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Abstract: We provide a general overview of Bayesian model averaging (BMA) along with the concept
of jointness. We then describe the relative merits and attractiveness of the newest BMA software
package, BMS, available in the statistical language R to implement a BMA exercise. BMS provides
the user a wide range of customizable priors for conducting a BMA exercise, provides ample graphs
to visualize results, and offers several alternative model search mechanisms. We also provide an
application of the BMS package to equity premia and describe a simple function that can easily
ascertain jointness measures of covariates and integrates with the BMS package.
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1. Introduction

Interest in Bayesian analysis, generally, and Bayesian model averaging (BMA), specifically,
has increased rapidly as computational power of desktops and personal laptops have expanded
(Steel 2019). With the demand for these tools comes an array of platforms with which to implement
them. One of the most popular statistical softwares for any type of Bayesian analysis is the open source
statistical environment R (R Development Core Team 2013). Even with the ability to conduct Bayesian
analysis in R, there exist a wide variety of packages and compiled code; a user interested in BMA
or variable selection has at their fingertips over 13 packages that can do the job (Forte et al. 2018).
Given such a large menu of options, the uninitiated may not know which direction to go to start their
analysis. A useful starting point is the BMS package.1

The BMS package (Feldkircher and Zeugner 2009; Zeugner and Feldkircher 2015) implements
linear BMA with a comprehensive choice of priors, Monte Carlo Markov Chain samplers, and
post-processing functions. This package provides a large degree of flexibility in the specification
of the underlying features used to analyze the model and produces a wide range of easily-readable
outputs including the posterior inclusion probabilities, means, and standard deviations, the number of
models visited, and the number of draws from the sample. This package also takes advantage of R’s
powerful graphical interface and creates useful graphs that allow the user to visualize the posterior
model size distribution, posterior model probabilities, and cumulative model probabilities as well as
providing plotting facilities for the marginal densities of the posterior coefficients.

1 Amini and Parmeter (2011, 2012) have shown that the BMS package can successfully replicate published results produced
with high level user written code.

Econometrics 2020, 8, 6; doi:10.3390/econometrics8010006 www.mdpi.com/journal/econometrics

http://www.mdpi.com/journal/econometrics
http://www.mdpi.com
https://orcid.org/0000-0001-6123-0107
http://dx.doi.org/10.3390/econometrics8010006
http://www.mdpi.com/journal/econometrics
https://www.mdpi.com/2225-1146/8/1/6?type=check_update&version=2


Econometrics 2020, 8, 6 2 of 21

Aside from the standard objects of interest in a BMA exercise (such as posterior inclusion
probabilities, the highest probability model, etc.), attention has also been focused on jointness
(Doppelhofer and Weeks 2009). Jointness captures dependence between covariates across the model
space for the posterior distribution. Rather than focus on an individual variable’s inclusion, jointness
quantifies how likely two variables are to appear together. In the presence of model uncertainty, this
joint inclusion can be important across a variety of dimensions (Man 2018). However, jointness can
take many different forms (Doppelhofer and Weeks 2009; Ley and Steel 2009b; Strachan 2009) and
many of the measures that have been proposed have limitations in one form or another, depending
on the range of properties considered for a measure of jointness (Hofmarcher et al. 2018). As yet,
a consensus does not exist as to the best measure of jointness, nor is it well understood how robust
a given jointness measure is across various user defined choices (such as choice of prior), though
Man (2018) is one step in this direction.

This paper details both the basic functionality of the BMS package and provides an easy to deploy
function that calculates eight different jointness measures. We begin with an overview of both BMA
and jointness. We then detail how to install the BMS package and implement a BMA empirical exercise
using this package. We describe the main features under the user’s control for this package including
the set of prior probabilities and model sampling algorithms as well as the plot diagnostics available
to visualize the results. We show how a user can obtain estimates, posterior inclusion probabilities,
and model statistics from this package with a mock empirical example. We do this both with a set of
covariates that allows for full enumeration of the model space as well as requiring the implementation
of a model space search mechanism. Lastly, we follow up with an application to the equity premium
from the finance literature and provide an R routine that users can implement within BMS to calculate
jointness across eight different measures. Having access to these various measures allows users to
quickly determine how robust alternative findings of jointness are to various changes in the setup of
the BMA exercise.

2. Bayesian Model Averaging

In brief, the implementation of BMA begins by considering a set of possible models, say M =

{M1, M2, . . . , MK}. M represents the model space the averaging will be conducted over. Once this
space has been set the posterior distribution of any quantity of interest, θ, given the data, D, is

Pr(θ|D) =
K

∑
j=1

Pr(θ|Mj, D)Pr(Mj|D), (1)

which is simply the weighted average of the posterior distributions under each model.
The most common framework for BMA is the linear regression model of the form

y|α, β j, σ ∼ N(α + Xjβ j, σ2 I), (2)

where y is the n× 1 dependent variable vector and Xj the n× `j matrix of covariates. Here, there are
potentially L covariates. In this case, θ = {α, β, σ2}, where β j is a subvector or β.

Using Bayes Theorem, one can rewrite the posterior probability of model Mk as follows:

Pr(Mk|D) = Pr(D|Mk)
Pr(Mk)

Pr(D)
= Pr(D|Mk)

Pr(Mk)
K
∑

j=1
Pr(D|Mj)Pr(Mj)

(3)

Pr(D|Mk) =
∫

Pr(D|θk, Mk)Pr(θk|Mk)dθk (4)

where θk is the vector of parameters from model Mk, Pr(θk|Mk) is a prior probability distribution
assigned to the parameters of model Mk, and Pr(Mk) is the prior probability that Mk is the true model.
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As mentioned above, in order to make BMA applicable, we need to choose prior distributions for
the parameters of the model and then, based on the data, calculate posterior probabilities attached to
different models and finally find the parameter distributions by averaging posterior distributions.

One should notice that, as stated in Brock et al. (2003, p. 270), ideally the set of prior probabilities
should be informative with respect to the likelihood, meaning priors should assign relatively high
probability to areas that have high likelihood. Were this not the case then the choice of priors will have
a substantial effect on the posteriors. Unfortunately, the likelihood is unknown, making the choice
of the prior user specific. Several studies have attempted to discern the effect that the choice of prior
probabilities has on posterior probabilities, which are commonly used to gauge the ‘robustness’ of a
variable. This is not to be confused with variable importance, which attempts to discern if a variable
belongs to the true model.2 Rather, robustness seeks to determine how small changes to the prior
probability structure impact the posterior estimates. Ley and Steel (2009a) and Steel (2019) provide
a complete review on the effect of prior assumptions on the outcome of BMA analyses. As will be
important later when we discuss the BMS package, the ability of a software package to allow the
user to vary the prior to assess small changes is important to allow researchers the ability to gauge
robustness.

The issues with BMA highlighted here are by no means an indictment of the methods. Rather,
they are to draw attention to the areas where the user must exert caution when implementing a model
averaging exercise. Undoubtedly, for any model averaging investigation, the researcher will face issues
based on the route taken to average across models. Furthermore, understanding the nuances of model
averaging exercises allows for clearer comparisons and the ability to understand where results may
differ. We counsel interested readers to consult Moral-Benito (2015), Fletcher (2018), or Steel (2019) for
a review of the state of the art.

3. Jointness

Capturing the dependence between explanatory variables in the posterior distribution while
implementing a Bayesian analysis is crucial. Taking such a dependence into account reveals the
sensitivity of posterior distributions of parameters to dependence across regressors. For instance,
if two specific variables are complementary over the model space, we expect relatively higher weights
for the models that include both variables together than models where only one variable is present.

In this section, we discuss how the applied literature has focused on quantifying the dependence
between predictive variables. The methodology behind BMA provides a measure for the marginal
posterior inclusion probability of a given regressor. However, although the marginal probability
measure of variable importance has interesting policy implications and prediction, it hardly provides
information on the nature of dependencies among regressors. To address this issue, we follow
Doppelhofer and Weeks (2009) and Ley and Steel (2009b) and introduce the posterior joint inclusion
probability of variables xh and xl as

JPure
hl = p(xh ∩ xl |D) = ∑

i:xh&xl∈Mi

Pr(Mi|D) (5)

where Mi is the ith model, and D is the data. This equation adds up posterior model probabilities
for all the models in which the two variables are present. These posterior model probabilities are
calculated as the weighted sum of the prior model probability times its marginal likelihood:

Pr(Mi|D) =
`D(Mj)Pr(Mj)

K
∑

k=1
`D(Mk)Pr(Mk)

, (6)

2 We thank an anonymous reviewer for bringing this potential confusion to our attention.
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with the marginal likelihood defined as

`D(Mj) =
∫

p(D|θj, Mj)p(θj|D, Mj).

For the linear regression model with normal priors on α and β, coupled with a gamma prior for σ2,
it can be shown (Steel 2019, p. 22) that the marginal likelihood is `D(Mj) ∝ (1+ g)(n−1−Kj)/2(1+ g(1−
R2

j ))
−(n−1)/2, where g comes from the g-prior of Zellner (1986), and Kj is the number of covariates

in model j where R2
j is the traditional in-sample measure of fit. Posterior model probabilities also

form the basis for the calculation of posterior inclusion probabilities, which is simply the sum of the
posterior model probabilities that contain a specific covariate.

From this discussion, a natural measure of dependence between variables xh and xl is given by3

JDW1
hl = ln

[
p(xh ∩ xl |D)

p(x̄h ∩ xl |D) · p(xh ∩ x̄l |D)

]
. (7)

An alternative measure provided by Doppelhofer and Weeks (2009) is

JDW2
hl = ln

[
p(xh ∩ xl |D) · p(x̄h ∩ x̄l |D)

p(x̄h ∩ xl |D) · p(xh ∩ x̄l |D)

]
. (8)

Ley and Steel (2009b) modify the jointness statistics of Doppelhofer and Weeks (2009) proposing
the following two measures of jointness:

JLS1
hl =

p(xh ∩ xl |D)

p(xh ∪ xl |D)
(9)

JLS2
hl =

p(xh ∩ xl |D)

p(x̄h ∩ xl |D) + p(xh ∩ x̄l |D)
. (10)

Additionally, Strachan (2009) proposed

JSt
hl = p(xh|D)p(xl |D) ln

[
p(xh ∩ xl |D)

p(x̄h ∩ xl |D) · p(xh ∩ x̄l |D)

]
. (11)

Finally, in a detailed treatment of jointness, Hofmarcher et al. (2018) proposed two alternative
measures:

JYQ
hl =

p(xh ∩ xl |D)p(x̄h ∩ x̄l |D)− p(x̄h ∩ xl |D)p(xh ∩ x̄l |D)

p(xh ∩ xl |D)p(x̄h ∩ x̄l |D) + p(x̄h ∩ xl |D)p(xh ∩ x̄l |D)
(12)

and
JYQM
hl = (p(xh∩xl |D)+0.5)(p(x̄h∩x̄l |D)+0.5)−(p(x̄h∩xl |D)+0.5)(p(xh∩x̄l |D)+0.5)

(p(xh∩xl |D)+0.5)(p(x̄h∩x̄l |D)+0.5)+(p(x̄h∩xl |D)+0.5)(p(xh∩x̄l |D)+0.5)−0.5 . (13)

They show these two statistics have formal statistical and intuitive meaning in terms of jointness,
and are more likely to be well-behaved when the posterior inclusion probability of one of the regressors
is either zero or very close to zero.4 An interesting feature of JYQ

hl is that it maps the jointness measure
of Doppelhofer and Weeks (2009), Equation (8), from (−∞, ∞) to [−1, 1].

Given these various proposals to measure jointness, a natural question to ask is which one should
be used for applied work. Hofmarcher et al. (2018) lists seven key properties that jointness measures,
in general, may possess

1. Definition: is the jointness measure defined whenever the one of the variables in included with
positive probability (this is criteria C4 in Ley and Steel (2007));

3 For more details, see Doppelhofer and Weeks (2009) and Whittaker (1990, chp. 2).
4 See Man (2018) for a detailed treatment and some criticisms relating to the use of jointness in the applied sciences.
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2. Monotonicity/Boundedness/Maximality: is the range of association between xl and xh bounded;
is the measure monotonically increasing between the boundaries; the jointness measure only
achieves the boundaries if both variables either always or never appear together (maximality is
criteria C3 in Ley and Steel (2007));

3. Limiting Behavior: The jointness measure should converge to its maximal value as the probability
that xl and xh appear together increases to 1 and should converge to its minimal value as the
probability that xl and xh appear separately increases to 1;

4. Bayesian Confirmation: the jointness measure equals 0 if and only if the inclusion of xl and xh are
statistically independent events;

5. Non Null-Invariance: the jointness measure should not ignore model specifications where xl and
xh and jointly excluded;

6. Commutative Symmetry: suitable measures of jointness statistics should be symmetric to the
ordering of variables;

7. Hypothesis Symmetry: if xl and xh are complements for a given jointness measure, then x̄l and
xh are substitutes (disjoint) by the same jointness measure.

Only the modified Yule’s Q measure of jointness, Equation (13), satisfies all seven of these
properties, whereas every jointness statistic presented here satisfies commutative symmetry. Ley and
Steel (2007) also argue that any jointness measure should have a formal statistical meaning (what
they term Interpretability), and the values that the jointness measure can take on should be calibrated
against a clearly defined scale (what they term Calibration).

Positive (or large) values for jointness statistics indicate that variables xh and xl are complements,
reflecting that posterior probabilities of models jointly including and excluding both variables are
larger than posterior probabilities of models including only one. A negative (or small) value for the
statistic, on the other hand, indicates that the variables are capturing a similar underlying effect and
are disjoint; as noted in Steel (2019, p. 43), disjoint variables suggest that these variables are more likely
to appear in a model separately from one another. Disjointness can arise when a pair of covariates
are highly collinear or may be thought of as proxies/substitutes for each other. Note that, for JLS1

and JLS2, the lower bound for jointness is 0. It is common in practice to take the logarithm of these
measures, see Ley and Steel (2009a).

The magnitude of the jointness statistics of Doppelhofer and Weeks (2009) is sensitive to whether
or not the posterior inclusion probability of one of the explanatory variables is zero or extremely small,
a case that commonly occurs in practice. As noted in Hofmarcher et al. (2018), a key property of
any jointness measure is that it should be ‘defined’ whenever one of the variables is included with
positive probability. This property is fulfilled by the two alternative measures proposed by Ley and
Steel (2009b) as well as those introduced by Hofmarcher et al. (2018) but not by the measures proposed
in Doppelhofer and Weeks (2009) or Strachan (2009). R code to construct all of the jointness measures
discussed here is provided in Appendix A.

4. The BMS Package

Having now discussed both BMA and notions of jointness, we turn to how users can conduct a
BMA exercise and calculate different jointness scores. Our platform for this is the BMS package.

4.1. Installation and Install Setup

Prior to invocation of the BMS package, R must be installed. R can be downloaded at no charge
from http://www.cran.r-project.org. The R statistical environment runs on all common operating

http://www.cran.r-project.org
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systems including Linux, Unix, Windows, and Mac-OS X.5 Once R is installed, it is preferable to install
BMS directly within R simply by typing

install.packages("BMS")

in your R console. Then, you will be prompted to choose a CRAN repository and the package should
be installed after a few seconds. The package can then be loaded into the R workspace by typing library
(BMS) at the command prompt.6 For users who prefer to work with MATLAB, the core functionality of
the BMS package can be accessed via the BMS Toolbox for Matlab. This toolbox provides MATLAB core
functions that perform BMA by calling a hidden instance of R. This functionality requires a Windows
operating system (NT, XP, Vista, 7, or 8) and the installation of both MATLAB (Version 6 or higher)
and the R statistical environment.7

4.2. Functionality

The main command within the BMS package is bms() which deploys a standard Bayesian
normal-conjugate linear model (see Equation (2)). Primarily, the options for the bms() command
hinge on sampling from the model space and selection of both model priors and Zellner’s g-priors.
These three categories comprise the most important aspects of conducting a BMA exercise.

4.3. Controlling the BMA Exercise

4.3.1. Model Sampling

A BMA analysis begins with constructing model weights for each model within the defined model
space. However, since enumerating all potential variable combinations quickly becomes infeasible for
even a modest number of covariates, the BMS package uses a Markov Chain Monte Carlo (MCMC)
samplers to gather results on the most important part of the posterior distribution when more than 14
covariates exist.

The BMS package offers two different MCMC samplers to probe the model space. These two
methods differ in the way they propose candidate models. The first method is called the birth-death
sampler (mcmc=bd). In this case, one of the potential regressors is randomly chosen; if the chosen
variable is already in the current model Mi, then the candidate model Mj will have the same set
of covariates as Mi but drops the chosen variable. If the chosen covariate is not contained in Mi,
then the candidate model will contain all the variables from Mi plus the chosen covariate; hence, the
appearance (birth) or disappearance (death) of the chosen variable depends if it already appears in
the model. The second approach is called the reversible-jump sampler (mcmc=rev.jump). This sampler
draws a candidate model by the birth-death method with 50% probability and with 50% probability
the candidate model randomly drops one covariate with respect to Mi and randomly adds one random
variable from the potential covariates that were not included in model Mi.

The precision of any MCMC sampling mechanism depends on the number of draws the procedure
runs through. Given that the MCMC algorithms used in the BMS package may begin using models
which might not necessarily be classified as ‘good’ models, the first set of iterations do not usually
draw models with high posterior model probabilities (PMP). This indicates that the sampler will
only converge to spheres of models with the largest marginal likelihoods after some initial set of
draws (known as the burn-in) from the candidate space. Therefore, this first set of iterations will be
omitted from the computation of future results. In the BMS package, the argument (burn) specifies the
number of burn-ins (models omitted), and the argument (iter) the number of subsequent iterations to

5 See Cribari-Neto and Zarkos (1999) and Racine and Hyndman (2002) for an overview of R.
6 We refer the reader to http://bms.zeugner.eu for ample applications, tutorials, empirical examples, and additional

documentation.
7 For more details see http://bms.zeugner.eu/matlab/.

http://bms.zeugner.eu
http://bms.zeugner.eu/matlab/
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be retained. The default number of burn-in draws for either MCMC sampler is 1000 and the default
number of iteration draws to be sampled (excluding burn-ins) is 3000 draws.

4.3.2. Model Priors

The BMS package offers considerable freedom in the choice of model prior. One can employ
the uniform model prior as the choice of prior model size (mprior=“uniform”), the Binomial model
priors8 where the prior probability of a model is the product of inclusion and exclusion probabilities
(mprior=“fixed”), the Beta-Binomial model prior (mprior=“random”) that puts a hyperprior on the
inclusion probabilities drawn from a Beta distribution9 or a custom model size and prior inclusion
probabilities (mprior=“customk”).

4.3.3. Alternative Zellner’s g-Priors

Different mechanisms have been proposed in the literature for specifying g priors. The options in
the BMS package are as follows:

1. g="UIP"; Unit Information Prior that corresponds to g = N, the sample size
(see Fernández et al. 2001).

2. g="RIC"; Sets g = K2 and conforms to the risk inflation criterion (see Foster and George 1994, for
more details).

3. g="BRIC"; A mechanism that asymptotically converges to the unit information prior (g = N)
or the risk inflation criterion (g = K2). That is, the g prior is set to g = max(N, K2)

(see Fernández et al. 2001).
4. g="HQ"; Follows the Hannan–Quinn criterion asymptotically and sets g = log(N3).
5. g="EBL"; Estimates a local empirical Bayes g-parameter (see Foster and George 2000; Liang et al. 2008).
6. g="hyper"; Takes the “hyper-g” prior distribution (see Feldkircher and Zeugner 2009; Liang et al. 2008).

4.4. Outputs

In addition to posterior inclusion probabilities (PIP) and posterior means and standard deviations,
bms() returns a list of aggregate statistics including the number of draws, burn-ins, models visited, the
top models, and the size of the model space. It also returns the correlation between iteration counts
and analytical PMPs for the best models, those with the highest PMPs.

4.5. Plot Diagnostics

BMS package users have access to plots of the prior and posterior model size distributions,
a plot of posterior model probabilities based on the corresponding marginal likelihoods and MCMC
frequencies for the best models that visualize how well the sampler has converged. A grid with
signs and inclusion of coefficients vs. posterior model probabilities for the best models and plots of
predictive densities for conditional forecasts are also produced.

4.6. Empirical Illustration

This section shows the results of a basic BMA exercise using the Hedonic dataset available in the
plm package Croissant and Millo (2008). This dataset contains information aggregated across census
tracts for the Boston metropolitan area in 1970, originally published in Harrison and Rubinfeld (1978).
This cross-sectional dataset consists of 506 observations along with 13 potential determinants of
median housing prices in Boston. The dependent variable (MV) is the corrected median value of
owner-occupied homes in $1000s, and among the explanatory variables are the per capita crime rate

8 See Sala-i-Martin et al. (2004).
9 See Ley and Steel (2009a).
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(CRIM), the pupil–teacher ratio by town school district (PTRATIO), the index of accessibility to radial
highways (RAD), the proportion of owner-occupied units built prior to 1940 (AGE), the proportion of
non-retail business acres per town (INDUS), the proportion of African-Americans per town (B), and a
variable reflecting the nitric oxides concentration (NOX). See Harrison and Rubinfeld (1978, Table 4)
for more details.

The authors use a hedonic housing price model to generate quantitative estimates of the
willingness to pay for air quality improvements. We assume there exists uncertainty about which
housing attributes should be a part of the true model. The small number of covariates allows the bms()
command to fully enumerate the model space, i.e., every possible model in M is estimated prior to
averaging. To further demonstrate searching over the model space, we append 12 fictitious variables,
generated as independent standard normal random deviates, which pushes the number of covariates
beyond the threshold search level and requires MCMC methods. These 12 additional variables have
no impact on median housing prices and are introduced here only to demonstrate how well the BMS
package works when there are a large number of covariates. We present diagnostic plots to illustrate
the flexibility of the calls within the package.

4.6.1. Enumeration of the Model Space

We first present the results of performing basic BMA with the original Hedonic dataset, which is
small enough to fully enumerate the model space. First, we load the required packages and set the R
options via the following commands:

set.seed (2016)
library(plm); library(BMS); library(xtable)

Next, we load the dataset, append the 12 fictitious variables, and manipulate it using the
following commands:

data(Hedonic , package="plm")
Hedonic$chas <- as.numeric(Hedonic$chas)
Hedonic <- subset(Hedonic , select=-townid)
noise <- matrix(rnorm (12*nrow(Hedonic)), ncol =12)
colnames(noise) <- paste(’noise’, 1:12, sep=’’)
Hedonic.large <- cbind(Hedonic , noise)

Now, we perform BMA via the bms() command, and retrieve the main results via the coef function.
The following commands will implement the BMA analysis over the Hedonic dataset.

bms_enu <- bms(Hedonic , mcmc="enumerate", g="UIP",
mprior="uniform",
user.int=FALSE)
model.enu <- coef(bms_enu)

In this setup, bms() enumerates all 213 = 8192 models. The current call uses a uniform distribution
for model priors and unit information priors (UIP) for the distribution of regressions coefficients. Table 1
shows the output for model.enu.

The first column, named PIP, shows the posterior inclusion probabilities indicating the probability
that each variable belongs to the true model. BMS sorts these probabilities from the highest to the
lowest automatically. The second and third columns show the posterior means and standard errors
of regressors calculated from this package. Several key takeaways emerge from Table 1. Of the 13
variables in consideration, seven have PIPs of 1 and two more (Property Tax Rate and Black People
Percentage) have PIPs above 0.95. Only three variables have PIPs low enough to suggest they do not
belong to the true model. The magnitudes of the posterior means are also aligned with intuition.
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Table 1. Bayesian Model Averaging Estimates. The first column, named PIP, shows the posterior
inclusion probabilities indicating the probability that each variable belongs to the true model. BMS sorts
these probabilities from the highest to the lowest automatically. The second and third columns show
the posterior means and standard errors of regressors calculated from this package.

Variable PIP Post Mean Post Std

Crime Rate 1.00 −0.012 0.001
Lower-Status Population 1.00 −0.371 0.023
Distance to Employment Center 1.00 −0.194 0.027
Pupil-Teacher Ratio 1.00 −0.031 0.005
Nitrogen Oxide Concentration 1.00 −0.006 0.001
Number of Rooms 1.00 0.006 0.001
Access to Radial Highways 1.00 0.095 0.019
Property Tax Rate 0.99 −0.000 0.000
Black People Percentage 0.96 0.355 0.122
Charles River Dummy 0.70 0.064 0.050
Non-Retail Business Acres 0.04 0.000 0.001
Owner Units Built Prior to 1940 0.04 0.000 0.000
Proportion of 25,000 Square Feet Residential Lots 0.04 0.000 0.000

Other additional information about the model averaging procedure can be obtained using the
summary function. In our case, the output would be

summary(bms_enu)
Mean no. regressors Draws Burnins Time
"9.7776" "8192" "0" "1.167907 secs"

No. models visited Modelspace 2^K % visited % Topmodels
"8192" "8192" "100" "6.1"

Corr PMP No. Obs. Model Prior g-Prior Shrinkage -Stats
"NA" "506" "uniform / 6.5" "UIP" "Av =0.998"

As is apparent, some useful statistics including the number of models visited, the average number
of regressors used, and time performance are produced.

4.6.2. Model Sampling

In this section, we present results obtained when full enumeration is computationally infeasible
or undesirable. Using the Hedonic.large dataset, the following commands will implement the BMA
analysis using the birth-death MCMC search algorithm (see Section 4.3.1) with 10,000 iterations and a
burn in of 2000 models.

bms_sam <- bms(Hedonic.large , burn =2000, iter = 10000, mcmc="bd",
g="UIP", mprior="uniform", nmodel =2000 ,
user.int=FALSE)
model.sam <- coef(bms_sam)[1:10 ,]

The PIPs for this exercise are shown in the first column of Table 2 after invocation of the coef
function on the BMS object. The choices for model priors and the distribution of the model coefficients
are the uniform distribution and unit information priors, respectively. As in Table 1, the next two
columns show the estimated posterior means and standard deviations of the covariates. Even with the
addition of the 12 fictitious variables, the birth–death sampler provides PIPs consistent with the earlier
full enumeration example. We do not list the PIPs for the 12 fictitious variables or the three variables
with PIPs below 0.05 in Table 1. Even having to search the model space (which is orders of magnitude
larger than with the original dataset), we see similar posterior mean and posterior standard deviation
estimates across all covariates with the same signs.
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Table 2. Bayesian Model Averaging Estimates. The first column, named PIP, shows the posterior
inclusion probabilities indicating the probability that each variable belongs to the true model. BMS sorts
these probabilities from the highest to the lowest automatically. The second and third columns show
the posterior means and standard errors of regressors calculated from this package.

Variable PIP Post Mean Post Std

Crime Rate 1.00 −0.012 0.001
Nitrogen Oxide Concentration 1.00 −0.006 0.001
Number of Rooms 1.00 0.006 0.001
Distance to Employment Center 1.00 −0.194 0.027
Access to Radial Highways 1.00 0.095 0.019
Pupil-Teacher Ratio 1.00 −0.031 0.005
Lower-Status Population 1.00 −0.371 0.023
Property Tax Rate 0.99 −0.000 0.000
Black People Percentage 0.97 0.353 0.119
Charles River Dummy 0.71 0.066 0.050

Additional statistical information is revealed via the call

summary(bms_sam)
Mean no. regressors Draws Burnins Time
"10.6002" "10000" "2000" "1.303944 secs"

No. models visited Modelspace 2^K % visited % Topmodels
"1211" "3.4e+07" "0.0036" "100"

Corr PMP No. Obs. Model Prior g-Prior Shrinkage -Stats
"0.9925" "506" "uniform / 12.5" "UIP" "Av =0.998"

Note that the MCMC search algorithm visited less than one half of one percent of the total number
of models in the model space and still provided results consistent with full enumeration over the
model space.

4.6.3. Plot Diagnostics

The plotting facilities within BMS are an important tool that allows the user to visualize the
shape of the posterior distributions of coefficients, assess the size of the true model, compare
PIPs, and investigate model complexity. The BMS package plots the marginal inclusion densities
as well as images that show inclusion and exclusion of variables within models using separate
colors. This package also provides graphics for both the PMPs and posterior model size distribution.
The following figures are some examples of the available plots corresponding to the above example
where we added 12 fictitious covariates to force the package to engage in searching across the
model space.

In order to produce a plot for comparison of prior and posterior distributions of the model size,
simply use

plot(bms_sam [1:200] , lty=c(1,2))

The first argument in the command is the R object where we have saved our estimation results,
and the second argument defines the type of line we are going to use for our graphs.

Figure 1 is a combined plot from the BMS package. The upper plot shows the prior and posterior
distribution of model sizes and helps the user illustrate the impact of the model prior assumption
on the estimation results. For example, the upper plot of Figure 1 assumes a uniform distribution on
model priors and, if the user wants to examine how far the posterior model size distribution matches
up to the prior, he might consider other popular model priors that allow more freedom in choosing
prior expected model size and other factors. The lower plot of the figure is an indicator of how well
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the first 200 best models encountered by BMS have converged. These plots are useful in determining
the search mechanisms ability to find ‘good’ models throughout the model space.
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Figure 1. Posterior model size distribution and model probabilities. Posterior model size distribution
and model probabilities produced from the BMS package with “uniform” model priors searching over
the model space.

Figure 2 is a visualization of the mixture marginal posterior density for the coefficient for the
Charles River Dummy produced by the BMS package. The bar above the density shows the PIP,
and the dotted vertical lines show the corresponding standard deviation bounds. This figure can be
generated simply via density.bma function within the BMS package

density.bma(bms_sam , reg = "chas", addons="esEpl")

This is an extremely flexible command and provides several options for the user. Addons receives
string values specifying which additional information should be added to the plot via low-level
commands. To see more details, run help(density.bma) in your R console.
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Figure 2. Marginal Density for Coefficient on Charles River Dummy. Marginal density of the coefficient
for the Charles River dummy (chas) from the BMS package.

5. A Finance Application with Jointness

Financial economists have proposed numerous variables including dividend-price ratio, dividend
yield, earnings-price ratio, dividend-payout ratio, stock variance, net equity issuance, treasury bill
rate, return on long-term government bonds, term spread, book-to-market ratio, inflation, and
investment-to-capital ratio, among others, along with different econometric techniques in attempts
to predict the equity risk premium (Welch and Goyal 2008). However, a lack of consensus regarding
theoretical frameworks has created situations where many possible models exist to explain the effect
of a particular variable on equity premium. We argue that, under this circumstance, picking a single
model tends to ignore the uncertainty associated with the specification of the selected model and may
result in unstable outcomes. Hence, we suggest using BMA to combine all the competing models and
compute a weighted average of the estimates to mitigate the uncertainty and instability risk associated
with reliance on a single model. In this section, we deploy the BMS to identify the key determinants of
equity premium.

The dataset used in this section is an extended version of the dataset described in Welch and Goyal
(2008). Our sample period is from 1927 to 2013 and includes information on the following variables:

• Equity premium (eqp): Defined as the total rate of return on the stock market minus the prevailing
short-term interest rate.

• Dividends: Dividend yield (dy) is the difference between the log of dividends and the log of
lagged prices.

• Earnings: Earnings price ratio (e/p) is the difference between the log of earnings on the S&P
500 index and the log of prices. Dividend payout ratio (d/e) is the difference between the log of
dividends and the log of earnings.

• Volatility: Stock variance (svar) is measured as the sum of squared daily returns on the S&P 500.
• Book value: Book-to-market ratio (b/m) is the ratio of book value at the end of the previous year

divided by the end-of-month market value.
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• Corporate issuing activity: Net equity expansion (nee) is the ratio of 12-month moving sums
of net issues by NYSE listed stocks divided by the total end-of-year market capitalization of
NYSE stocks.

• Treasury bills: T-bill rate (tbl) is the secondary market rate of three-month US treasury bills.
• Long-term yield: Long-term government bond yields (lty) and long-term government bond

returns (ltr) are the yields and returns of long-term US treasury bonds, respectively.
• Corporate bond returns: Default return spread (dfr) is the difference between returns on long-term

corporate bonds and returns on long-term government bonds. Default yield spread (dfy) is the
difference between BAA-rated and AAA-rated corporate bond yields.

• Inflation: Inflation (infl) is the Consumer Price Index (all urban consumers) from the Bureau of
Labor Statistics, lagged by one month.

Table 3 presents summary statistics for the equity premium sample. The majority of the variables
are nearly symmetric, with the earnings to price ratio and the dividend yield being slightly skewed.
The long-term government bond yield has an average monthly return of 5.2%, but an average return
of only 0.5%; this is also reflected in the minimum and maximum over the sample (−11.2–15.2%).

Table 3. Summary Statistics for Equity Premium Sample. The table reports the summary statistics of
the predictive variable proposed in the literature as potential determinants of equity premium in the US
stock market. The sample include monthly observations from 1927 to 2013. Number of observations,
mean, standard deviations, median, minimum, and maximum values for each variable are reported.

Variable No. Observations Mean Std. Dev. Min Max Median

Equity Premium (eqp) 1044 0.006 0.055 −0.288 0.414 0.009
Dividend Yield (d/y) 1044 −3.344 0.455 −4.531 −1.913 −3.312
Earnings Price Ratio (e/p) 1044 −2.722 0.419 −4.836 −1.775 −2.767
Dividend Payout Ratio (d/e) 1044 −0.627 0.333 −1.244 1.379 −0.617
Stock Variance (svar) 1044 0.003 0.006 0.000 0.071 0.001
Book-to-Market Ratio (b/m) 1044 0.580 0.266 0.121 2.028 0.558
Net Equity Expansion (nee) 1044 0.018 0.025 −0.058 0.176 0.019
Treasury Bill Rate (tbl) 1044 0.035 0.031 0.000 0.163 0.031
Long-Term Government Bond Yield (lty) 1044 0.052 0.028 0.018 0.148 0.043
Long-Term Government Bond Returns (ltr) 1044 0.005 0.024 −0.112 0.152 0.003
Default Return Spread (dfr) 1044 0.000 0.014 −0.098 0.074 0.001
Default Yield Spread (dfy) 1044 0.011 0.007 0.003 0.056 0.009
Inflation (infl) 1044 0.002 0.005 −0.021 0.057 0.002

The posterior inclusion probabilities, posterior mean and standard deviation estimates of the
coefficients are in Table 4. Of the 12 variables, five have PIPs of one: dividend yield, earnings to
price ratio, dividend payout ratio, stock variance and the treasury bill rate. The book-to-market ratio
has a PIP of 0.5 which suggests some likelihood of inclusion in the true model, though its posterior
mean is essentially 0. The remaining variables have low PIPs along with low posterior means and
standard deviations. The magnitudes and signs of the five variables with PIPs of one are consistent
with standard models of equity premia.

Turning our attention to jointness, Tables 5–7 present the jointness measures for three
alternative measures of covariate jointness Doppelhofer and Weeks (2009), Ley and Steel (2009b)
and Hofmarcher et al. (2018). All three jointness measures are constructed using 10,000 models with
a burn-in of 500 models along with the uniform information g-prior and a uniform prior for the
model space.

What is immediate is that, across the three tables, the jointness measure of
Doppelhofer and Weeks (2009) cannot be calculated across many of the covariates.10 This arises from

10 The same is also true for the jointness measure of Strachan (2009) and so we omit it here.



Econometrics 2020, 8, 6 14 of 21

how the jointness measure is constructed given which covariates appear in models with positive
posterior probability, i.e., the lack of definition. For those covariates for which jointness is calculated,
the majority of the scores are between −1 and 1. The only strong substitution/disjointness effect that
is found is default yield spread and book-to-market ratio. Several other patterns of disjointness which
are intuitive emerge: net equity expansion and long-term yield, long-term yield and inflation, and
long-term government bond returns and inflation.

Table 4. Bayesian Model Averaging Estimates. The first column, PIP, shows the posterior inclusion
probabilities indicating the probability that each variable belongs to the true model. BMS sorts these
probabilities from the highest to the lowest automatically. The second and third columns show the
posterior means and standard errors of regressors calculated from this package.

Variable PIP Post Mean Post Std

Dividend Yield (d/y) 1.00 1.012 0.003
Earnings Price Ratio (e/p) 1.00 −1.009 0.003
Dividend Payout Ratio (d/e) 1.00 −1.010 0.003
Stock Variance (svar) 1.00 0.472 0.039
Treasury Bill Rate (tbl) 1.00 −0.089 0.007
Book-to-Market Ratio (b/m) 0.50 0.002 0.002
Default Yield Spread (dfy) 0.34 0.028 0.044
Default Return Spread (dfr) 0.08 0.001 0.006
Inflation (infl) 0.04 −0.000 0.002
Long-Term Government Bond Returns (ltr) 0.04 0.000 0.003
Net Equity Expansion (nee) 0.03 0.000 0.001
Long-Term Government Bond Yield (lty) 0.02 0.000 0.005

Table 5. Jointness. The table shows the level of dependency between any pair of regressors used to
model equity premium using Doppelhofer and Weeks (2009).

dy epr der svar bm nee tbl lty ltr dfr dfy linfl

dy . – – – – – – – – – – –
epr – . – – – – – – – – – –
der – – . – – – – – – – – –

svar – – – . – – – – – – – –
bm – – – – . 0.2 – −0.5 −0.2 0.2 −2.1 −0.2
nee – – – – 0.2 . – −1.1 0.3 −0.4 0 0.3
tbl – – – – – – . – – – – –
lty – – – – −0.5 −1.1 – . 0.9 −0.2 −0.1 1.1
ltr – – – – −0.2 0.3 – 0.9 . −0.4 0 1.2

dfr – – – – 0.2 −0.4 – −0.2 −0.4 . 0 0.6
dfy – – – – −2.1 0 – −0.1 0 0 . 0.5

linfl – – – – −0.2 0.3 – 1.1 1.2 0.6 0.5 .
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Table 6. Jointness. The table shows the level of dependency between any pair of regressors used to
model equity premium using Ley and Steel (2009b) as presented in Equation (9).

dy epr der svar bm nee tbl lty ltr dfr dfy linfl

dy . Inf Inf Inf 1.2 0.1 Inf 0 0 0.1 0.4 0
epr Inf . Inf Inf 1.2 0.1 Inf 0 0 0.1 0.4 0
der Inf Inf . Inf 1.2 0.1 Inf 0 0 0.1 0.4 0

svar Inf Inf Inf . 1.2 0.1 Inf 0 0 0.1 0.4 0
bm 1.2 1.2 1.2 1.2 . 0.1 1.2 0 0 0.1 0.1 0
nee 0.1 0.1 0.1 0.1 0.1 . 0.1 0 0 0 0 0
tbl Inf Inf Inf Inf 1.2 0.1 . 0 0 0.1 0.4 0
lty 0 0 0 0 0 0 0 . 0 0 0 0
ltr 0 0 0 0 0 0 0 0 . 0 0 0

dfr 0.1 0.1 0.1 0.1 0.1 0 0.1 0 0 . 0.1 0
dfy 0.4 0.4 0.4 0.4 0.1 0 0.4 0 0 0.1 . 0

linfl 0 0 0 0 0 0 0 0 0 0 0 .

For the main jointness measure of Ley and Steel (2009b) presented in Table 6, nearly all of the
tabular entries show up as 0 with a large block of maximal entries due to four of the variables that have
PIPs equivalent to 1 from Table 4. Consistent with Table 5, default yield spread and book-to-market
ratio are strong substitutes. The many 0 entries in Table 6 suggest that a majority of the 12 covariates
are substitutes as it pertains to the true model of equity premia according to the jointness measure of
Ley and Steel (2009b).

Table 7. Jointness. The table shows the level of dependency between any pair of regressors used to
model equity premium using Hofmarcher et al. (2018) as presented in Equation (13).

dy epr der svar bm nee tbl lty ltr dfr dfy linfl

dy . 1 1 1 0.1 −0.9 1 −0.9 −0.9 −0.8 −0.4 −1
epr 1 . 1 1 0.1 −0.9 1 −0.9 −0.9 −0.8 −0.4 −1
der 1 1 . 1 0.1 −0.9 1 −0.9 −0.9 −0.8 −0.4 −1

svar 1 1 1 . 0.1 −0.9 1 −0.9 −0.9 −0.8 −0.4 −1
bm 0.1 0.1 0.1 0.1 . −0.1 0.1 −0.1 −0.1 −0.1 −0.5 −0.1
nee −0.9 −0.9 −0.9 −0.9 −0.1 . −0.9 0.9 0.9 0.7 0.4 0.9
tbl 1 1 1 1 0.1 −0.9 . −0.9 −0.9 −0.8 −0.4 −1
lty −0.9 −0.9 −0.9 −0.9 −0.1 0.9 −0.9 . 0.9 0.7 0.4 0.9
ltr −0.9 −0.9 −0.9 −0.9 −0.1 0.9 −0.9 0.9 . 0.7 0.4 0.9

dfr −0.8 −0.8 −0.8 −0.8 −0.1 0.7 −0.8 0.7 0.7 . 0.3 0.8
dfy −0.4 −0.4 −0.4 −0.4 −0.5 0.4 −0.4 0.4 0.4 0.3 . 0.4

linfl −1 −1 −1 −1 −0.1 0.9 −1 0.9 0.9 0.8 0.4 .

A similar pattern emerges for the modified Yule’s Q jointness measure of Hofmarcher et al. (2018)
presented in Table 7; many of the tabular entries show up as negative and larger in magnitude than
0.75. We also see that when Ley and Steel’s (2009b) measure is 0 or near 0, the modified Yule’s Q
measure is close to −1. Tables 6 and 7 provide the same insights regarding jointness, which do differ
in some ways from Table 5.

Aggregating across these three tables the insights of Man (2018, p. 846) bear relevance:

“‘. . . jointness structures where virtually all variable pairs involving at least one covariate
below the 50% PIP (posterior inclusion probability) threshold display significant or even
strong negative jointness, that is, substitutability. Since, typically, only a small number of
variables is above the 50% threshold, this implies that most variable pairs in any given
dataset display negative jointness. Under the other concept due to Ley and Steel (2009b),
in addition to the substitutability partition, there is a (strong) complementarity partition
comprising variable pairs where both covariates are significant in BMA.”
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This last sentence is especially true here. Both JLS2 and JYQM suggests strong complementarity for the
five variables with PIPs equal to 1 in Table 4 and substitutability for those variables with small PIPs.
It is difficult to read too much into the results stemming from JDW2 as the lack of satisfaction of the
definition property of Hofmarcher et al. (2018) leads to many entries that are not defined.

6. Conclusions

This paper has outlined the most recently available BMA package (BMS) in the statistical
computing environment R along with an in-depth treatment of how to calculate various measures
of jointness with the output from this package. Our goal was to familiarize practitioners with the
different options that this package has to offer along with the various notions of bivariate jointness
that exist.

We highlighted how this package implements a BMA analysis as well as the options available to
the user and the outputs that are returned. To demonstrate the operation of this package in practice,
we presented both a simple empirical example that allowed full enumeration of the model space as
well as requiring engagement of MCMC methods to search across the model space. In both instances,
the insights gleaned were virtually identical. We also provided functional code that integrates with
the bms() call to allow the user to calculate eight of the most popular jointness measures that have
been proposed. An application to the equity premium from finance was investigated with these
jointness measures.
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Appendix A. R Function to Calculate Jointness Measures

Here, we introduce a short R function that users can easily deploy in their own analyses to
calculate a range of jointness scores.11

# Jointness function
jointness.score <- function(j.data , method=NA ,
burn =1000 , iter=NA , nmodel =500,
mcmc="bd", g="UIP", mprior="uniform",
mprior.size=NA , user.int=FALSE ,
start.value=NA, g.stats=TRUE ,
logfile=FALSE , logstep =10000 ,
force.full.ols =TRUE ,
fixed.reg=numeric (0)){
####################################################################
# Inputs:
# ======
#
# 1. j.data: A data frame or a matrix , with the dependent variable
# in the first column , followed by the covariates.
#
# 2. method: can be one of "Pure", DW1","DW2", "LS1", "LS2", "St",

11 To our knowledge, the only available package in R the returns measures of jointness is BayesVarSel (Garcia-Donato and
Forte 2017), and this only offers users the ability to calculate the pure measure of jointness (Equation (5)) as well as both
measures proposed by Ley and Steel (2009b).
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# "YQ", or "YQM"
#
# 3. Other inputs are the inputs to the bms() function from the BMA
# package.
#
####################################################################
jointness.bma <- bms(j.data , burn = burn , iter = iter ,
nmodel = nmodel , mcmc = mcmc , g = g,
mprior = mprior , mprior.size = mprior.size ,
user.int = user.int , start.value = start.value ,
g.stats = g.stats , logfile = logfile ,
logstep =logstep ,
force.full.ols = force.full.ols ,
fixed.reg=fixed.reg)

j.pips <- coef(jointness.bma)[,1:3]
top.includes <- topmodels.bma(jointness.bma)
cov.nam <- head(row.names(top.includes) ,-2)
cov.no <- length(cov.nam)
pmps <- pmp.bma(jointness.bma)[,2]
pmps <- pmps/sum(pmps)
jointness <- matrix(0,cov.no,cov.no)

for(i in 1:cov.no){
for(j in 1:cov.no){

selected.includes <- top.includes[c(i,j) ,]
tl <- sum(pmps[colSums(selected.includes)==2])
tr <- sum(pmps[colSums(selected.includes)==0])
bl <- sum(pmps[selected.includes [1 ,]==0 & selected.includes [2 ,]==1])
br <- sum(pmps[selected.includes [1 ,]==1 & selected.includes [2 ,]==0])
cr <- tl+br
cl <- tl+bl

if (method =="Pure"){
## Raw jointness statistic 1
jointness[i,j] <- tl}
if (method =="LS1"){
## Ley -Steel jointness statistic 1
jointness[i,j] <- tl/(cl+cr -tl)}
if (method =="LS2"){
## Lee -Steel jointness statistic 2
jointness[i,j] <- tl/(bl+br)}
if (method =="DW1"){
## Doppelhofer -Weeks jointness statistic 1
jointness[i,j] <- log(tl/(cl*cr))}
if (method =="DW2"){
## Doppelhofer -Weeks jointness statistic 2
jointness[i,j] <- log((tl*tr)/(bl*br))}
if (method =="St"){
## Strachan jointness statistic
jointness[i,j] <- cl*cr*log(tl/(bl*br))}
if (method =="YQ"){
## Hofmarcher et al. jointness statistic
jointness[i,j] <- (tl*tr -br*bl)/(tl*tr+br*bl)}
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if (method =="YQM"){
## Hofmarcher et al. modified jointness statistic
jointness[i,j] <- ((tl +0.5)*(tr+0.5) -
(br +0.5)*(bl+0.5))/
((tl+0.5)*(tr +0.5)+
(br +0.5)*(bl+0.5) -0.5)}
}
}

colnames(jointness) <- cov.nam
rownames(jointness) <- cov.nam
jointness <- round(jointness ,1)
diag(jointness) <- "."
jointness <- as.data.frame(jointness)
return(jointness)
}

Our R code for the finance example in Section 5 is also provided here for full reproducibility.

# Read equity premium data , updated version , used in Goyal ,
Welch (2008): Annual , monthly , and quarterly
epd.mo <- read.csv(file="EData -Monthly.csv", header=TRUE , sep=",",
stringsAsFactors=FALSE)

# Construct variables described in Goyal , Welch (2008).
# Step 1: Sort data
epd.mo <- epd.mo[order(epd.mo$yyyym),]

# Step 2: Create the lag of prices , risk -free rate , and inflation
epd.mo <- slide(epd.mo , Var="price", slideBy=-1, reminder=FALSE)
epd.mo <- slide(epd.mo , Var="rfree", slideBy=-1, reminder=FALSE)
epd.mo <- slide(epd.mo , Var="infl", slideBy=-1, reminder=FALSE)

colnames(epd.mo)[which(names(epd.mo)=="price -1")] <- "lprice"
colnames(epd.mo)[which(names(epd.mo)=="rfree -1")] <- "lrfree"
colnames(epd.mo)[which(names(epd.mo)=="infl -1")] <- "linfl"

# Step 3: Define variables according to the section 1 of Goyal , Welch (2008)
epd.mo$dpr <- log(epd.mo$d12)-log(epd.mo$price) # D-p ratio
epd.mo$dy <- log(epd.mo$d12)-log(epd.mo$lprice) # Dividend yield
epd.mo$epr <- log(epd.mo$e12)-log(epd.mo$price) # E-p ratio
epd.mo$der <- log(epd.mo$d12)-log(epd.mo$e12) # D-pay ratio
epd.mo$dfr <- epd.mo$corpr -epd.mo$ltr # Default return
epd.mo$dfy <- epd.mo$baa -epd.mo$aaa # Default yield
epd.mo$tms <- epd.mo$lty -epd.mo$tbl # Term
epd.mo$eqp <- epd.mo$vwmret -epd.mo$rfree # Equity premium

bms.equ <- subset(epd.mo, yyyym >= 192701 & yyyym <= 201312)

bms.equ <- subset(bms.equ , select=c(eqp , dy, epr , der , svar , bm,
ntis , tbl , lty , ltr , dfr ,
dfy , linfl))

equ.summ <- as.matrix(describe(bms.equ))[,c(2,3,4,8,9,5)]

rownames(equ.summ) <- c("Equity Premium (eqp)",
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"Dividend Yield (d/y)",
"Earnings Price Ratio (e/p)",
"Dividend Payout Ratio (d/e)",
"Stock Variance (svar)",
"Book -to -Market Ratio (b/m)",
"Net Equity Expansion (nee)",
"Treasury Bill Rate (tbl)",
"Long -Term Government Bond Yield (lty)",
"Long -Term Government Bond Returns (ltr)",
"Default Return Spread (dfr)",
"Default Yield Spread (dfy)",
"Inflation (infl)")

## BMA
model.equ <- coef(bms(bms.equ , burn =500, iter = 10000 ,
mcmc="bd", g="UIP", mprior="uniform",
nmodel =2000 , user.int=FALSE))[,c(1,2,3)]

rownames(model.equ) <- c("Dividend Yield (d/y)",
"Earnings Price Ratio (e/p)",
"Dividend Payout Ratio (d/e)",
"Stock Variance (svar)",
"Treasury Bill Rate (tbl)",
"Book -to -Market Ratio (b/m)",
"Default Yield Spread (dfy)",
"Default Return Spread (dfr)",
"Inflation (infl)",
"Long -Term Government Bond Returns (ltr)",
"Net Equity Expansion (nee)",
"Long -Term Government Bond Yield (lty)")

## Calculate Jointness
equ.jointDW2 <- jointness.score(bms.equ , method="DW2", burn =500,
iter =10000 , nmodel =10000 ,
mcmc="bd", g ="UIP",
mprior ="uniform",
user.int=FALSE ,
force.full.ols=TRUE ,
fixed.reg=numeric (0))

equ.jointLS2 <- jointness.score(bms.equ , method="LS2", burn =500,
iter =10000 , nmodel =10000 ,
mcmc="bd", g ="UIP",
mprior ="uniform",
user.int=FALSE ,
force.full.ols=TRUE ,
fixed.reg=numeric (0))

equ.jointYQM <- jointness.score(bms.equ , method="YQM", burn =500,
iter =10000 , nmodel =10000 ,
mcmc="bd", g ="UIP",
mprior ="uniform",
user.int=FALSE ,
force.full.ols=TRUE ,
fixed.reg=numeric (0))
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## Print Results
latex(equ.jointDW2)
latex(equ.jointLS2)
latex(equ.jointYQM)
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