al. 2015 and
Weiß 2018) for a few decades. There are applications in business and econometrics, health and
medical studies; the models can be applied in general situations for count response variables with time
dependence and covariates.

One class of count time series models is based on thinning operators, which are replacements
of the multiplication operator to maintain support on the non-negative integers. The theory for
count time series modeling with thinning operators has two approaches: (a) models with a specified
stationary univariate margin combined with operators that can yield Markov times series models
with a lag 1 serial correlation between 0 to 1; (b) models based on thinning operators applied to
p previous observations and a distribution for the innovation, so that in the stationary setting, the
autocorrelation functions have similar properties to the Gaussian case (except only positive serial
correlations are possible).

The general model of type (b) is generalized integer autoregressive of order p, denoted as
GINAR(p). For GINAR(p), mainly the binomial thinning operator has been used, whereas there are
many thinning operators proposed for models of type (a).

For models of type (a), there is an extension to include covariates if the distribution of the
innovation and the univariate margin are in the same infinitely divisible family, and then the
convolution parameter can be a function of covariates. For models of type (b), the extension to
include covariates typically requires the parameters of the innovation distribution to be function of
the covariates.

For type (a), estimation can usually proceed with numerical maximum likelihood. For type (b),
the estimation method is typically method of moments or conditional least squares. The disadvantage
of the latter two estimation methods is that the predictive distributions for the next observations given
the recent observations cannot be obtained.

In this paper, we use some numerical techniques from the literature for models of type (a) for
parameter estimation in GINAR(p) models. The numerical technique applies when there is closed form
for the probability generating function (pgf) of the conditional distribution of the next observation
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given the past because the pgf can be efficiently numerically inverted to get the conditional probability
mass function for likelihood calculations.

The remainder of the paper is organized as follows. Section 2 describes the background and
notation for count times series models and thinning operators. Section 3 presents the formulation of
GINAR(p). Section 4 presents some probabilistic properties of GINAR(p) in the stationary setting.
Section 5 presents the details to show how the likelihood can be numerically computed, and includes
some simulation results. Section 6 presents two data examples that show how generalized thinning
operators lead to better models than binomial thinning. Section 7 presents the concluding discussion.

2. Background for Thinning Operators

This section presents the background and notation for count data and thinning operators.
Let {Yt : t = 1, 2, . . .} be a count time series (a sequence of dependent random variables), where

Yt ∈ N0 = {0, 1, 2 . . . , }. The realized data will be denoted as {yt : t = 1, 2, . . . , n} for a sample of
size n. If there are trend/seasonal terms or covariates at time t, they are incorporated into a vector xt.
We mainly consider the case of small counts, with zeros and overdispersion relative to Poisson.

For early research in Markov count time series with given margins, some references
are McKenzie (1986, 1987), Al-Osh and Aly (1992), Alzaid and Al-Osh (1993). Letting α denote
the non-negative lag 1 serial correlation, the integer autoregressive model of order 1 has the form:

Yt = Rt(Yt−1; α) + εt(α), t = 1, 2, . . . , 0 ≤ α ≤ 1. (1)

Yt has a (parametric) distribution such as Poisson, negative binomial (NB) or generalized Poisson.
The innovation random variables are εt(α) ∈ N0 for t = 1, 2, . . ., and the serially dependent component
of the model consists of random variables Rt(y; α) ∈ N0 such that

E [Rt(Yt−1; α)|Yt−1 = y] = E [Rt(y; α)] = αy, y ∈ N0, 0 ≤ α ≤ 1, (2)

and Yt
d
= Rt(Yt−1; α) + εt(α) for all 0 ≤ α ≤ 1. Please note that to preserve the space of N0

(non-negative integers), (2) must hold in expectation: Rt(y; α) ≡ αy is possible only for real-valued or
non-negative reals.

Some examples include the following. (a) Yt ∼ Poisson and Rt(y; α) ∼ Binomial(y; α) for binomial
thinning; (b) Yt ∼ negative binomial and Rt(y; α) has a beta-binomial distribution; (c) Yt ∼ generalized
Poisson and Rt(y; α) has a quasi-binomial distribution.

For an extension to include covariates, if Yt, Rt(Yt−1; α) and εt(α) are in the same
convolution-closed family for all 0 < α < 1 with a convolution parameter ϑ, then ϑ can be a function
of the covariates. However, with this approach, the extension to Markov of higher order is not simple.
Markov of order 2 is tractable, but not order 3 or more; see Joe (1996) and Section 8.4.4 of Joe (1997).

A broad class of generalized thinning operators with the property of (2) can be obtained with a
family of compounding operators based on a family of random variables {K(α) : 0 ≤ α ≤ 1}, where
K(α) ∈ N0 and E [K(α)] = α.

Definition 1 (Compounding operator based on random variable K). Let K be a non-negative integer
random variable and let y be a non-negative integer. Then K as a compounding operator is denoted as K~ y, where

K ~ y d
=

y

∑
i=1

Ki

with Ki being independent replicates of K. In the above, K ~ y = 0 if y = 0 with the conventional meaning of a
null sum.
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With the family {K(α) : 0 ≤ α ≤ 1} of compounding random variables acting as thinning
operators, in (1) let

Rt(y; α) =
y

∑
i=1

Kti(α),

where Kti(α) are independent replicates of K(α) and K(α) has pgf GK(s; α) = E [sK(α)] for 0 ≤ s ≤ 1.
With the ~ notation, the Markov stationary count time series model can be written as

Yt = Kt(α)~Yt−1 + εt(α) =
Yt−1

∑
i=1

Kti(α) + εt(α), t = 1, 2, . . . (3)

For the expectation thinning requirement, α = 0 implies K(α) ≡ 0 and εt = Yt in (3) for an
independent and identically distributed sequence, and α = 1 implies K(α) ≡ 1 and εt = 0 in (3)
for perfect dependence.

Please note that if K has pgf GK and Y has pgf GY, then K ~ y has pgf Gy
K and K ~ Y has pgf

GY ◦ GK.
With the family {K(α)} of compounding operators, a subclass with the self-generalized property

has some special properties. Self-generalization is defined next; properties based on this concept are in
Zhu and Joe (2003, 2010a).

Definition 2 (Self-generalized family {K(α) : 0 ≤ α ≤ 1} with pgf GK(·; α)). {K(α) : 0 ≤ α ≤ 1}
satisfies the property of self-generalization if

K(α)~ K(α′) =
K(α′)

∑
i=1

Ki(α)
d
=K(αα′) or GK[GK(s; α); α′] = GK(s; αα′) for 0 < α, α′ < 1 and 0 ≤ s ≤ 1.

(4)

This self-generalized property implies the following.

(a) One can embed (3) into a continuous-time Markov process.
(b) Var [K(α)] = cα(1− α) for some constant c ≥ 1.
(c) If (3) can hold in distribution for all 0 < α < 1, then the marginal distribution FY is infinitely

divisible and said to be generalized discrete self-decomposable (GDSD).

There are three known families of self-generalized operators that are quite tractable. These are
summarized in the next definition.

Definition 3 (Three families of self-generalized thinning operators).

(I1) (binomial thinning) GK(s; α) = (1− α) + αs with Var [K(α)] = α(1− α).
(I2) GK(s; α; γ) = (1−α)+(α−γ)s

(1−αγ)−(1−α)γs , 0 ≤ γ ≤ 1, with Var [K(α)] = α(1− α)(1 + γ)/(1− γ). Please note
that γ = 0 implies GK(z; α) = (1− α) + αs.

(I3) GK(s; α; γ) = γ−1[1 + γ− (1 + γ− γs)α], 0 ≤ γ, with Var [K(α)] = α(1− α)(1 + γ). Please note
that γ→ 0 implies GK(s; α) = (1− α) + αs.

The I2 and I3 families have an additional parameter γ besides α ∈ [0, 1] to allow different
degrees of conditional heteroscedasticity. The I2 and I3 families include binomial thinning when
γ → 0+. The second operator family I2 has been used in different parametrizations; see Aly and
Bouzar (1994, 2019).

In the next section, we use these three classes of self-generalized compounding operators for
GINAR(p) models in which compounding acts (independently) on each of the previous p observations.
Please note that model (3) has no simple extension to Markov of higher order if a univariate stationary
margin such as negative binomial is desired.
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3. GINAR(p): Generalized Integer Autoregressive of Order p ≥ 1

In this section, we define INAR(p) and GINAR(p) count times series models, and summarize
estimation methods that have appeared in the literature. Also, it is indicated why the generalized form
is more interpretable.

The INAR(p) model-based binomial thinning operators (denoted with ∗), is defined
in Du and Li (1991), as:

Yt =
p

∑
j=1

αj ∗Yt−j + εt;

the innovation random variables εt have a distribution such as Poisson or negative binomial (NB),
and they can have parameters that depend on covariates.

For an extension beyond binomial thinning, the GINAR(p) model as defined in Gauthier and
Latour (1994) and Joe (2015) is as follows:

Yt =
p

∑
j=1

Kt(αj)~Yt−j + εt =
p

∑
j=1

Yt−j

∑
i=1

Ktji(αj) + εt, (5)

where 0 ≤ αj ≤ 1 for j = 1, . . . , p and the Ktji(αj) are independent over t, j and i, and εt is the
innovation at time t.

Model (5) could also be defined if the thinning operators are based on other non-compounding
thinning operators that appear in other constructions of count time series models. However as shown
below, the feasibility of numerical maximum likelihood depends on the use of compounding operators
with closed form pgfs.

This GINAR(p) model is defined in Section 3.2 of Weiß (2018) but there is no discussion of good
choices of generalized thinning operators and no applications in subsequent sections of the book.

Binomial thinning in the INAR(p) model with p ≥ 2 does NOT have survivor-immigration
interpretation (a random fraction of current counted units continue to next time point (page 18
of Weiß (2018))). GINAR(p) is more interpretable, with a unit count at time t branching into (or
contributing) 0, 1 or more counts at time t + 1, t + 2, etc.; this is referred to as branching with
immigration on page 19 of Weiß (2018).

The original estimation method in Du and Li (1991) is Yule-Walker or method of moments.
An approximate likelihood inference method based on the saddlepoint approximation is used
in Pedeli et al. (2015), and Lu (2018) has an implementation of maximum likelihood by getting the
probability mass function from the pgf by differentiation and Taylor expansion. In Pedeli et al. (2015),
only the binomial thinning operator is used and a NB innovation with a fixed convolution parameter
is assumed. That is, the convolution parameter is fixed (whose reciprocal was called the dispersion
parameter) at different values and then estimates of the remaining parameters use the saddlepoint
approximation. Lu (2018) assumes a Poisson innovation, and the approach extends to NB innovations
but may not be practical for thinning operators with support on all non-negative integers.

By inverting the pgf using the numerical integral in Davies (1973), the likelihood can be evaluated
to high precision whenever the conditional distribution of [Yt|Yt−1 = yt−1, . . . , Yt−p = yt−p] has a
numerically tractable pgf. The pgf of this conditional distribution is

p

∏
j=1

[GK(s; αj)]
yt−j Gε(s).

This pgf is tractable for thinning operators I1, I2 and I3, combined with Poisson or NB binomial
distributions for innovations. Some details are provided in Section 5. In Zhu and Joe (2010b),
the numerical technique for the likelihood was used for some Markov time series models of order 1
with NB marginal distributions.
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An advantage of the likelihood method over method of moments and least squares is that
different distributions for εt can be used in a sensitivity analysis, and prediction intervals of Yt+1 given
yt, yt−1, . . . , yt−p are possible. Covariates can be accommodated into the parameters of Fεt .

4. Probabilistic Properties and Numerical Techniques

In this section, probabilistic properties and numerical techniques for GINAR(p) are given.
The method for inverting the conditional pgf is summarized in Section 4.1 and it can be used for

simulation of GINAR(p) as shown in Section 4.2. In Section 4.3, an algorithm is given for obtaining the
autocorrelation function of (5), assuming stationarity. Section 4.4 summarizes the validation of the
numerical methods.

4.1. Conditional Distributions

In this subsection, we explain how to compute the probability mass function (pmf) Pr(Yt =

y|Yt−1 = yt−1, . . . , Yt−p = yt−p) for GINAR(p) in (5).
There are two approaches indicated below.

(a) Let the pmf for extended binomial distribution be

f (z; α1, . . . , αp; GK) = Pr
( p

∑
j=1

Kt(αj)~ yt−j = z
)

(6)

for z = 0, 1, 2 . . .; this is obtained by inverting ∏
p
j=1 G

yt−j
K (s; αj), which is the pgf of ∑

p
j=1 Kt(αj)~

yt−j. Please note that (6) is a binomial distribution when the thinning operator is binomial
thinning and α1 = . . . = αp. Let fε(·) be the pmf of the innovation random variable. Then

fYt |Yt−1,...,Yt−p
(z) = Pr(Yt = y|Yt−1 = yt−1, . . . , Yt−p = yt−p) = ∑

y
z=0 f (z; α1, . . . , αp; GK) fε(y− z) (7)

(b) The conditional pmf (7) is obtained by inverting Gε(s)∏
p
j=1 G

yt−j
K (s; αj), which is the pgf of

∑
p
j=1 Kt(αj)~ yt−j + εt.

Approach (a) can be used if the innovation random variable has simple form for the pmf but not the
pgf. In the next result that shows the inversion, W is either ∑

p
j=1 Kt(αj)~ yt−j or ∑

p
j=1 Kt(αj)~ yt−j + εt.

Let W be a random variable with support in N0. The characteristic function ϕW(t) = E(eitW) =

GW(eit) of W can be inverted via the algorithm of Davies (1973). Let

a(w) := 1
2 − (2π)−1

∫ π

−π
Re
(

ϕW(u)e−iuy

1− e−iu

)
du with Pr(W < w) = a(w).

The function a(w) is straightforward to evaluate via numerical quadrature. The cumulative distribution
function (cdf) and pmf of W are

FW(w) = a(w + 1), w = 1, 2, . . . (8)

fW(0) = a(1), fW(w) = a(w + 1)− a(w), w = 1, 2, . . . . (9)

4.2. Simulating GINAR(p)

For simulating from GINAR(p), one can start with something approximate for the first p
observations and then generate remaining observations from the conditional distributions in the
preceding subsection. If one ignores the initial burn-in period, then rest of the resulting time series
will be close to stationary, assuming that the parameters α1, . . . , αp satisfy the condition for stationary
(as given in the next subsection).
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Suppose one has the cdf for Pr(Yt = z|Yt−1 = yt−1, . . . , Yt−p = yt−p) as in the previous subsection.
Then the usual technique can be used for simulating a discrete random variable. Below is an algorithm
to generate a sequence of length n > p.

• Simulate y1 so that it has the theoretical stationary mean and variance.
• Simulate y2, . . . , yp to try to match the lag 1 to lag p− 1 serial correlations (approximately).
• For i = p + 1, . . . , n:
• obtain the cdf Fcond(z) ← FYt |Yt−1,...,Yt−p

(z|yt−1, . . . , yt−p) for z from 0 to, say, the integer
closest to
E (Yt|Yt−1 = yt−1, . . . , Yt−p = yt−p) + 5

√
Var (Yt|Yt−1 = yt−1, . . . , Yt−p = yt−p) .

• generate a random number r in (0, 1)
• assign yi ← min{z : Fcond(z) ≥ r}.
• End of for loop

4.3. Moments under Stationarity

In this subsection, some results are derived and summarized under the assumption that model (5)
is in a stationary state. It is assumed that the sequence {Yt} has finite variance σ2

Y and mean µY. We use
the property that {K(α) : 0 ≤ α ≤ 1} is a family of self-generalized random variables with E [K(α)] = α

and Var [K(α)] = cα(1− α) for a constant c ≥ 1. Du and Li (1991) has most of these results for the
special case of binomial thinning. The condition for stationarity is that 0 ≤ ∑

p
j=1 αj < 1.

• E [K(α)~Y|Y = y] = yE [K(α)] = αy; E [K(α)~Y] = αµY.
• For stationary GINAR(p), µY = µY ∑

p
j=1 αj + µε or

µY = µε

/ [
1−

p

∑
j=1

αj

]
.

• Var [K(α)~Y|Y = y] = yVar [K(α)] = cα(1− α)y.
• Var [K(α)~Y] = cα(1− α)µY + α2σ2

Y and E [(K(α)~Y)2] = cα(1− α)µY + α2E (Y2).
• Let Ya, Yb be two (distinct) dependent counts, with independent thinning operations at the

same time or at different times: Cov [Kt1(αj) ~ Ya, Kt2(αm) ~ Yb | Ya = ya, Yb = yb] = 0,
and Cov [Kt(αj)~Ya, Yb | Ya = ya, Yb = yb] = 0.

• Let Ya, Yb be two (distinct) dependent counts, with independent thinning operations at the same
time or at different times. From the preceding items,

Cov [Kt(αj)~Ya, Yb] = Cov [E (Kt(αj)~Ya|Ya, Yb), Yb] = Cov (αjYa, Yb) = αjCov (Ya, Yb);

Cov (Kt1 (αj)~Ya, Kt2 (αm)~Yb] = Cov [E (Kt1 (αj)~Ya|Ya, Yb), E (Kt2 (αm)~Yb|Ya, Yb)]

= Cov (αjYa, αmYb) = αjαmCov (Ya, Yb).

• For the case of a = b and write Ya = Yb = Y, then

Cov [Kt(α)~Y, Y] = Cov [E (Kt(α)~Y|Y), Y] = Cov (αY, Y) = αVar (Y).

With t1 6= t2,

Cov (Kt1(αj)~Y, Kt2(αm)~Y] = Cov [E (Kt1(αj)~Y|Y), E (Kt2(αm)~Y|Y)]
= Cov (αjY, αmY) = αjαmVar (Y).

• Cov (Yt, εt) = Var (εt) = σ2
ε since εt is independent of past observations.

From the above, we can develop recursion equations for autocovariances γh or autocorrelations
ρh for h ∈ N0. These are the same as for Gaussian AR(p) for lags h ≥ p.
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Variance calculations under stationarity are as follows.

Yt =
p

∑
j=1

Kt(αj)~Yt−j + εt

Var (Yt) =
p

∑
j=1

Var [Kt(αj)~Yt−j] + 2 ∑
1≤j<m≤p

Cov [Kt(αj)~Yt−j, Kt(αm)~Yt−m] + Var (εt)

γ0 = cµY

p

∑
j=1

αj(1− αj) + γ0

p

∑
j=1

α2
j + 2 ∑

1≤j<m≤p
αjαmγm−j + σ2

ε

(1−
p

∑
j=1

α2
j )γ0 = cµY

p

∑
j=1

αj(1− αj) + 2 ∑
1≤j<m≤p

αjαmγm−j + σ2
ε

γh =
p

∑
j=1

αjCov (Yt−j, Yt−h) =
p

∑
j=1

αjγ|h−j|, h ≥ 1.

For example, for GINAR(3),

γ0 = {cµY

3

∑
j=1

αj(1− αj) + σ2
ε }+ γ0

3

∑
j=1

α2
j + 2[α1α2γ1 + α2α3γ1 + α1α3γ2]

=: a0 + b0γ0 + 2[α1α2γ1 + α2α3γ1 + α1α3γ2]

γ1 = Cov (Yt, Yt−1) = α1γ0 + α2γ1 + α3γ2

γ2 = Cov (Yt, Yt−2) = α1γ1 + α2γ0 + α3γ1 = α2γ0 + (α1 + α3)γ1

γ1 = α1γ0 + α3α2γ0 + α2γ1 + α3(α1 + α3)γ1

γ1 = (α1 + α2α3)γ0/[1− α2 − α3(α1 + α3)] =: ρ1γ0

γ2 = [α2 + (α1 + α3)ρ1]γ0 =: ρ2γ0

γ0 = a0 + b0γ0 + 2(α1α2 + α2α3)ρ1γ0 + 2α1α3ρ2γ0

γ0 = a0/[1− b0 − 2(α1α2 + α2α3)ρ1 − 2α1α3ρ2].

In general, the first p serial correlations can be obtained by solving a linear system in the equations
for ρ1, . . . , ρp, and then ρp+1, ρp+2, . . . can obtained by recursion.

Next is the algorithm for GINAR(p) for computing ρ1, . . . , ρp, and γ0 = σ2
Y, given inputs of

α1, . . . , αp The higher order serial correlations then are obtained via:

ρh =
p

∑
j=1

αjρh−j, h > p.

• Initialize a p× p matrix M to 0.
• For j1 ∈ {1, . . . , p}
• Mj1,j1 ← 1
• for j2 ∈ {1, . . . , p}
• h← |j1 − j2|
• if (h > 0) Mj1,h ← Mj1,h − αj2
• end of loop for j2
• end of loop for j1.
• Solve

M

ρ1
...

ρp

 =

α1
...

αp

 .
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• Let a0 = cµY ∑
p
j=1 αj(1− αj) + σ2

ε , b0 = ∑
p
j=1 α2

j . Then

γ0 = a0

/ (
1− b0 − 2 ∑

1≤j1<j2≤p
αj1 αj2 ρj2−j1

)
is the stationary variance.

Please note that the stationary autocorrelation function (acf) depends only on α1, . . . , αp and not
on the distribution of the innovation random variables. The acf also does not depend on the family
{K(α)} of thinning operations, but the stationary mean and variance are affected by {K(α)} and the
distribution of the innovations.

4.4. Validation

With the simulation method in Section 4.2 and numerical maximum likelihood based on (7),
we simulated many time series of length in the thousands under different stationary parameter
settings for (α1, . . . , αp) and different parameters for the Poisson or NB innovation. Some representative
simulation results are summarized in the next section.

The sample acf’s are close to the theoretical acf’s in Section 4.3 and the maximum likelihood
estimates are close to the “true" parameters when considering sampling variability. We also checked
that as p increases and ∑

p
j=1 αj gets closer to 1, the serial correlations require longer lags before they

are closer to 0.

5. Likelihood and Numerical Implementation

In this section, we summarize the log-likelihoods that can be used for model (5), where the
innovation random variables can be independent and identically distributed with a parametric
distribution or they can depend parametrically on covariates.

To compare models with different autoregressive order using Akaike information criterion (AIC)
values, we use the (conditional) likelihood as the product of the conditional densities starting at an
index istart which is larger than pmax (the maximum autoregressive order that will be considered).
With a large sample size, the maximum likelihood estimates are not sensitive to the few initial
conditional probabilities so that one could fit GINAR(p) starting from the conditional probability for
Yp+1 to get parameter estimates and then omit a few conditional probability terms at the beginning so
that istart is common for different p. This form of likelihood implies that we do not have to determine
the distribution of the first few observations under the assumption of stationarity. Actually, we then
do not have to assume that the time series starts in a stationary state, and covariates can be included.
The likelihood is:

L =
n

∏
i=istart

fYt |Yt−1,...,Yt−p
(yt|yt−1, . . . , yt−p; α1, . . . , αp, γ, θinnov), (10)

where α1, . . . αp ∈ (0, 1), with 0 ≤ α1 + · · · + αp < 1, are the autoregressive parameters, γ is
the conditional heteroscedatic parameter in Definition 3 if I2 or I3 thinning is used, and θinnov is
the vector of parameters for the innovation random variables. If there are covariates, then θinnov
consists of (regression) parameters linking the covariates to parameters of the innovation distribution.
The conditional density is obtained via the numerical technique in Section 4.1. We refer to the parameter
vector maximizing (10) or minimizing the negative log conditional likelihood as the conditional
maximum likelihood (CML) estimate.

For example, θinnov = λ > 0 for Poisson innovations, θinnov = (ϑ, ξ) for NB innovations with
convolution parameter ϑ, mean ϑξ and variance ϑξ(1 + ξ). With covariate vector xt at time t, θinnov =

(β0, β) for Poisson innovations with mean µ(xt) = exp{β0 + βTxt} and θinnov = (β0, β, ξ) for NB
innovations with mean µ(xt) = exp{β0 + βTxt}, ϑt = µ(xt)/ξ with constant overdispersion.
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Because of the summations and numerical integrals, to gain computational speed in the numerical
maximum likelihood, the negative log-likelihood can be coded in a high-level programming language
such as Fortran 90. The numerical optimization could be done by interfacing to a statistical software
such as R.

Table 1 reports on some representative simulation results for I1 and I2 thinning to show the
accuracy of the numerical methods and how the computing time increases when there are increases
in the (i) number of parameters, (ii) sample size and (iii) maximum count. Similar patterns occur for
GINAR with I3 thinning. When the sample size increases by a factor of 4 (from 500 to 2000), the SDs of
the parameter estimates decrease by a factor of 2 (as expected); the computing time increase by a factor
of slightly more than 4 because the maximum count is larger for a sample size of 2000 and the pmf
in (7) must be computed up to a larger value. The parameter vectors in Table 1 are based on maximum
likelihood values when fitting these different models to the Ericcson data in Section 6.1.

Table 1. Simulation results for different parameter vectors that come from fits to the Ericcson data in
Section 6.1. The likelihoods were coded in Fortran90 and the numerical optimization was done with a
link to R using nlm as the implementation of the quasi-Newton method. The simulation sample size
was 500, and the timings were based on a PC with Intel Core i7-6770HQ processor at 2.6 GHz.

I1/NB, p = 2, n = 500, av = 0.85 min
parameter α1 = 0.27 α2 = 0.15 θ = 1.85 ξ = 3

bias −0.001 −0.003 0.06 −0.02
rmse 0.035 0.037 0.34 0.38

I1/NB, p = 2, n = 2000, av = 3.7 min
parameter α1 = 0.27 α2 = 0.15 θ = 1.85 ξ = 3

bias 0.000 −0.001 0.02 −0.02
rmse 0.018 0.018 0.17 0.20

I2/Po, p = 2, n = 500, av = 1.2 min
parameter γ = 0.7 α1 = 0.3 α2 = 0.2 λ = 4.5

bias 0.001 0.000 −0.005 0.03
rmse 0.027 0.045 0.046 0.35

I2/Po, p = 2, n = 2000, av = 5.0 min
parameter γ = 0.7 α1 = 0.3 α2 = 0.2 λ = 4.5

bias −0.001 0.000 0.000 0.01
rmse 0.013 0.022 0.022 0.17

I2/Po, p = 3, n = 500, av = 2.9 min
parameter γ = 0.64 α1 = 0.27 α2 = 0.14 α3 = 0.20 λ = 4.5

bias 0.003 −0.001 −0.005 −0.003 0.07
rmse 0.030 0.045 0.049 0.043 0.46

I2/Po, p = 3, n = 2000, av = 12.2 min
parameter γ = 0.64 α1 = 0.27 α2 = 0.14 α3 = 0.20 λ = 4.5

bias 0.000 −0.001 −0.001 −0.001 0.02
rmse 0.014 0.022 0.024 0.022 0.23

6. Data Examples

In this section, we show results of fitting model (5) to two data examples that appeared in the
literature. The use of operators with branching stochastic representation is more interpretable. So it is
not surprising that, based on AIC, the I2 and I3 thinning operators in Definition 3 provide much better
fits than binomial thinning.

Because the I2 and I3 thinning operators provide conditional heterscedasticity, it turns out that
the innovation random variable need not be as overdispersed relative to Poisson as p gets larger.
With the binomial thinning operator which each count from the previous p time points can contribute
at most 1 to the next count observation, a NB innovation random variable provides a much better fit
than Poisson.
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6.1. Ericsson Transaction Data

The data set consists of the number of transactions per minute for the stock Ericsson B for business
days and hours during 2 to 22 July in the year 2002. The sample size is n = 460. The original source
is Brännäs and Quoresh (2010). This data set is also used in Fokianos et al. (2009) and in Examples 4.1.5
and 4.2.4 in Weiß (2018).

Different models were used by the previous authors: integer moving average INMA of order
q with a large q and INGARCH(1,1) with Poisson and overdispersed Poisson distributions for
the innovations. The empirical autocorrelation function (see Table 3) suggests that a low-order
autoregressive model is not appropriate for these data (as indicated by Weiß (2018)). Here,
for comparison, we consider stationary GINAR(p) with p increasing until there is no improvement in
the log-likelihood and the highest order α parameter becomes close to 0.

Table 2 presents a summary of AIC values to compare GINAR(p) with binomial thinning and the
I2, I3 thinning operators.

For thinning with I2 and I3, based on AIC values, the models with Poisson innovations are a little
better than with NB innovations for p = 3 to 7 for I2 and p = 4 to 7 for I3. For binomial thinning,
based on AIC values, the models with NB innovations are much better than with Poisson innovations.

The best models based on AIC values are GINAR(6) models with I2 and I3 thinning operators
and Poisson-distributed innovations. They are quite an improvement on INAR(6) with binomial
thinning and NB-distributed innovations. Based on the context of the data, thinning operations based
on compounding with support on all of N0 instead of {0, 1} are more reasonable.

The I2 and I3 thinning operators account for some conditional heteroscedasticity so that the use of
the NB-distributed innovations leads to a flatter log-likelihood over the NB parameters. Hence Poisson
distributed innovations are adequate to handle the marginal overdispersion.

Table 2. Ericsson transaction data: AIC values for (5) with three thinning operators and Poisson (Po)
and negative binomial (NB) distributions for the innovation. When the autoregressive order reaches 7,
there is no improvement in the log-likelihood and the last estimated αj is close to 0. The AIC values
are based on (10) with istart = 8. The AIC values for the best models for each of I1,I2,I3 are boldfaced.
For p = 1 and 2, the AIC values for I2/NB are 2694.6 and 2679.4 respectively, and for I3/NB they are
2690.5 and 2677.1 respectively. For larger p, there is enough conditional heterscedasticity from the
thinning operators and NB innovations did not lead to improved AIC values over Poisson innovations.

p I1/NB I2/Po I3/Po

1 2695.7 2702.9 2722.0
2 2682.5 2681.0 2686.0
3 2670.6 2663.9 2666.1
4 2662.7 2654.3 2654.9
5 2657.0 2648.1 2647.3
6 2651.9 2641.1 2639.5
7 2653.3 2642.6 2640.9

We next compare AIC values with other models that have been used for this data set. Table 4.4
and Example 4.2.4 of Weiß (2018) have values of maximized log conditional likelihoods at the CML
estimates for INGARCH(1,1) models with Poisson, NB and generalized Poisson innovations. The use
of NB and generalized Poisson distributions lead to much better fitting models with AIC values in the
range 2662 to 2666. With a further adjustment for starting in the eighth observation in the conditional
log-likelihood, the AIC values are comparable with those in Table 2.

With also compare with the Poisson autoregression or INGARCH models in Fokianos et al. (2009).
The models are conditional Poisson with a latent mean process {Λt}, where [Yt|Λs = λs : s ≤ t, Ys =

ys : s < t] ∼ Poisson(λt) with
λt = b0 + b1λt−1 + b2yt−1
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or
λt = (b0 + b1 exp{−γλ2

t−1})λt−1 + b2yt−1.

As in Fokianos et al. (2009), we start the latent process with λ0 = 0. There is some sensitivity to the
starting value y0 but we get similar maximum likelihood parameter estimates when starting y0 at
the sample mean. When evaluating AIC values with istart = 8 are between 2847 and 2849 for these
two models and correspond roughly to the AIC value for INGARCH(1,1) with Poisson innovations
in Weiß (2018).

Table 3 has (a) CML estimates for the GINAR(6) models with I1, I2 and I3 thinning operators,
and (b) model-based moments and acf’s from these models to compare with the empirical values.
The comparison with empirical values provides a simple goodness-of-fit procedure; in this case,
it shows that the fit from GINAR(6) with binomial thinning is a worse fit.

Based on the parameter estimates in this table, and the last 6 values in the data
series: (y460, y459, y458, y457, y456, y455) = (3, 9, 29, 18, 20, 7), we can estimate the conditional
mean µ̂cond, conditional variance σ̂2

cond and central 50% and 80% intervals from estimated pmf:
fYn+1|Yn ,...,Yn−5

(·|yn, . . . , yn−5; α̂1, . . . , α̂6, θ̂innov). These are summarized below.

• I1 (binomial thinning): µ̂cond = 11.62, σ̂2
cond = 25.66, [7, 12] with probability content 0.52; [5, 16]

with probability content 0.82;
• I2: µ̂cond = 12.20, σ̂2

cond = 30.31, [7, 14] with probability content 0.56; [5, 18] with probability
content 0.82;

• I3: µ̂cond = 12.20, σ̂2
cond = 30.92, [7, 13] with probability content 0.51; [5, 18] with probability

content 0.82.

For binomial thinning, the point and interval predictions are smaller and shorter. Please note that
these prediction intervals would not be possible with estimation based on conditional least squares or
the method of moments.

Table 3. Ericsson transaction data: CML parameter estimates and corresponding SEs for GINAR(6)
with I1, I2 and I3 thinning; also model-based summary statistics, to compare with empirical.

Parameter I1/NB I2/Po I3/Po

γ̂ 0.533 (0.036) 2.321 (0.333)
α̂1 0.172 (0.037) 0.187 (0.047) 0.194 (0.047)
α̂2 0.057 (0.037) 0.068 (0.048) 0.071 (0.047)
α̂3 0.086 (0.036) 0.109 (0.049) 0.109 (0.047)
α̂4 0.086 (0.037) 0.116 (0.048) 0.117 (0.047)
α̂5 0.093 (0.038) 0.104 (0.050) 0.109 (0.047)
α̂6 0.105 (0.038) 0.142 (0.048) 0.146 (0.047)
ϑ̂ 1.068 (0.125)
ξ̂ 3.717 (0.509)
λ̂ 2.704 (0.538) 2.507 (0.531)

Summary I1/NB I2/Po I3/Po Empirical

µ̂Y 9.879 9.889 9.892 9.909
σ̂2

Y 27.460 30.070 31.707 32.837
ρ̂1 0.257 0.350 0.374 0.405
ρ̂2 0.176 0.278 0.302 0.340
ρ̂3 0.189 0.297 0.317 0.372
ρ̂4 0.193 0.305 0.326 0.377
ρ̂5 0.201 0.302 0.326 0.358
ρ̂6 0.205 0.321 0.343 0.352
ρ̂7 0.123 0.227 0.250 0.298
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6.2. Meningococcal Disease Data

The data set comes from the German national surveillance system for notifiable diseases,
administered by the Robert Koch Institute. The time series consists of weekly numbers of
meningococcal disease cases in Germany for the years 2001–2006 and the sample size is n = 312.
In Pedeli et al. (2015), INAR(p) models are fitted with approximate likelihood based on a saddlepoint
approximation. There is a seasonal pattern over the year and sinusoidal terms were used as covariates
in the mean parameter of the innovations as indicated in Section 5.

We fit several GINAR(p) models with I2 and I3 thinning in addition to binomial thinning, using
the numerical techniques in the preceding sections. The primary sinusoidal terms xt1 = sin(2πt/52)
and xt2 = cos(2πt/52). As indicated in Pedeli et al. (2015), the addition of additional harmonic terms
xt3 = sin(4πt/52) and xt4 = cos(4πt/52) do not lead to improvements based on AIC; the estimates
of the corresponding β regression parameters are at least 10 times smaller than those for xt1, xt2.
The autoregressive order started at 1 and increased to a value pmax so that the last α̂j was close to 0 and
the negative log-likelihood value was not improving.

Table 4 has some AIC values, based on istart = 5 in (10). For thinning with I2 and I3, based on
AIC values, the models with Poisson innovations are a little better than those with NB innovations for
p = 2, 3, 4. For binomial thinning, based on AIC values, the models with NB innovations are much
better than those with Poisson innovations.

As in the Section 6.1, the I2 and I3 thinning operators account for some conditional
heteroscedasticity so that the use of the NB-distributed innovations leads to a flatter log-likelihood
over the NB parameters.

Overall, from Table 4, the GINAR(2) models with I2 or I3 thinning, Poisson-distributed innovations
and xt1, xt2 as covariates provide the best models. The best AIC values from GINAR(p) with I2 and I3
thinning are smaller than the best AIC values in Pedeli et al. (2015) (based on binomial thinning).

Table 4. Meningococcal disease data: AIC values for (5) with three thinning operators and Poisson
(Po) and negative binomial (NB) distributions for the innovation. The AIC values are based on (10)
with istart = 5. The AIC values of the best models for each of I1,I2,I3 are boldfaced. The covariates are
xt1 = sin(2πt/52) and xt2 = cos(2πt/52).

No Covariates Covariates xt1, xt2
p I1/NB I2/Po I3/Po I1/NB I2/Po I3/Po

1 1766.5 1754.8 1758.5 1689.3 1684.8 1683.9
2 1738.5 1731.2 1730.0 1686.0 1681.5 1681.9
3 1726.6 1723.2 1721.6 1684.5 1683.5 1682.3
4 1728.7 1725.2 1723.6 1686.6 1685.9 1684.7

7. Discussion

We showed how GINAR(p) count time series models can be estimated using numerical maximum
likelihood. This allows for sensitivity analysis to model assumptions that is not possible with the
estimation methods of conditional least squares and the method of moments.

Future research includes the use of the thinning operators in Definition 3 in other applications,
as well as derivations of other families of self-generalized random variables satisfying Definition 2.

Where researchers have been using binomial thinning in count time series models, we recommend
the replacement with more general thinning operators that satisfy the self-generalized properties.
These operators are more interpretable when the survivor interpretation for binomial thinning does
not apply. The examples in this paper show that better fitting models can be obtained.

For likelihood computations, alternative methods can be considered. Although a greater coding
effort would be needed, one could consider whether the method of Lu (2018), consisting of obtaining
probabilities from derivatives of the pgf, is feasible for thinning operators with support on all
non-negative integers.
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